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Complex earthquakes and Teichmüller

theory

Curtis T. McMullen∗

University of California, Berkeley CA 94720

4 March, 1996

Abstract

It is known that any two points in Teichmüller space are joined
by an earthquake path. In this paper we show any earthquake path
R → T (S) extends to a proper holomorphic mapping of a simply-
connected domain D into Teichmüller space, where R ⊂ D ⊂ C. These
complex earthquakes relate Weil-Petersson geometry, projective struc-
tures, pleated surfaces and quasifuchsian groups.

Using complex earthquakes, we prove grafting is a homeomorphism
for all 1-dimensional Teichmüller spaces, and we construct bending
coordinates on Bers slices and their generalizations.

In the appendix we use projective surfaces to show the closure of
quasifuchsian space is not a topological manifold.
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1 Introduction

A hyperbolic Riemann surface is both a space of constant curvature and a
complex manifold. These two natures are reflected in Teichmüller theory.

The complex nature of surfaces gives rise to extremal length, holomor-
phic quadratic differentials, the complex structure on Teichmüller space,
quasiconformal deformations and Teichmüller geodesics. The geometric na-
ture of surfaces gives rise to hyperbolic length, geodesic laminations, the
symplectic structure on Teichmüller space, twist deformations and earth-
quake paths. While each theory is internally rich, important features also
arise from their interplay, such as the Kähler metric on Teichmüller space.

In this paper we study complex earthquakes, another interface between
the complex and geometric aspects of Teichmüller space. Real earthquakes
include the classical Fenchel-Nielsen twist deformations around simple closed
hyperbolic geodesics; they define paths in Teichmüller space that are eas-
ily understood from a geometric point of view. Complex earthquakes are
obtained from these paths by analytic continuation.

Our main result shows the maximal analytic continuation of an earth-
quake path gives a proper holomorphic map of a disk into Teichmüller space.
These earthquake disks can be compared to complex Teichmüller geodesics,
which are also proper holomorphic disks.

The theory of earthquake disks brings into focus relations between Weil-
Petersson geometry, projective structures and their holonomy, pleated sur-
faces and quasifuchsian groups. It also allows complex methods such as the
Schwarz lemma and positivity of intersections to be brought to bear.

We give two applications to demonstrate the utility of earthquake disks.
First, we show grafting (the imaginary counterpart of twisting) defines a
homeomorphism for all one-dimensional Teichmüller spaces. This theorem
supports the conjectural rigidity of 3-dimensional cone-manifolds. Second,
we use earthquake disks to construct bending coordinates on Bers’ embed-
ding for Teichmüller space. These are ‘polar coordinates’ centered at the
Fuchsian basepoint, with angular part a projective lamination and radial
part the length of the bending locus.

In the Appendix we use related methods to demonstrate the topological
complexity of the boundary of quasifuchsian space.

Statement of results. Let S be a compact oriented smooth surface or
orbifold of negative Euler characteristic. Attached to S one has:

1. The Teichmüller space T (S), parameterizing hyperbolic Riemann sur-
faces X marked by S;
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2. The bundle P (S) → T (S) of complex projective structures on S (Rie-
mann surfaces whose transition functions are Möbius transformations);

3. The variety V (S) of irreducible representations of π1(S) in PSL2(C)
that send π1(∂S) to parabolics; and

4. The space of measured laminations ML(S); this is the completion of
the space of weighted simple closed curves on S.

Given a simple closed geodesic γ on a hyperbolic surface X ∈ T (S), we
can construct a new surface by performing a right twist or earthquake along
γ. The surface twtγ(X) ∈ T (S) is obtained by cutting along γ and re-gluing
after twisting distance t to the right.

The related operation of grafting gives a new surface grsγ(X) by cutting
along γ and inserting a flat cylinder of height s and circumference equal
to the length of γ on X. Both operations extend by continuity to general
measured laminations.

Theorem 1.1 (Earthquake disks) For any lamination λ $= 0 in ML(S)
and any X ∈ T (S), the earthquake path R → T (S) given by

t %→ twtλ(X)

extends to a proper holomorphic map D → T (S), where D is a simply-
connected domain and H ⊂ D ⊂ C.

For s > 0 the complex earthquake map is given by

t + is %→ grsλ(twtλ(X)).

Its analytic continuation to negative values of s is defined via quasifuchsian
groups. The proof that D is a disk uses:

Theorem 1.2 (Convexity) The space of quasifuchsian groups is disk-convex
in the representation variety: if

f : ∆ → V (S)

is a holomorphic disk with f(∂∆) ⊂ QF (S), then f(∆) ⊂ QF (S).

One-dimensional Teichmüller spaces. For Theorems 1.3 to 1.6 we as-
sume dimC T (S) = 1. Equivalently, we assume S is a surface or orbifold with
s singular points, b boundary components and genus g, where s+b+3g = 4.
By checking the degree of an earthquake disk we find:
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Theorem 1.3 (Isomorphism) The complex earthquake map D → T (S)
is biholomorphic, sending H to {Z : %λ(Z) ≤ %λ(X)}.

Here %λ(X) denotes the length of the lamination λ in the hyperbolic metric
on X.

From Theorem 1.3 and a Schwarz lemma argument we deduce:

Theorem 1.4 (Grafting bijection) For any λ ∈ ML(S), the grafting
map

grλ : T (S) → T (S)

sending X to grλ(X) is a homeomorphism.

Previously grafting was known to be a homeomorphism in the countably
many cases where λ =

∑
2πmiγi for integral weights mi > 0 on disjoint

simple closed curves γi [Tan]. Bijectivity of grafting is related to rigidity of
cone-manifolds in §8.
Polar coordinates on a Bers slice. The space of quasifuchsian groups
forms an open cell QF (S) ⊂ V (S), admitting a natural biholomorphic pa-
rameterization

Q : T (S) × T (S) → V (S)

such that Q(X,Y ) corresponds to a hyperbolic 3-manifold with conformal
boundary X ( Y . A Bers slice BY ⊂ QF (S) is a model for Teichmüller
space obtained by holding one factor fixed:

BY = {Q(X,Y ) : X ∈ T (S)}.

Using the relation between earthquake disks and quasifuchsian groups, we
obtain:

Theorem 1.5 (Bending coordinates) Let BY ⊂ V (S) be a Bers slice
with basepoint N = Q(Y , Y ). Then there is a natural homeomorphism

(BY − N) → PML(S) × (0, 1)

given by

Q(X,Y ) %→
(

[β],
%β(Q(X,Y ))

%β(Y )

)
,

where Q(X,Y ) has bending laminations (β,β).
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The inequality
%β(X) ≤ %β(Q(X,Y )) ≤ %β(Y )

holds for any quasifuchsian manifold with bending laminations (β,β) (Corol-
lary 3.5), showing the length ratio in the Theorem is indeed in (0, 1).

As Y varies, the Bers embeddings T (S) → BY ⊂ V (S) range in a com-
pact family of holomorphic mappings, allowing one to construct a general-
ized Bers slice by taking a limit. These slices also admit limiting bending
coordinates.

Theorem 1.6 (Limit Bers slice) Suppose Yn → [λ] in T (S) ∪ PML(S)
and BYn → B. Then there is a homeomorphism

B → (PML(S) − [λ]) × R+,

given by

M = lim Q(X,Yn) ∈ B %→
(

[β],
%β(M)

i(β,λ)

)
,

where β is the bending lamination of M .

When [λ] is supported on a simple closed curve γ, the limit slice B ⊂
∂QF (S) is the Maskit model for T (S); its points are geometrically finite
groups with γ pinched to a rank-one cusp. The parameterization of the
Maskit model by bending data as above was obtained by Keen and Series
[KS].

When [λ] is an irrational lamination, the limit Bers slice B ⊂ ∂QF (S)
consists of geometrically infinite groups with ending lamination λ.

Comparison with dynamics. A one-dimensional Bers slice BY in some
ways resembles the family of iterated quadratic polynomials fα(z) = αz+z2,
|α| < 1. The ray in BY corresponding to a fixed bending lamination [β]
is like the ray of polynomials with arg(α) fixed; the Fuchsian basepoint
Q(Y , Y ) corresponds to the map f0(z) = z2 whose Julia set is a circle; and
the rational rays in either picture land at dynamical systems with parabolic
points.

The topology of quasifuchsian space. In the Appendix we use related
methods to give examples of the subtlety of variations of projective struc-
tures and algebraic limits. We show:

• The closure of quasifuchsian space QF (S) ⊂ V (S) is not a topological
manifold with boundary;
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• There is a point [ρ] on the boundary of a Bers slice such that every
small neighborhood of ρ meets QF (S) in a disconnected set; and

• The set of projective surfaces with univalent developing maps is not
open among those with discrete holonomy.

We also provide a computer illustration of a slice through QF (S). These
results begin to reveal the intricacies of quasifuchsian space, which has hith-
erto seemed quite tame compared to other families of conformal dynamical
systems.

Historical remarks and references. The theory of projective structures
and Kleinian groups emerged, in the era of Fuchs, Schwarz, Poincaré and
Klein, from the study of ordinary differential equations in the complex do-
main. See [Gr] for an extensive bibliography. Expository presentations of
the theory of projective structures can be found in [Gun2] and [Mat].

The twist deformation was introduced by Fenchel and Nielsen as part
of their geometric coordinates for Teichmüller space, and connected with
the Weil-Petersson symplectic form by Wolpert [Wol2], [Wol3]. Modern
treatments of Fenchel-Nielsen coordinates are given in [IT] and [Th3, §4.6];
see also [Gd], [Nag] and [Le] for background on Teichmüller theory.

Twisting was generalized from curves to laminations by Thurston, who
showed any two points in Teichmüller space are related by a unique right
earthquake [Th2]. This result was used by Kerckhoff in his solution to the
Nielsen realization problem [Ker1], which contains a detailed discussion of
earthquakes.

The grafting construction appears in works of Goldman, Hejhal and
Maskit on ‘exotic’ projective structures [Gol], [Hej], [Msk]. These works
concern grafting a 2π-annulus along a simple closed curve.

The bending lamination for the convex hull of hyperbolic 3-manifold was
introduced by Thurston [Th1]. A detailed development is given by Epstein
and Marden in [EpM]. Thurston also showed the bending lamination can
be defined for an arbitrary projective structure, and thus every projective
structure is given by a canonical grafting along a lamination. This result,
Theorem 2.4 below, is presented by Kamishima and Tan in [KaT].

A precursor to the complex earthquakes we study here are the ‘quakebend
cocycles’ of [EpM]. These cocycles give the holonomy of a complex earth-
quake, so a complex earthquake can be viewed as a lifting of the bending
deformation to the space of projective structures. The present paper ob-
tains the analytic continuation of this lift to negative bending, the simple-
connectedness of the domain of the analytic continuation, and the properness
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of the resulting holomorphic disk. The last two properties are essential to
applications and are shared by Teichmüller geodesics.

Our original motivation for developing complex earthquakes was the ap-
plication to grafting given in Theorem 1.4 above. This application, and
the examples of the Appendix, were in turn inspired by work of Shiga and
Tanigawa on projective structures with discrete holonomy [ST], [Tan].

A second motivation was to show that certain totally degenerate groups
are determined by their ending laminations and the length of their bending
laminations (Theorem 1.6). These groups were computed explicitly in [Mc2,
§3.7] and the present paper shows their uniqueness (see §7).

It is natural to ask if Theorems 1.4 and 1.5 hold true when dimT (S) >
1. In higher-dimensional Teichmüller spaces one can construct earthquake
polydisks H

n → T (S) by twisting and grafting along laminations with many
transverse invariant measures (such as systems of simple closed curves). It
seems difficult, however, to describe the image of these polydisks in terms
of hyperbolic length, as in Theorem 1.3.

Outline of the paper. Detailed definitions and basic properties of the
spaces and maps with which we will be concerned are provided in §2. The
geometry of grafting and pleating is developed in §3 and §4, and in §5 we
prove Theorem 1.2. These results are assembled in §6 to prove the existence
of proper earthquake disks (Theorem 1.1). This section also contains an
explicit calculation of an earthquake disk for the punctured torus. The
results on one-dimensional Teichmüller spaces stated as Theorems 1.3 – 1.6
are deduced in §7. We conclude in §8 by relating grafting to hyperbolic
cone-manifolds.

The topology of quasifuchsian space is discussed in the Appendix.

Acknowledgements. I would like to thank H. Tanigawa and D. Canary
for stimulating discussions related to this work.

2 Laminations and deformations

This section briefly summarizes definitions and known results about the
spaces and mappings with which we will be concerned. For detailed accounts
the reader is referred to the references of the Introduction, especially [Ker1],
[EpM] and [KaT]. Our principal goal is to introduce the complex earthquake
map

Eq : D(S) → P (S)

and its natural domain of definition, D(S) ⊂ MLC(S) × T (S).
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We begin by defining the spaces T (S), P (S), V (S) and ML(S).

T (S). The Teichmüller space T (S) consists of pairs (f,X), where X is a
hyperbolic Riemann surface of finite area and f : int(S) → X is a diffeomor-
phism. The canonical orientation of X is required to agree with the given
orientation of S. Two pairs (f1,X1) and (f2,X2) represent the same point
in T (S) if there is a holomorphic isomorphism α : X1 → X2 such that α ◦ f1

is isotopic to f2.
The space T (S) is a finite-dimensional complex manifold, diffeomorphic

to a cell.

P (S). A projective structure on a Riemann surface X ∈ T (S) is given
by an atlas of analytic charts whose transition functions are Möbius trans-
formations. A canonical projective structure is provided by the Fuchsian
uniformization X = H/ΓX .

We let P (S) → T (S) denote the bundle whose fiber over X consists of all
projective structures on X compatible with the given conformal structure
and standard in the cusps. The latter condition means a neighborhood of
each puncture of X is projectively isomorphic to a neighborhood of the origin
in ∆∗, with respect to the Fuchsian projective structure ∆∗ = H/〈z %→ z+1〉.

The difference between two projective structures is measured by a holo-
morphic quadratic differential on X (via the Schwarzian derivative) with at
worst simple poles at the punctures (by our condition on the cusps). Thus
P (S) is a holomorphic bundle of finite-dimensional affine spaces over T (S).

Note: the section of P (S) → T (S) which assigns to X ∈ T (S) its Fuch-
sian projective structure is not holomorphic.

V (S). The space V (S) consists of equivalence classes of irreducible repre-
sentations

ρ : π1(S) → PSL2(C)

such that ρ(g) is parabolic for every g ∈ π1(∂S). Representations that are
conjugate in PSL2(C) define the same point in V (S); thus

V (S) = Homirr
parab(π1(S), PSL2(C))/PSL2(C).

This space is a complex manifold [Gun1], [Fal], and

dim V (S) = dim P (S) = 2dim T (S).

ML(S). Let S be the set of isotopy classes of essential, nonperipheral
simple closed curves on S. (A curve is peripheral if it is parallel to the
boundary.) For α,β ∈ S the intersection number i(α,β) is the minimum
number of points in which representatives of α and β must intersect.
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The space ML(S) of measured laminations on S is the closure of R+×S
in RS with respect to the embedding

(t,α) %→ 〈t · i(α,β) : β ∈ S〉.

We have S ⊂ ML(S) by the map α %→ (1,α). The intersection pairing
extends to a continuous map i : ML(S) ×ML(S) → R.

A geodesic lamination on a hyperbolic surface is a closed set given as
a disjoint union of complete, simple geodesics. On any surface X ∈ T (S),
any λ ∈ ML(S) can be represented by a compact, transversally measured
geodesic lamination. The space of such compactly supported laminations
is also sometimes denoted ML0(S). An extensive discussion of measured
laminations can be found, for example, in [Th1], [EpM], [Bon2] and [Ot].

To allow complex multiples of laminations, we let

MLC(S) = {(λ, z) ∈ ML(S) × C}/〈(λ, tz) ∼ (tλ, z) : t ∈ R+〉.

This “tensor product” can be formed with other sets of scalars such as R

and H, and we have

ML(S) ⊂ MLR(S) ⊂ ML
H
(S) ⊂ MLC(S).

For λ ∈ MLC(S) the real and imaginary parts Reλ, Imλ are multiples of a
single real lamination and satisfy λ = Reλ + i Im λ.

The developing map for a projective structure. A projective surface
X ∈ P (S) determines a holomorphic developing map

δ : X̃ → Ĉ

such that the lifted projective structure on the universal cover X̃ agrees with
the standard structure on Ĉ pulled back via δ. The map δ is unique up to
an automorphism of Ĉ, so we have a holonomy homomorphism

ρ : π1(X) → PSL2(C)

such that δ(g · x) = ρ(g) · δ(x). The projective holonomy map

µ : P (S) → V (S)

is defined by X %→ [ρ].

Theorem 2.1 (Hejhal) The holonomy map is a complex analytic local
homeomorphism.
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See [Hej]; other treatments appear in [Ea], [Hub] and [Fal].

Lengths. For X ∈ T (S) and λ ∈ ML(S), we denote by %λ(X) the length
of λ in the hyperbolic metric on X. By [Ker2] we have:

Theorem 2.2 The function % : ML(S) × T (S) → R is continuous, and
%λ(X) is a real-analytic function of X.

For a simple closed curve γ, %tγ(X) is just t times the length of the geodesic
representative of γ.

Twisting. Next we discuss deformations defined using laminations. We
begin with the twist deformation

tw : MLR(S) × T (S) → T (S).

For a simple closed geodesic γ on a hyperbolic surface X ∈ T (S), twtγ(X) ∈
T (S) is constructed by cutting X along γ, twisting distance t to the right,
and re-gluing.

Figure 1. A right twist on a punctured torus.

By twisting to the right we mean that an observer standing on one side
of γ will see the other side of the surface move to the right during the twist
(see Figure 1). The notion of a right twist requires an orientation of X
(provided by the complex structure) but not of γ.

A local model for twisting is the map on H given by

z %→

{
etz if z ∈ H−,

z if z ∈ H+,
(2.1)
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where H± = {z : ±Re z > 0} and we have identified X̃ with H so γ̃ = iR+.
The twist deformation extends by continuity to laminations; the more

general deformations are called earthquakes (cf. [Ker1], [Ker2], [Th2], [EpM]).
It extends to MLR(S) by twisting negative laminations to the left.

Twisting preserves the hyperbolic metric, and thus the Fuchsian projec-
tive structure, away from γ. Thus we obtain a mapping

Tw : MLR(S) × T (S) → P (S)

lifting tw(·); the surface Twλ(X) is just twλ(X) with its Fuchsian projective
structure. By [Ker1, Cor 2.6] we have:

Theorem 2.3 The twist map Tw : MLR(S)×T (S) → P (S) is continuous.

Grafting. Next we describe the grafting maps:

ML(S) × T (S)
Gr ! P (S)

"""""""

gr

#
T (S).

$

For a simple closed geodesic γ on a hyperbolic surface X, grtγ(X) is con-
structed by cutting along γ and inserting a Euclidean right cylinder A(t)
of height t and circumference %γ(X), with no twist (see Figure 2). The
Euclidean and hyperbolic metrics piece together continuously to give a well-
defined conformal structure.

Figure 2. Grafting an annulus of height t along γ.
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To define the projective surface Grtγ(X) ∈ P (S), we describe the inserted
cylinder projectively as

A(t) = Ã(t)/〈z %→ e%γ(X)z〉,

where
Ã(t) = {z ∈ C∗ : arg(z) ∈ [π,π + t]}.

When t ≥ 2π, one must interpret the projective surface Ã(t) as multi-
sheeted. This projective structure on A(t) fits together with the Fuchsian
structure on X − γ to define the projective structure on Grtγ(X). The

metric |dz|/|z| on Ã(t) makes A(t) into a Euclidean cylinder of height t and
circumference %γ(X), so Grtγ(X) is conformally identical to grtγ(X).

Identifying the universal cover of X with H so γ̃ = iR, a local projective
model for grafting is to cut along γ̃, apply the map

z %→

{
eitz if z ∈ H−,

z if z ∈ H+,
(2.2)

and insert the strip Ã(t) to join the pieces together (see Figure 3). For large
values of t this model should be thought of as a description of the developing
map for Grtγ(X).

Figure 3. Local model for grafting.

Grafting extends by continuity from weighted simple curves to lamina-
tions; in fact we have [KaT]:

Theorem 2.4 (Thurston) The grafting map Gr : ML(S)×T (S) → P (S)
is a homeomorphism.
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For the convenience of the reader we sketch the main idea in the proof
of Theorem 2.4. Consider the universal cover X̃ of a projective surface
X ∈ P (S). Because of the projective structure one has the notion of a
maximal round disk D ⊂ X̃. The ideal boundary of D is naturally a circle,
an open subset of which lies in X̃ . Let K(D) ⊂ D be the convex hull of
the remainder of the ideal boundary with respect to the hyperbolic metric
on D. As D varies, the hulls K(D) cover X̃ and have disjoint interiors.
Those K(D) which are single geodesics determine a lamination λ; those
whose interior is nonempty piece together to form a hyperbolic surface Y
such that Grλ(Y ) = X.

Complex earthquakes. We now combine twisting and grafting to form a
single transformation

Eq : ML
H
(S) × T (S) → P (S)

defined by
Eqλ(X) = GrIm λ(twRe λ(X)).

We call this deformation a complex earthquake along λ. By Theorems 2.3
and 2.4 we have:

Theorem 2.5 The complex earthquake map Eq : ML
H
(S)× T (S) → P (S)

is continuous.

Later the domain of Eqλ(X) will be enlarged to include certain lamina-
tions with negative imaginary part.

Most results about grafting, twisting and earthquakes are established by
first assuming the lamination λ is a simple closed curve. To handle general
laminations, one uses the density of weighted simple closed curves in ML(S)
and the continuity asserted by Theorems 2.2 – 2.5 above.

For an arbitrary complex lamination, we define the bending holonomy
map

η : MLC(S) × T (S) → V (S)

by

ηλ(X) =

{
µ ◦ Eqλ(X) if Imλ ≥ 0,

µ ◦ Eq−λ(X) if Imλ ≤ 0.
(2.3)

Recall that µ : P (S) → V (S) sends a projective surface to its holonomy
representation.
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To explain the second formula above, let S denote S with its orientation
reversed. Any X ∈ T (S) has a complex conjugate X ∈ T (S) obtained by
composing its charts with complex conjugation, and we have maps

ML
H
(S) × T (S)

Eq−→ P (S)
µ−→ V (S).

But ML(S) = ML(S) and V (S) = V (S), since these spaces do not make
reference to the orientation of S; with these identifications, µ◦Eq−λ(X) lies
in V (S).

Note that a right earthquake on X becomes a left earthquake on X , due
to reversal of orientation, so the two formulas in (2.3) agree when Imλ = 0.

Pleated planes. Here is a more geometric description of the bending
holonomy map η. A pleated plane is a continuous map

f : H2 → H3

such that each x ∈ H2 lies on a geodesic γ mapped isometrically to a geodesic
in H3. If only one such γ exists for a given x, then γ is a leaf in the pleating
lamination λ of f .

Now suppose H2 is identified with the universal cover of a surface X ∈
T (S). Then f is an equivariant pleated plane if there is a [ρ] ∈ V (S) such
that f ◦ g = ρ(g) ◦ f for every deck transformation g ∈ π1(X) ∼= π1(S). This
holonomy representation ρ is uniquely determined by f . If Γ = ρ(π1(X))
happens to be a Kleinian group, then f descends to give a pleated surface
X → H3/Γ.

Any measured lamination λ ∈ MLR(S) determines an equivariant pleated
plane by using the transverse measure on λ̃ ⊂ X̃ ∼= H2 to prescribe bending
of H2 inside H3. Bending is distinguish from grafting by the fact that t
can be positive or negative, by bending in opposite directions. See [EpM,
Chapter 3] for an extended discussion.

For a simple geodesic with transverse measure t, the local model of bend-
ing is compatible with the local model of grafting (2.2): H+ is mapped to
the convex hull of R+ in H3, and H− is mapped to the convex hull of eitR−.
By continuity, the models are also compatible for general laminations (see
[EpM, Thm. 3.11.5]). Thus in terms of pleated planes, one can alternatively
define the bending holonomy map by

ηiλ(X) = [ρ]

for λ ∈ MLR(S), where ρ is the holonomy representation of the pleated
plane corresponding to (X̃, λ̃); and by

ηλ(X) = ηi Im λ(twRe λ(X)) (2.4)
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for λ ∈ MLC(S).

Proposition 2.6 Eqtλ(X) and ηtλ(X) vary holomorphically with respect to
t ∈ H and t ∈ C respectively.

Proof 1. For a simple geodesic γ and t = u + iv, the local model for the
deformation

Eqtγ(X) = Grvγ(twuγ(X))

is a combination of equations (2.1) and (2.2). The combined effect of
twisting and grafting is to reglue charts with the new transition function
φt : z %→ eu+ivz. Since φt(z) is holomorphic in t, Eqtγ(X) varies holomor-
phically in P (S). To extend the result to general laminations, use the den-
sity of weighted simple closed curves in ML(S), the continuity of Eqλ(X)
(Theorem 2.5) and the fact that a uniform limit of holomorphic maps is
holomorphic.

The projective holonomy map µ : P (S) → V (S) is holomorphic, so (2.3)
exhibits ηtλ(X) as a function continuous on C and holomorphic on C − R;
therefore it is holomorphic on C.

Proof 2. The holonomy map ηtλ(X), thought of in terms of bendings,
is analytic in t by [EpM, 3.8.1]. Since ηtλ(X) = µ ◦ Eqtλ(X) and µ is an
analytic local homeomorphism, Eqtλ(X) is also analytic.

Quasifuchsian groups. Next we describe the relation between bending
and grafting in a more geometric setting.

A quasifuchsian group Γ ⊂ PSL2(C) is a discrete subgroup stabilizing
a quasidisk on the sphere. Any such Γ is quasiconformally conjugate to a
Fuchsian group.

Let QF (S) ⊂ V (S) denote the set of faithful representations such that
Γ = ρ(π1(S)) is quasifuchsian. The dynamics of Γ determines an invariant
partition Ĉ = Λ ( Ω, where the limit set Λ is a quasicircle, and the domain
of discontinuity Ω is pair of disks. The Kleinian 3-manifold

M = (H3 ∪ Ω)/Γ

is diffeomorphic to int(S) × [0, 1]; it carries a hyperbolic structure on its
interior and a projective structure on its boundary. Thus [ρ] ∈ QF (S)
determines a pair of projective surfaces

(∂pM, ∂pM) ∈ P (S) × P (S)
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such that
∂M = ∂pM ( ∂pM.

We denote the underlying conformal structures on these surfaces by

(∂cM, ∂cM) ∈ T (S) × T (S).

Similarly, the convex core of M (the quotient of the convex hull of Λ by
Γ) is bounded by a pair of hyperbolic surfaces

(∂hM, ∂hM) ∈ T (S) × T (S).

The faces of the convex hull are pleated surfaces with bending laminations

(β,β) ∈ ML(S) ×ML(S).

We have
[ρ] = ηβ(∂hM) = µ(∂pM).

We can regard QF (S) as the space of marked quasifuchsian manifolds,
where a marking of M is a choice of isomorphism between π1(M) and π1(S).
The deformation theory of Kleinian groups yields [Bers1], [Kra]:

Theorem 2.7 (Bers) There is a holomorphic bijection

Q : T (S) × T (S) → QF (S)

such that M = Q(X,Y ) is the unique quasifuchsian manifold with (∂cM, ∂cM) =
(X,Y ).

Figure 4. Normal projection from the faces of the convex core to ∂M .
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Grafting gives a simple relation between the faces of the convex core
and the boundary of M . For example, if X = ∂hM is bent along a simple
closed curve γ with angle t, then orthogonal projection from X − γ gives a
projective map to ∂pM omitting an annulus isomorphic to A(t) (see Figure
4). Therefore ∂pM = Grtγ(X); more generally we have:

Theorem 2.8 Let M be a quasifuchsian manifold with convex core bounded
by hyperbolic surfaces (X,Y ) with bending laminations (β,β). Then the pair
of projective surfaces bounding M satisfy

(∂pM, ∂pM) = (Grβ(X),Grβ(Y )).

Proof. A maximal round disk relative to the projective structure on ∂pM
corresponds to a supporting hyperplane for the convex hull. Thus the def-
inition of the transverse measure for a projective structure, φ(t) in [KaT,
p.273], specializes to the definition of the bending measure for convex hull,
β(A) in [EpM, p.137]. Similarly, collapsing of the lamination on a projec-
tive surface corresponds to nearest-point projection to the boundary of the
convex hull.

Analytic continuation of earthquakes. We now use quasifuchsian groups
to give an explicit analytic continuation of Eqλ(X).

Let D(S) be the union of ML
H
(S)×T (S) and the component of η−1(QF (S))

containing MLR(S)×T (S). (Note that ηλ(X) ∈ QF (S) for any real lamina-
tion λ, since the holonomy is Fuchsian.) We extend the complex earthquake
deformation to a map

Eq : D(S) → P (S)

by setting

Eqλ(X) =

{
GrIm λ(twRe λ(X)) if Imλ ≥ 0,

∂pM if Imλ ≤ 0,
(2.5)

where M is the marked quasifuchsian 3-manifold corresponding to [ρ] =
ηλ(X).

This extension of Eq(·) uses the fact that the quasifuchsian manifold
M = ηλ(X) exists for small positive or negative bending along a given
lamination λ ∈ ML(S). For positive bending, ∂pM is described by grafting,
so grafting extends to (certain) negative laminations by (2.5).
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Theorem 2.9 For (λ,X) ∈ D(S) with Imλ ≤ 0, let M be the marked
quasifuchsian manifold corresponding to the representation ηλ(X). Then

(∂pM, ∂pM) = (Eqλ(X), Eq−λ(X)) (2.6)

and
∂hM = tw−Re λ(X) (2.7)

with bending lamination β = − Imλ ∈ ML(S).

Proof. The equation ∂pM = Eqλ(X) holds by definition.
To prove ∂pM = Eq−λ(X), consider the subset U of parameters (λ,X)

where this equality holds. Evidently U is closed and all real laminations are
in U . By (2.3), the two sides of this equation are projective surfaces with
the same holonomy; since µ : P (S) → V (S) is a local homeomorphism, U
is also open. Thus U = {(λ,X) ∈ D(S) : Imλ ≤ 0} since the latter set is
connected.

The characterization of ∂hM is established similarly, using Theorem 2.8.

Theorem 2.10 The earthquake deformation Eqtλ(X) is holomorphic on the
open set of t with (tλ,X) ∈ D(S).

Proof. We may assume λ ∈ ML(S). For Im t < 0, ∂pM = µ−1 ◦ ηtλ(X),
so analyticity of Eq(·) follows from that of η and µ. We have already seen
analyticity of Eqtλ(X) for Im t > 0, and the formulas in (2.5) agree and are
continuous for Imλ = 0.

In summary, the complex earthquake map arises from the Fenchel-Nielsen
twist by analytic continuation to the open domain D(S). We also define the
map

eq : D(S) → T (S)

by recording the conformal structure underlying the projective surface Eqλ(X).
The relations between twists, complex earthquakes and holonomy are recorded
in Figure 5.

To better understand the geometry of complex earthquakes, the next
three sections develop general results on grafting, properness and convex-
ity. The existence of properly embedded complex earthquake disks in Te-
ichmüller space will follow.

17
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Figure 5. Laminations and deformations.

Earthquake flows on P (S). To give one more point of view, we briefly
sketch how twisting and grafting along a lamination λ ∈ ML(S) can be
thought of as the time-t maps for a holomorphic vector field on an open
subset of P (S).

To begin with, recall that the twists

twtλ : T (S) → T (S)

form a flow; that is, they obey the composition law

tw(t+s)λ(X) = twtλ(twsλ(X)).

There is a natural vector field τλ on T (S) generating this flow; that is, such
that

d

dt
twtλ(X)

∣∣∣∣
t=0

= τλ.

Under the Fuchsian embedding T (S) ⊂ V (S), the vector field τλ extends
to a holomorphic vector field on the open set Rλ ⊂ V (S) where λ is real-
izable. For example, suppose λ is a simple closed curve γ with transverse
measure one. Then Rλ consists of those [ρ] such that ρ(γ) is hyperbolic. The
vector τλ(ρ) can be represented by an explicit cocycle ξ : π1(S) → sl2(C) in
group cohomology prescribing the effect of shearing along γ. The cocycle ξ
varies holomorphically on V (S) because the element of sl2(C) translating at
unit speed along the axis of ρ(γ) depends holomorphically on ρ. For general
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laminations, Rλ contains all ρ for which λ can be realized as an equivariant
geodesic lamination in H3; in particular QF (S) ⊂ Rλ.

Pulling back τλ via the holonomy map µ, we obtain a holomorphic vector
field τ̃λ on an open subset R̃λ of P (S). The flow generated by this vector
field is not complete: solutions to the equation Ẋt = τ̃λ can reach infinity
in finite time. However, the flow line through a point X0 ∈ T (S) ⊂ P (S)
(under the Fuchsian embedding) is defined for all time and satisfies Xt =
Twtλ(X). Similarly, this flow line is defined for all positive imaginary time
and Xit = Grtλ(X).

Since the flow is holomorphic on P (S), its restriction to T (S) is real-
analytic, and we have (cf. [Ker2], [Tan]):

Corollary 2.11 The twisting and grafting maps are real-analytic functions
of X ∈ T (S).

The flow generated by τλ can also be used to extend the deformation
theory to more general projective surfaces; e.g. see [Gol] for grafting in the
quasifuchsian case.

3 Geometry of grafting

In this section we study the shape of the Riemann surface obtained by
grafting, and its relation to Kleinian groups, harmonic maps and the Weil-
Petersson metric.

The projective metric. On any projective surface Y ∈ P (S) we can
consider two metrics: the hyperbolic (or Kobayashi) metric ρh, and the
projective (or Thurston) metric ρp. For a tangent vector v ∈ TY , the
hyperbolic length of ρp(v) is the infimum of the hyperbolic lengths of vectors
v′ in TH such that there exists a holomorphic map f : H → Y sending v′

to v. The projective metric is defined in the same way, with the added
requirement that f is projective. (See [Tan] for additional remarks.)

For y ∈ Y , we have ρh(y)/ρp(y) ≤ 1 with strict inequality unless the
projective structure on Y is the standard one coming from its Fuchsian
uniformization.

Now suppose Y = Grtγ(X) for some simple closed curve γ. Then Y is
obtained from X by inserting a cylinder A(t) along γ. It is not hard to
see that the projective metric on Y is just the combination of the hyper-
bolic metric on X and the flat Euclidean metric on the cylinder A(t). This
concrete picture for ρp leads to:
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Theorem 3.1 For any α,β ∈ ML(S) and any X ∈ T (S), we have

%α(grβ(X)) ≤ %α(X) + i(α,β).

The inequality is strict if both α and β are nonzero.

Proof. If β = tγ is a multiple of a simple closed curve, then the ρp-length
of any lamination α is bounded by %α(X) + i(α,β), since the intersection
number i(α,β) = t i(α, γ) gives the length needed to cross the inserted
cylinder A(t). Since weighted simple closed curves are dense in ML(S), the
same bound holds for general β by continuity (using Theorems 2.2 and 2.4).
When β $= 0 we have ρh < ρp so the hyperbolic length of any α $= 0 is
strictly below its projective length.

Since i(λ,λ) = 0 we see grafting along any lamination makes it shorter:

Corollary 3.2 For any nonzero λ ∈ ML(S) and X ∈ T (S), we have
%λ(grλ(X)) < %λ(X).

Bers slices. Next we would like to discuss negative grafting. We define

gr−λ(X) = eq−iλ(X) = ∂pM

for any λ ∈ ML(S) with (−iλ,X) ∈ D(S). Here M is the quasifuchsian
manifold with holonomy η−iλ(X).

To begin we recall some results of Bers on quasifuchsian groups. For
Y ∈ T (S), the Bers slice BY ⊂ QF (S) is the set of marked quasifuchsian
3-manifolds such that the conformal structure on one boundary component
is fixed by the condition ∂cM = Y . The Bers embedding

bY : T (S) → BY ⊂ V (S)

sends X to Q(X,Y ), the unique quasifuchsian manifold M with (∂cM, ∂cM) =
(X,Y ).

Theorem 3.3 (Bers) Any Bers slice BY has compact closure in V (S).

The proof in [Bers2] is based on the inequality1

1

%γ(M)
≥

1

2

(
1

%γ(∂cM)
+

1

%γ(∂cM)

)
(3.1)

1See [Mc1, Prop 6.4] for the corrected form of Bers’ inequality we give here.
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where γ is a closed curve on S and %γ(M) is the length of its geodesic
representative in M (or 0 if none exists). This inequality implies

%γ(M) ≤ 2%γ(Y )

for any M ∈ BY and all γ; by this bound BY is confined to a compact subset
of V (S).

Bers’ inequality extends by continuity to laminations, using Theorem
2.2. From it we can deduce the following complement to Corollary 3.2:

Theorem 3.4 For any nonzero λ ∈ ML(S) we have

%λ(gr−λ(X)) > %λ(X).

Proof. Let M be the quasifuchsian manifold with holonomy η−iλ(X). By
Theorem 2.9, the face ∂hM of the convex hull of M is isometric to X and
pleated along λ, so %λ(M) = %λ(X) = %λ(X). We also have ∂cM = grλ(X),
so %λ(∂cM) < %λ(X) by Corollary 3.2. Finally %λ(∂cM) = %λ(gr−λ(X)), so
Bers’ inequality (3.1) yields

1

%λ(X)
>

1

2

(
1

%λ(X)
+

1

%λ(gr−λ(X))

)

and the estimate follows.

Putting these results together we have:

Corollary 3.5 For any quasifuchsian manifold M with bending lamination
β on ∂hM , we have

%β(∂cM) ≤ %β(M) = %β(∂hM) ≤ %β(∂cM).

The inequalities are strict unless M is Fuchsian.

Remark. For a simple closed curve γ, one can form the covering space Yγ

of Y = grtγ(X) corresponding to the subgroup 〈γ〉 ⊂ π1(S). The surface Yγ

is a cylinder whose modulus is inversely proportional to %γ(Y ). By studying
how Yγ is built from A(t) and the universal cover of X, one can show

%γ(grtγ(X)) ≤
π

π + t
%γ(X)
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for any t ≥ 0. A similar argument applied to the 〈γ〉-covering space of M
gives

%γ(gr−tγ(X)) ≥
π

π − t
%γ(X)

for those t > 0 where negative grafting is defined. However a typical lami-
nation λ is a limit of tnγn with tn → 0, so these inequalities yield no more
than the preceding results in the limit.

Extremal length, harmonic maps and properness. Next we state a
fundamental property of grafting.

Theorem 3.6 (Tanigawa) (i) The grafting map grλ : T (S) → T (S) is
proper for any λ ∈ ML(S). (ii) If λ =

∑
2πmiγi for a system of disjoint

simple closed curves γi with positive integral weights, then grλ is a real-
analytic homeomorphism.

See [Tan]. The condition in (ii) implies the holonomy of Grλ(X) is Fuch-
sian, in which case a result of Faltings shows grλ is a local homeomorphism
[Fal, Thm. 12]. By properness, grλ is actually a global homeomorphism.

The proof of properness in [Tan] is based on the inequality

%λ(X) ≤
%λ(X)2

Lλ(grλ(X))
≤ 2E(h) ≤ %λ(X) + 2 area(X), (3.2)

where

• Lλ(grλ(X)) denotes extremal length,

• area(X) is the hyperbolic area, and

• E(h) is the energy of the harmonic map h : grλ(X) → X in the
homotopy class compatible with markings.

Recall that the extremal length of a lamination is defined by

Lλ(Y ) = sup
ρ

%λ(Y, ρ)2

area(Y, ρ)

where the supremum is over Riemannian metrics ρ compatible with the given
conformal structure on Y ∈ T (S). From (3.2) we can also deduce:

Corollary 3.7 For any nonzero λ ∈ ML(S), the map H → T (S) given by
t %→ eqtλ(X) is proper.
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Proof. Let tn → ∞ in H; we must show Yn = grIm tn(Xn) → ∞ in T (S),
where Xn = twRe tn(X).

First suppose Im tn is bounded. Then %Im tnλ(Xn) = (Im tn)%λ(X) is
bounded, so by (3.2) the energies of the harmonic maps hn : Yn → Xn are
also bounded. On the other hand, |Re tn| → ∞, so Xn → ∞ in T (S) (by
properness of earthquake paths; cf. Corollary 4.3 below). For any fixed
surface Y , the harmonic energy E(h : Y → Xn) tends to infinity [Wolf], so
Yn must follow Xn to infinity.

Now suppose Im tn → ∞. Since extremal length satisfies Ltλ(Y ) =
t2Lλ(Y ), (3.2) implies Lλ(Yn) ≤ %λ(X)/ Im tn → 0, and so Yn → ∞ in this
case too.

Weil-Petersson geometry. To conclude this section we describe how
grafting connects with the Weil-Petersson metric on Teichmüller space. Con-
sider the length of a simple geodesic %α(X) as function on T (S). The main
fact is that infinitesimally, grafting shortens the length of α as fast as pos-
sible.

Theorem 3.8 For any simple closed curve α ∈ ML(S) we have

d

dt
grtα(X) = −∇%α(X),

where the gradient is taken with respect to the Weil-Petersson metric.

Proof. On a Kähler manifold the gradient of a function is i times the Hamil-
tonian vector field it generates. For the Weil-Petersson symplectic form, the
Hamiltonian flow generated by −%α is the Fenchel-Nielsen rightward twist
flow for α [Wol2, Thm 2.10]. Since the complex earthquake map eqtα(X) is
holomorhic in t, we have

d

dt
grtα(X) = i

d

dt
twtα(X)

and the Theorem follows.

Corollary 3.9 For any pair of simple closed curves α and β we have

d

dt
%α(grtβ(X)) = −〈∇%α,∇%β〉

with respect to the Weil-Petersson inner product.
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Since 〈∇%α,∇%β〉 is symmetric in α and β, we obtain the reciprocity law

d

dt
%α(grtβ(X)) =

d

dt
%β(grtα(X))

for the rate of change of lengths under grafting.
For p ∈ α ∩ β ⊂ X let θp ∈ [0,π) denote the clockwise angle from α to

β. Inserting a thin flat annulus A(t) along β increases the length of α by
t sin θp+O(t2) at each crossing. As in the proof of Theorem 3.1, the increase
in projective length dominates (d/dt)%α(grtβ(X)), so we deduce:

Corollary 3.10 For simple closed geodesics α and β on X, we have

i(α,β) ≥
∑

p∈α∩β

sin θp ≥ −〈∇%α,∇%β〉 (3.3)

in the Weil-Petersson inner product on the tangent space to T (S) at X.

For example, this Corollary shows the vectors ∇%αi
for a system αi of

disjoint simple closed curves on X all lie in a half-space. This fact can also
be seen geometrically: grafting along λ =

∑
αi decreases the lengths of all

αi simultaneously.
The sine estimate above recalls the cosine law [Wol1]

d

dt
%α(twtβ(X)) =

∑

p∈α∩β

cos θp; (3.4)

however the second inequality in (3.3) cannot be replaced by equality (con-
sider the case α = β).

4 Pleated surfaces

Large earthquakes along a fixed λ ∈ ML(S) move a given Riemann surface
X off to infinity in Teichmüller space. After a large earthquake, can grafting
along λ move the surface back into a compact subset of T (S)? The answer
is no for positive grafting by Corollary 3.7 above. To establish properness of
earthquake disks (Theorem 6.2), we also need to analyze the case of negative
grafting. It is handled by the general result below.

Theorem 4.1 Fix a nonzero lamination λ ∈ ML(S) and a surface X ∈
T (S). Let Xn = twtnλ(X), where |tn| → ∞. Let fn : X̃n → H3 be any
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sequence of equivariant pleated planes, each pleated along the support of λ̃.
Then

[ρn] → ∞ in V (S),

where
ρn : π1(S) ∼= π1(Xn) → PSL2(C)

are the corresponding holonomy representations.

Since ηtλ(X) can be described as the holonomy of a pleated plane, we
have:

Corollary 4.2 The holonomy ηtλ(X) → ∞ in V (S) as |Re t| → ∞.

The special case where t is real yields:

Corollary 4.3 The earthquake path t %→ twtλ(X) gives a proper embedding
R → T (S).

Remark. The holonomy ηtλ(X) need not tend to infinity as | Im t| → ∞;
for example, if λ is a simple closed curve with transverse measure one, then
ηtλ(X) is periodic under t %→ t + 2πi.

To give the proof of Theorem 4.1 we first need some facts about earth-
quakes and pleating. Let α and β be a pair of measured laminations on
a hyperbolic surface. For each p ∈ α ∩ β recall θp ∈ [0,π) denotes the
clockwise angle from α to β at p. (This convention is consistent with right
earthquakes.) Then a generalization of (3.4) gives

d

dt
%α(twtβ(X)) =

∫

α∩β

cos θp dα × dβ, (4.1)

where the integral over α∩β is with respect to the product of their transverse
measures [Ker2, Prop. 2.5]. From [Ker1, Prop. 3.5] we also have:

Theorem 4.4 For each p ∈ α ∩ β, the angle θp(t) between α and β on
twtβ(X) is a decreasing function of t.

We remark that a point p ∈ α∩β is labeled by the pair of leaves on which
it lies, and this labeling allows one to canonically identify intersections of
laminations on different surfaces in Teichmüller space.

The proof of Theorem 4.4 is suggested in Figure 6. A right earthquake
transports the geodesic representative of α on X to a set of geodesic segments
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Figure 6. An earthquake decreases θp.

on twtβ(X). The prolongations of these segments to complete geodesics
(one of which is shown by a dotted line) are disjoint. The broken segments
converge to points on the circle at infinity which are clockwise from the
endpoints of any of their prolongations. (In the Figure, this means the
geodesic representative of α runs from above the dotted line on the left to
below it on the right.) Thus the geodesic representative of α on twtβ(X) is
rotated towards β, and θp decreases.

The argument above can easily be made quantitative, yielding the for-
mula

dθp(0)

dt
= −

∫ ∞

−∞
e−|s| sin θp(s) dβ(s), (4.2)

where p(s) parameterizes the leaf of α through p by arclength, and dβ(s) is
the measure on the leaf coming from the transverse measure of β. Indeed,
translating a geodesic through p(s) an infinitesimal distance ε in the normal
direction moves its endpoints through visual angle ε as seen from p(s), and
hence through angle e−|s|ε as seen from p(0). The integral above totals these
effects. We only need (4.2) in the case where α and β are simple curves.

We also need to relate lengths on X to the holonomy of a pleated plane.
Let f : X̃ → H3 be an equivariant pleated plane with holonomy ρ, and let
α be a simple closed curve on X. Let

%α(ρ) = inf
x∈H3

d(x, ρ(α)x)

denote the translation length of α under ρ. We now replace β by the pleating
locus λ and prove:

Lemma 4.5 If f is pleated along λ̃, and 0 ≤ θp < ε for all p ∈ α ∩ λ, then

%α(ρ) > (1 − δ)%α(X),

where δ → 0 as ε → 0.
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Proof. Let α̃ ⊂ X̃ be a lift of the geodesic α ⊂ X with stabilizer g : X̃ → X̃
in the group of deck transformations.

Consider any geodesic segment [a, b] ⊂ α̃ of length one. We claim

d(f(a), f(b)) > 1 − 4ε. (4.3)

If [a, b] is disjoint from λ̃, then it is mapped isometrically to H3 by f so this
inequality is immediate. Otherwise [a, b] meets a leaf L of λ̃. The condition
θp < ε implies [a, b] is nearly parallel to L, and that the nearest points a′, b′ to
a, b on L satisfy d(a, a′), d(b, b′) < ε. Since L is in the pleating locus, we have
d(f(a′), f(b′)) = d(a′, b′) > 1 − 2ε; since f : X̃ → H3 is distance-decreasing,
we have

d(f(a), f(b)) > d(f(a′), f(b′)) − 2ε > 1 − 4ε.

From (4.3) it follows easily that ρ(g) is hyperbolic, that f(α̃) lies within
a small tube about the geodesic stabilized by ρ(g), and that there is a small
δ such that d(f(x), f(y)) > (1 − δ)d(x, y) for any well-separated points x
and y on α̃. Letting y = gn(x) for n 3 0 we obtain the Lemma.

Figure 7. Constructing a simple closed curve α nearly parallel to λ.

Proof of Theorem 4.1. We will prove divergence of ρn when Re tn → ∞;
the case where Re tn → −∞ is completely analogous.

To begin we construct a simple closed geodesic α on X such that i(α,λ) >
0 and for all p ∈ α∩ λ the angle θp between α and λ satisfies θp < ε. Here ε
should be chosen in (0,π/2), and small enough that (1− δ) > 1/2 in Lemma
4.5.

If all leaves of λ are closed, then α can be constructed by starting with
any curve that meets λ and applying high powers of right Dehn twists around
the components of λ (see Figure 7(a)). By (4.2), the geodesic representatives
of the resulting curves have θp → 0 at the finite set of points p meeting λ.
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If some leaf λ0 of λ is not closed, then α can be constructed by closing λ0

with a leftward bridge of small geodesic curvature near one of its accumu-
lation points (see Figure 7(b)). By basic hyperbolic geometry, a loop with
small geodesic curvature is C1-close to its geodesic representative. Since
nearby leaves of λ are nearly parallel, the intersections of α with λ all have
small angle (even though they may be uncountable in number). Indeed the
angle can be made arbitrarily small by taking a very close return of λ0 and
an almost geodesic bridge.

By Theorem 4.4, the angle θp(t) of a crossing between α and λ on twtλ(X)
is a decreasing function of t. Thus θp(t) < ε for all t > 0. By (4.1), we have

d

dt
%α(twtλ(X)) =

∫

α∩λ

cos θp dα × dβ > cos(ε) i(α,λ) > 0

because ε < π/2. Therefore the length of α on twtλ(X) tends to infinity as
t → ∞. By Lemma 4.5,

%ρn(α) > (1 − δ)%α(twtnλ(X));

thus the translation length of α tends to infinity and so ρn → ∞ in V (S).

Question. Is it true more generally that ηλn(X) → ∞ in V (S) for any
λn ∈ MLC(S) with Re λn → ∞?

5 Convexity of representations

Let us say a subset K of a complex manifold X is disk-convex if, for every
continuous map f : ∆ → K, holomorphic on ∆, the condition f(S1) ⊂ K
implies f(∆) ⊂ K. In this section we will prove:

Theorem 5.1 The space of quasifuchsian groups QF (S) is disk-convex in
V (S).

The proof is based on general results about representations into PSL2(C).
Let G be a nonelementary group (one containing no abelian subgroup of fi-
nite index). Let

R(G) = Hom(G,PSL2(C))/PSL2(C)

be the space of representations ρ : G → PSL2(C), modulo conjugacy. A
map f : Z → R(G) from a complex manifold into R(G) is holomorphic if it
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is locally of the form f(z) = [ρz], where ρz(g) is holomorphic in z for every
g ∈ G. Using the theory of holomorphic motions one can establish [Sul,
Thm. 1], [Bers3]:

Theorem 5.2 (Sullivan) If f : Z → R(G) is holomorphic and the repre-
sentations f(Z) are all faithful, then they are also quasiconformally conju-
gate to one another.

Lemma 5.3 Let f : ∆ → R(G) be a holomorphic disk. Suppose f(t) is
faithful for all t near S1, and f |S1 is homotopic through faithful representa-
tions to a constant map. Then f(∆) consists entirely of faithful representa-
tions.

Proof. Let ρt = f(t) ∈ R(G). Suppose there is an s ∈ ∆ such that
K = Ker(ρs) is nontrivial. We will show f |S1 is homotopically nontrivial.

Since G is nonelementary, its normal subgroup K and the faithful image
ρ1(K) are also nonelementary. Therefore we can choose g ∈ K of infinite
order with ρ1(g) not parabolic. Setting T (t) = tr2(ρt(g)), we obtain a
nonconstant holomorphic function on ∆ (since T (s) = 4 and T (1) $= 4).

Now T (t) = 4 cos2(πθ) with θ ∈ Q iff ρt(g) is a finite order elliptic
element in PSL2(C). Since ρt is faithful near S1, these values must be
avoided, and since T is an open map, it sends S1 into C − [0, 4]. But
T (s) = 4, so the winding number of T : S1 → (C − [0, 4]) is positive by
the argument principle. Thus any extension of T from S1 to a continuous
function on ∆ must have the interval [0, 4] in its image, so any homotopy of
f |S1 to a constant map must pass through a representation with a power of
g in its kernel. Therefore f |S1 gives an essential loop in the space of faithful
representations.

Proof of Theorem 5.1. Let f : ∆ → V (S) be a holomorphic disk with
f(S1) ⊂ QF (S). Since QF (S) is isomorphic to T (S) × T (S), it is con-
tractible, so f |S1 is homotopically trivial as a loop in the space of faithful
representations of π1(S). By the preceding Lemma, f(∆) consists of faithful
representations, and they are all quasiconformally conjugate by Sullivan’s
theorem. Therefore f(∆) ⊂ QF (S).

Remarks. Bers and Ehrenpreis showed Teichmüller space is holomorphi-
cally convex [BE]; another proof, using length functions, appears in [Wol4].
By a remarkable application of Grunsky’s inequality, Shiga proved that T (S)
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is convex with respect to holomorphic functions on Q(X) under Bers’ em-
bedding into the vector space of holomorphic quadratic differentials on a
fixed X ∈ T (S) [Sh]. This implies T (S) is disk-convex in Q(X).

Question. Is QF (S) convex with respect to holomorphic functions on
V (S)?

6 Earthquake disks

In this section we will prove Theorem 1.1 on the existence of properly em-
bedded complex earthquake disks in Teichmüller space. The proof relies on
the results of the preceding three sections.

Let λ ∈ ML(S) be a nonzero lamination and let X ∈ T (S) be a Riemann
surface. Define

h : C → V (S)

by h(t) = ηtλ(X), and let D(X,λ) be the union of H and the component of
h−1(QF (S)) containing 0. Then D(X,λ) is the largest connected set of t
including 0 such that (tλ,X) ∈ D(S) for all t ∈ D(X,λ).

Definition. For any X ∈ T (S) and nonzero lamination λ ∈ ML(S), the
complex earthquake map

f : D(X,λ) → T (S)

is given by f(t) = eqtλ(X).            

Figure 8. The domain D(X,α) of the earthquake map for a simple closed

curve α.
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Figure 9. Length after twisting.

Example: the punctured torus. Let S be a surface of genus one with
one boundary component; then π1(S) = 〈a, b〉 is a free group. Choose a
hyperbolic structure X ∈ T (S) so the geodesics (α,β) representing a and
b cross at right angles (i.e., so X is ‘rectangular’). Then one can explicitly
compute the representation ρt = ηtα(X) resulting from bending along α,
and from this information draw a picture of D(X,α) (see Figure 8).

To explain the computation of bending, first note that ρt is essentially
determined by the traces of the generators a and b.2 We claim these traces
(up to sign) are given explicitly by:

(At, Bt) = (tr ρt(a), tr ρt(b)) = (A0, B0 cosh(t/2)). (6.1)

To check this formula, suppose t is real, and set Xt = twtα(X) and
Lt = %Xt(β). Then the homotopy class b is represented on Xt by a right-
angled broken geodesic, with pieces of length L0 and t; by considering the
straight representative of this broken geodesic (shown as a dotted line in
Figure 9), we obtain a right triangle with sides t/2, L0/2 and Lt/2. By
hyperbolic trigonometry we have

cosh(Lt/2) = cosh(L0/2) cosh(t/2),

and since Bt = 2cosh(Lt/2) we obtain (6.1) for t real. The case where t is
complex follows by analytic continuation.3

Of course At = A0 because twisting along α does not change the holon-
omy around α.

Using this information, one can compute a picture of D(X,α) ⊂ C.
Figure 8 depicts the case A0 = 3; the region D(X,α) is shown in white,

2Given tr ρ(a) and tr ρ(b), there are two choices for ρ, differing by the automorphism
(a, b) !→ (a, b−1).

3Some related explicit bending calculations appear in [PS].
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with the real axis running through it. The condition that X0 is rectangular
implies tr ρ0(ab) = tr ρ0(ab−1), which gives

4(A2
0 + B2

0) = A2
0B

2
0

and thereby determines B0 = 6/
√

5. From (6.1) we then know ρt for each
t ∈ C. Coloring black the points t in the lower half-plane such that the
traces (At, Bt) do not give a quasifuchsian group, we obtain Figure 8. The
portion of D(X,α) shown runs from Re t = −8 to 8; it is periodic under
translation by %α(X) = 1.92485 . . ., since twisting by %α(X) results in a full
Dehn twist around α. It is also easy to see that D(X,α) ⊂ {t : Im(t) > −π},
because the convex hull cannot be bent by more that π. This bound holds
quite generally for complex earthquakes along simple closed curves.

Next we prove a general result evident in Figure 8:

Lemma 6.1 The domain D(X,λ) is simply-connected.

Proof. Consider any smoothly bounded disk U ⊂ C − H with ∂U ⊂
D(X,λ). Then h(∂U) ⊂ QF (S), where h(t) = ηtλ(X). Since QF (S) is
disk-convex in V (S) (Theorem 5.1), we have h(U) ⊂ QF (S) and therefore
U ⊂ D(X,λ). It follows that D(X,λ) is simply-connected.

Thus the proof of Theorem 1.1 is completed by:

Theorem 6.2 (Properness) The complex earthquake map f : D(X,λ) →
T (S) is proper.

Proof. Let tn → ∞ in D(X,λ); we must show

Yn = eqtnλ(X) → ∞

in T (S). It suffices to establish Yn → ∞ along a subsequence.
Since Corollary 3.7 handles the upper halfplane, we may assume Im tn <

0. Then there are quasifuchsian manifolds Mn with holonomy ηtnλ(X) such
that

(∂cMn, ∂hMn) = (Yn, Zn).

By (2.7) we have
Zn = tw−Re tnλ(X)

and the pleating map fn : Zn → Mn sending Zn to one face of the convex
core of Mn has bending lamination βn = − Im tnλ.
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Now if |Re tn| is unbounded, we can pass to a subsequence such that
|Re tn| → ∞. Then Mn → ∞ in V (S), as can be seen by applying Theorem
4.1 to the pleated surfaces fn. By Bers’ inequality (3.1), Mn must eventually
exit any compact family of Bers slices; since Mn ∈ BYn , we have Yn → ∞.

Finally assume |Re tn| is bounded. Then Zn ranges in a compact subset
of T (S). On any fixed Zn, the measure of a short transversal to the bending
lamination βn = − Im tnλ cannot exceed 2π, since the pleating map fn is
injective. We conclude that | Im tn| is bounded as well, so we may assume
tn → t∞ ∈ C.

To reach a contradiction, suppose Yn does not tend to infinity. Then we
can pass to a subsequence such that

∂cMn = Yn → Y∞ ∈ T (S).

By (2.6), the other face of the conformal boundary satisfies

∂cMn = eq−tnλ(X) → eq−t∞λ(X).

Since both components of the conformal boundary of Mn converge in Te-
ichmüller space, M∞ = lim Mn is quasifuchsian. Therefore t∞ ∈ D(X,λ),
contrary to the assumption that tn → ∞.

We conclude that Yn also tends to infinity when |Re tn| is bounded.

Remark. By Corollary 3.2 and Theorem 3.4, for t ∈ D(X,λ) we have the
estimates

%λ(eqtλ(X))






< %λ(X) if Im t > 0,

= %λ(X) if Im t = 0, and

> %λ(X) if Im t < 0.

(6.2)

In particular, the length of X is unchanged only along the twist path, where
t is real.

7 One-dimensional Teichmüller spaces

In this section we prove the results originally stated as Theorems 1.3, 1.4,
1.5 and 1.6. Throughout this section we make the standing assumption:

The Teichmüller space T (S) is one-dimensional.

The first Theorem is also the central tool.
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Theorem 7.1 The complex earthquake map f : D(X,λ) → T (S) is a holo-
morphic bijection, sending H to {Y : %λ(Y ) ≤ %λ(X)}.

Proof. Let L = {Z ∈ T (S) : %λ(Z) = %λ(X)}. Then we have f−1(L) ⊂ R

by (6.2). Any two points in Teichmüller space are related by a unique right
earthquake [Th2], so f : R → L is bijective. Thus f is a proper map of
degree one, hence an isomorphism. The characterization of f(H) follows
from (6.2).

Theorem 7.2 The grafting map

grλ : T (S) → T (S)

is a homeomorphism for any λ ∈ ML(S).

Lemma 7.3 Let g : H → H be a holomorphic map satisfying g(z + a) =
g(z) + b, where b > a > 0. Then g has no fixed point.

Proof. The map h(z) = g(az)/b commutes with T (z) = z+1, so it descends
to a map of the punctured disk ∆∗ ∼= H/〈T 〉 to itself. By the Schwarz
Lemma, Imh(z) ≥ Im z and thus Im g(z) ≥ (b/a) Im z > Im z.

Proof of Theorem 7.2. Assume grλ(X) = grλ(Y ); we must show X = Y .
Let

fλ,X : H → UX = {Z ∈ T (S) : %λ(Z) < %λ(X)}

be the holomorphic homeomorphism given by fλ,X(t) = eqtλ(X), and simi-
larly for Y . Then

fλ,X(i) = grλ(X) = grλ(Y ) = fλ,Y (i).

Since the graphs of holomorphic maps between Riemann surfaces intersect
positively, the graphs of fγ,X and fγ,Y also meet for some simple closed
curve γ. Indeed, λ = lim snγn, fsnγn,X(t) → fλ,X(t) uniformly on compact
sets by Theorem 2.5, and fsnγn,X(t) = fγn,X(snt). Similar reasoning applies
to fλ,Y . Thus the graphs of fγ,X and fγ,Y meet for any γ = γn with n
sufficiently large.

We may assume (by interchanging the roles of X and Y if necessary)
that %γ(X) ≤ %γ(Y ), so UX ⊂ UY . Define a holomorphic map g : H → H by
the composition

H
fγ,X! UX ⊂ UY

f−1

γ,Y! H;
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then
eqtγ(X) = eqg(t)γ(Y ).

Since the graphs of fγ,X and fγ,Y meet, the map g has a fixed-point in H.
Let τ : T (S) → T (S) be the automorphism of Teichmüller space deter-

mined by a right Dehn twist on γ. Since a full twist around γ is the same
as τ , we have

fγ,X(t + %γ(X)) = τ ◦ fγ,X(t)

and similarly for Y ; therefore

g(t + %γ(X)) = t + %γ(Y ).

Since g has a fixed point in H, the Lemma above implies %γ(X) = %γ(Y ).
Then X = twsγ(Y ) for some x ∈ R, so eqtγ(X) = eq(t+s)γ(Y ) and g(t) =
t + s. Since g has a fixed point, s = 0, X = Y and grafting is injective.

Bending coordinates for a Bers slice. Let BY ⊂ V (S) be the Bers
slice for Y ∈ T (S), and let N = Q(Y , Y ) be the unique Fuchsian group it
contains. For any M ∈ BY − N , the bending lamination β ∈ ML(S) of
∂hM is nonzero, and %β(M) = %β(∂hM) < %β(Y ) by Corollary 3.5. Thus we
have a continuous map

p : (BY − N) → PML(S) × (0, 1)

given by

p(M) =

(
[β],

%β(M)

%β(Y )

)
.

We now complete the proof of Theorem 1.5 by showing:

Theorem 7.4 The map p is a bijection.

Proof. Consider any (β, L) ∈ ML(S) × R with β $= 0 and 0 < L < %β(Y ).
Suppose M ∈ QF (S) has bending lamination sβ (for some s > 0) and
%β(M) = L. To show p is injective, we will show M is uniquely determined
by the data (β, L).

The first observation is that L determines the geometry of ∂hM up to
a real earthquake along β. That is, fixing any Z ∈ T (S) with %β(Z) = L,
the earthquake homeomorphism f : D(Z,β) → T (S) sends R to the set of
Riemann surfaces where β has length L. Thus ∂hM = eqrβ(Z) for some
r ∈ R.
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Next, note that the base surface Y (with its orientation reversed) is ob-
tained from ∂hM by negative grafting; that is, Y = gr−sβ(∂hM). Therefore

Y = eq(r−is)β(Z). (7.1)

Since the complex earthquake map

f : D(Z,β) → T (S)

is a homeomorphism, there is a unique t = r − is satisfying (7.1). Since M
has holonomy ηtβ(Z), it is uniquely determined by the data (β, L).

Finally we show every (β, L) as above arises for some M , so p is surjec-
tive. To see this, recall that by Theorem 1.3 f maps the part of D(Z,β) in
the lower half-plane to the set of Riemann surfaces where β is longer than
L. Since L < %β(Y ), there exists t = r − is, s < 0 satisfying (7.1). Then the
quasifuchsian manifold M with holonomy ηtβ(Z) has bending lamination sβ
of length L and ∂cM = Y , so M lies in BY and it realizes the given data
([β], L).

Limit Bers slices. By Bers’ inequality (3.1), the holomorphic Bers em-
beddings

〈bY : T (S) → V (S) : Y ∈ T (S)〉

form a normal family on T (S). Consider any sequence Yn → ∞ in T (S)
such that the embeddings bYn converge. We call the map

b : T (S) → V (S)

given by
b(X) = lim bYn(X) = lim Q(X,Yn)

a limit Bers embedding, and its image B ⊂ V (S) a limit Bers slice.
Let us also assume that Yn → [λ] ∈ PML(S) in Thurston’s compact-

ification of Teichmüller space. Since dimT (S) = 1 this means there are
Cn → ∞ such that

%α(Yn)

Cn
→ i(α,λ) (7.2)

for any α ∈ ML(S) that is not proportional to λ. (See [FLP], [Bon2] or
[Ot] for a presentation of Thurston’s compatification.)

All groups in B are quasiconformally conjugate. One can show that the
limit Bers slices are of two possible types. If [λ] is represented by a simple
closed curve, then every M ∈ B is geometrically finite, with an accidental
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parabolic on [λ]. Otherwise, every M ∈ B is totally degenerate, and we will
see below (Corollary 7.6) that every M ∈ B has ending lamination [λ].4

A Kleinian manifold M ∈ B has a unique boundary component ∂pM
carrying the full fundamental group of M . Equivalently, the domain of
discontinuity of the corresponding Kleinian group Γ has a unique invariant
component Ω′, and ∂pM ∈ P (S) is the marked projective surface Ω′/Γ.

It is not hard to verify that most of the discussion for boundaries of
quasifuchsian manifolds carries over to ∂pM . For example,

∂pM = lim ∂pQ(X,Yn)

in P (S), and ∂pM is conformally isomorphic to X. Letting ∂hM denote
the face of the convex hull of M correspond to ∂pM , and β its bending
lamination, we have

∂pM = Grβ(∂hM).

By Theorem 2.4, the bending lamination β for M is the limit of those for
∂hQ(X,Yn).

Since no M ∈ B is Fuchsian, β $= 0. Thus we can define a map

p : B → PML(S) × R+

by

p(M) =

(
[β],

%β(M)

i(β,λ)

)
.

We now complete the proof of Theorem 1.6 by showing:

Theorem 7.5 The map p establishes a homeomorphism

B ∼= (PML(S) − [λ]) × R+.

Proof. Consider any (β, L) ∈ ML(S) × R with L > 0 and i(β,λ) $= 0. We
will show:

(i) There exists an M ∈ B with bending lamination proportional to β
and %β(M) = L;

(ii) This M is unique; and

(iii) The bending lamination of M ∈ B is never proportional to λ.

4By a recent result of Minsky, the lamination [λ] uniquely determines the limit slice B

[Min].
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These three results will complete the proof.
To begin, note for all n 3 0 there are unique quasifuchsian groups

Q(Xn, Yn) realizing the data ([β], L) on the part of their convex hull bound-
ary facing Xn. Indeed, %β(Yn) → ∞ by (7.2), so %β(Yn) > L for n 3 0, and
thus by Theorem 7.4 there is a unique Xn such that Q(Xn, Yn) is pleated
along [β] and %βQ(Xn, Yn) = L.

Proof of (i). Pick a surface Z ∈ T (S) with %β(Z) = L. Since Q(Xn, Yn)
realizes the data ([β], L) on its convex hull boundary, we can write

Xn = eqtnβ(Z)

and
∂pQ(Xn, Yn) = Eqtnβ(Z)

for a unique tn ∈ H.
We claim Q(Xn, Yn) ranges in a compact subset of V (S). Indeed, if Xn

is bounded in T (S), then Q(Xn, Yn) is bounded in V (S) by Bers’ inequality
(3.1), so we have compactness. On the other hand, if Xn → ∞ in T (S),
then Xn → [β] in Thurston’s compactification T (S) ∪ PML(S), because
%β(Xn) ≤ L by Corollary 3.5. Since Yn → [λ] and β ∪ λ binds the surface
S, in this case the sequence 〈Q(Xn, Yn)〉 is contained in a compact subset
of V (S) by Thurston’s Double Limit Theorem [Th4], [Ot, Ch. 5].

Since Q(Xn, Yn) is bounded in V (S), the sequence |Re tn| is bounded
by Theorem 4.1. But then | Im tn| is also bounded, since the total bending
along a short transversal to β on ∂hQ(Xn, Yn) is less than 2π. Thus we
can pass to a subsequence 〈ni〉 such that Q(Xni

, Yni
) → M in V (S) and

tni
→ s ∈ H. Then Xni

→ X = eqsβ(Z) in T (S).
We claim M = b(X) and M realizes the data ([β], L). Indeed,

M = limQ(Xni
, Yni

) = limQ(X,Yni
) = b(X)

since the Teichmüller distance from Xni
to X∞ tends to zero. Similarly

∂pM = lim ∂pQ(Xni
, Yni

) = lim Eqtni
β(Z) = Eqsβ(Z),

so the bending lamination of M is [β] and %β(M) = %β(Z) = L.

Proof of (ii). Now consider any M = b(X) ∈ B realizing the data ([β], L)
on its convex core boundary. We will show M = lim Q(Xn, Yn) and thus M
is unique.

The bending lamination of M is yβ for some y > 0. Let Z = ∂hM and
define

f(t) = µ ◦ Eqtβ(Z),
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so
f(iy) = µ(Eqiyβ(Z)) = µ(Gryβ(Z)) = µ(∂pM) = M.

Then the holomorphic disk

f : H → V (S)

meets the limit Bers embedding

b : T (S) → V (S);

in fact b(X) = f(iy) = M . It is easy to see the intersection is isolated, so it
persists under perturbation of b. This means b = lim bYn admits a sequence
(X ′

n, tn) → (X, iy) such that

bYn(X ′
n) = Q(X ′

n, Yn) = f(tn) (7.3)

and thus
Q(X ′

n, Yn) → M.

By (7.3), the projective surfaces Z ′
n = ∂pQ(X ′

n, Yn) and Zn = Eqtnβ(Z)
have the same holonomy. Since the developing map for Z ′

n is univalent,
so is that of any limit, and we conclude Z ′

n → ∂pM . By continuity of
complex earthquakes, Zn → Eqiyβ(Z) = ∂pM as well. But the holonomy
map µ : P (S) → V (S) is a local homeomorphism (Theorem 2.1), so Z ′

n = Zn

for all n 3 0.
Thus

∂pQ(X ′
n, Yn) = Eqtnβ(Z)

for all n 3 0, and therefore Q(X ′
n, Yn) realizes the data ([β], L) on its

convex hull boundary. Since the manifold in the slice BYn realizing this
data is unique, we have Xn = X ′

n and M = lim Q(Xn, Yn) as desired.

Proof of (iii). According to Thurston [Th1], [Bon1], for any hyperbolic
manifold on the boundary of a Bers slice such as M ∈ B, there is at least
one [ε] ∈ PML(S) with %ε(M) = 0. The union of the supports of such ε’s is
the ending lamination of M . Since the ending lamination is a quasi-isometry
invariant, it is the same for all M ∈ B. But for each [β] $= [λ], we have in
(i) constructed an M ∈ B with %β(M) > 0. By a process of elimination,
we find %λ(M) = 0 for all M ∈ B, and thus [λ] never occurs as the bending
lamination.

Thus p maps B bijectively to (PML(S) − [λ]) × R+.
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Remark. The last part of the proof also shows:

Corollary 7.6 If Q(X,Yn) → M ∈ ∂QF (S) then Yn → [λ], where [λ] is
the ending lamination for M .

Example: totally degenerate groups. For any pseudo-Anosov mapping
class ψ ∈ Mod(S) and any Y ∈ T (S), it is shown in [Mc2, §3.5] that the
Bers slices Bψn(Y ) converge to a limit Bers slice Bψ that is independent of
Y . A numerical example of a representation [ρ] ∈ Bψ is also given, where S
is a torus with an orbifold point of order 2,

π1(S) = 〈a, b : [a, b]2 = 1〉,

ψ is the mapping class ( 2 1
1 1 ), and the bending locus is the simple closed

curve 〈a〉 with length determined by tr ρ(a) = 3 [Mc2, §3.7].
The preceding Theorem shows rigorously that there exists a unique to-

tally degenerate group with these properties.

8 Grafting and cone-manifolds

We conclude with a result that relates grafting to the conjectural rigidity of
cone-manifolds.

A hyperbolic cone-manifold (M3, L) is a smooth manifold with a com-
plete path metric that is a Riemannian hyperbolic metric except along a
geodesic link L ⊂ M3. Along a component Li of L the metric has a cone-
like singularity; a disk orthogonal to L has total angle θi at its intersection
with Li. If there are integers ni such that θi = 2π/ni, then (M3, L) is an
orbifold.

Grafting gives a construction of hyperbolic cone-manifolds, as follows.
Let γi be a collection of simple closed geodesics on X ∈ T (S), and let
λ =

∑
αiγi be a measured lamination supported on

⋃
γi. Initially let us

also suppose that bending X along λ results in a quasifuchsian manifold Q.
Then X and Y = grλ(X) can be thought of as components of the convex
core boundary and conformal boundary of Q respectively.

Now remove the convex core from Q, retain the component joining X
to Y , and double along X. The result is a cone manifold M(X,λ) homeo-
morphic to int(S) × (0, 1), containing X as a totally geodesic submanifold.
Under the embedding X ↪→ M(X,λ), the geodesics γi map to the compo-
nents Li of the cone locus L; along Li we have cone angle θi = 2(π + αi).
The cone-manifold has a natural conformal boundary, ∂M(X,λ) = Y ( Y .
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This quasifuchsian construction is useful to visualize M(X,λ) when the
bending is small, but in fact the cone-manifold M(X,λ) can be constructed
for any λ ∈ ML(S).

To see this, first let

C(α, %) = {(z, t) ∈ H3 ∼= C × R : 0 ≤ arg(z) ≤ α}/〈(z, t) %→ (e%z, e%t)〉.

Then C(α, %) is a hyperbolic manifold bounded by totally geodesic half-
cylinders meeting with angle α along a geodesic of length %. For α ≥ 2π the
region C(α, %) above should be interpreted as having multiple sheets.

Next, take the Fuchsian manifold M(X, 0) in which X is realized as a
totally geodesic surface, and cut along the half-cylinders through γi orthog-
onal to X. Finally, glue in two copies of C(αi, %i) along γi, one on each
side of X, where %i = %X(γi). The result is a cone-manifold M(X,λ), now
defined for all laminations and agreeing with the quasifuchsian construction
for small bending. We still have ∂M(X,λ) = Y ( Y .

A traditional geometrically finite manifold M is determined up to isome-
try by its topology, the parabolic locus and the conformal structure on ∂M .
For cone-manifolds one has:

Conjecture 8.1 (Rigidity) A geometrically finite cone-manifold (M,L) is
determined up to isometry by the topology of the pair (M,L), the parabolic
locus, the cone angles θi along Li, and the conformal structure on ∂M .

Local rigidity is known for closed cone-manifolds with cone angles 0 <
θi < 2π, by work of Hodgson and Kerckhoff [HK]. The case of cone-manifolds
with angles in excess of 2π, such as M(X,λ), is currently open.

We may now state:

Theorem 8.2 Local rigidity of geometrically finite cone-manifolds implies
the grafting map

grλ : T (S) → T (S)

is a homeomorphism for all laminations λ ∈ ML(S) supported on simple
closed curves.

Proof. We first show that local rigidity implies grλ is locally injective.
Suppose Xn → X in T (S) and Y = grλ(X) = grλ(Xn) for all n. Then the

cone-manifolds M(Xn,λ) have the same conformal boundary and bending
angles for all n. By local rigidity, M(X,λ) = M(Xn,λ) for all n sufficiently
large. But Xn is determined by M(Xn,λ), since it is isometric to a totally
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geodesic surface in M(Xn,λ). Therefore Xn = X for n 3 0, and grafting is
locally injective.

Since grλ is proper (Theorem 3.6), local injectivity implies global home-
omorphism.

Similarly, positive results on injectivity of grafting (such as Theorems 1.4
and 3.6) can be seen as evidence of rigidity in the presence of cone angles
greater than 2π.
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A Appendix: The topology of quasifuchsian space

This appendix provides some examples that illustrate the subtlety of projec-
tive structures and algebraic limits. We find that despite the disk-convexity
of QF (S) in V (S) (Theorem 5.1), the geometry of QF (S) is quite compli-
cated. We will show:

Theorem A.1 The closure of QF (S) in V (S) is not a topological manifold
with boundary.

In fact there exists a [ρ] ∈ ∂QF (S) such that U ∩QF (S) is disconnected
for any sufficiently small neighborhood U of [ρ].

The case of a punctured torus. Consider the case where S is a surface
of genus one with one boundary component. Using ending laminations, one
can prolong Bers’ isomorphism

QF (S) ∼= T (S) × T (S)

to natural map

QF (S)
ν! (T̂ (S) × T̂ (S)) − D,

where T̂ (S) = T (S)∪PML(S) is Thurston’s compactification of Teichmüller
space, S is S with its orientation reversed, and

D ⊂ PML(S) × PML(S)

is the diagonal. The target of ν is a manifold with boundary (it is homeo-
morphic to a 4-ball with an unknotted circle removed from its boundary),
so the Theorem shows ν is not a homeomorphism.

On the other hand, Minsky has shown that ν is a bijection and that
the closure of any Bers slice in QF (S) is homeomorphic to a disk [Min].
Thus each Bers slice is tame, but the family of all slices is nevertheless quite
complicated. For further discussion of the continuity of ν see [Min, §12.3].

The quasifuchsian space of a punctured torus can also be studied ex-
perimentally. Figure 10 shows a computer-generated linear slice through
QF (S), revealing some of the topological complexity suggested by Theorem
A.1. Since π1(S) = 〈a, b〉 and [ρ(a), ρ(b)] is parabolic, points in V (S) are
essentially determined by the data (trρ(a), tr ρ(b)) = (α,β) ∈ C2, which can
be specified arbitrarily. In this picture β is fixed at 2 + 6i, and α ranges in
the square of width 8 centered at α = 2 + 6i in C; the white region shows
where (α,β) ∈ QF (S). By the results of §5, each component of the white
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Figure 10. A slice of QF (S).

            

Figure 11. The Maskit embedding of T (S).
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is a disk; as shown in the Figure, in general the white region has many
components, some of which touch.

The closely related Maskit embedding of Teichmüller space, lying in the
slice β = 2, has been studied in detail by D. Wright [MMW], [Wr], [KS].
The Maskit embedding is disjoint from QF (S) (since ρ(b) is parabolic), but
its boundary is a cusped curve locally of the same character as the boundary
in Figure 10. However the Maskit embedding is topologically a single disk,
and therefore simpler than a general slice of QF (S) (see Figure 11).

Exotic projective structures. The proof of Theorem A.1 will use the
holonomy map µ : P (S) → T (S). Let us say a projective surface with
quasifuchsian holonomy is standard if its developing map is injective; other-
wise it is exotic.

Under µ the standard surfaces map bijectively QF (S); the standard sur-
face corresponding to a quasifuchsian manifold M ∈ QF (S) is simply ∂pM .
The other components of µ−1(QF (S)) consist of exotic surfaces; examples
are discussed in [Msk], [Hej] and [Gol]. In [Tan] grafting is used to produce
exotic surfaces in every fiber of P (S) → T (S) Here we will show:

Theorem A.2 There exists a projective surface Z ∈ P (S) which is a limit
of both standard and exotic surfaces.

Corollary A.3 The set U(S) of projective surfaces with injective developing
maps is not open in K(S), the set of surfaces with discrete holonomy.

Proof. The surface Z is in U(S), since it is a limit of standard surfaces;
but Z is also a limit of exotic surfaces, and the latter are contained in
K(S) − U(S).

This Corollary suggests that K(S) may have a combinatorial structure
similar to that of the Mandelbrot set, with U(S) playing the role of the main
cardioid and with limbs of K(S) attached along the cusps in ∂U(S). The
space K(S) is studied in [ST]. We also remark that by Minsky’s work, for
S a punctured torus the ending invariants give a homeomorphism

U(S)
ν! T (S) × T̂ (S);

working in P (S) is similar to working in a Bers’ slice, and the boundary
behavior of quasifuchsian space seems to be tamer in P (S) than in V (S).

Our examples are based on those of Kerckhoff and Thurston [KT], with
an added twist discovered by Anderson and Canary [AC]. The key ingredient
is the following:
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Lemma A.4 There exists a sequence of quasifuchsian manifolds Mn ∈
QF (S) such that:

1. The algebraic limit M∞ of Mn lies in the boundary of a Bers’ slice
BZ, but

2. The geometric limit N of Mn is distinct from M∞, and π1(M∞) ⊂
π1(N) does not correspond to any component of ∂N .

Proof. Choose a nonempty system of disjoint simple closed curves C ⊂ S,
none peripheral and no two parallel. The proof will show:

• We can take Mn = Q(τn(X), τ2n(Y )), where τ is a product of Dehn
twists around the curves in C;

• In the algebraic limit M∞, the curves C become rank-one cusps; and

• In the geometric limit N , the curves C give rise to cusps of rank two.

To begin the construction, let N (the candidate geometric limit) be a
geometrically finite Kleinian manifold homeomorphic to int(S)×[0, 1]−(C×
1/2). There are many ways to construct such a manifold. For example, when
C is a maximal system of disjoint simple curves, N can be constructed from
a maximal cusp N0 in the boundary of a Bers slice, chosen so all curves in
C have been pinched to rank-one cusps. To build N , cut away the ends of
N0 bounded by totally geodesic triply-punctured spheres, and then double
across the resulting boundary.

Given N , choose a basis 〈λi, µi〉 for the fundamental group of each rank
two cusp, with λi homotopic to Ci×1 and µi trivial in S× [0, 1]. Performing
(1, n) Dehn filling on all the cusps, we obtain a new manifold Nn together
with an inclusion

Fn : N → Nn.

Here π1(Nn) is obtained from π1(N) by adding the relations µi = λn
i , and

Nn is homeomorphic to S × [0, 1].
By a result of Thurston, there are complete hyperbolic metrics on Nn

converging to N geometrically; that is, so the metric distortion of the filling
map Fn tends to zero on compact subsets of N as n → ∞. In fact we may
take Nn = Q(X, τnY ), where X(Y is the conformal boundary of N and τ is
a simultaneous Dehn twist around the components of C (see [KT]). Here the
marking S → Nn is the composition of Fn with the inclusion S → S×1 ⊂ N .

Now comes the twist. Start with the embedding f0 : int(S) → N given
by f0(x) = (x, 3/4), and surger it to obtain immersion f : int(S) → N
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wrapping once around each boundary component of a tubular neighborhood
of C × 1/2. The surgery is carried out as follows: along each component
Ci of C, insert a band Ci × [0, 1] into S, and send it to the tube Ci × S1

around Ci × 1/2 using the map [0, 1] → S1 that identifies the endpoints of
the interval.

Let Mn ∈ QF (S) be the hyperbolic manifold Nn marked by the compo-
sition

S
f! N

Fn! Nn.

Then Mn = Q(τn(X), τ2n(Y )). (Note that Fn ◦ f is homotopic to an em-
bedding of S into Nn, since the cusp has been filled.) Since Fn converges
to an isometry, Mn converges geometrically to N and algebraically to the
subgroup M∞ of N represented by f∗(π1(S)). Since f : int(S) → N is not
homotopic into ∂N , π1(M∞) does not represent the fundamental group of
either component of ∂N . Finally π1(M∞) is a geometrically finite surface
group, whose only accidental parabolics correspond to C. Therefore M∞

lies on the boundary of some Bers slice BZ .

Example. The case where C is a separating curve on a surface of genus 2
is shown in Figure 12. The manifold N is homotopy equivalent to the union
of S and a torus along C, so its fundamental group is given by

π1(N) = 〈a, b, c, d, µ,λ : λ = [a, b] = [c, d], [µ,λ] = 1〉.

The surface S×1 ⊂ N corresponds to the subgroup generated by 〈a, b, c, d〉,
while the immersed surface corresponds to 〈a, b, µcµ−1, µdµ−1〉.

Figure 12. An immersed surface wrapping once around the cusp.
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The covering π : int(M∞) → int(N) is depicted in Figure 13. Note
that π : ∂hM → N is a pleated surface modeling the immersed surface
f : S → N .

Figure 13. The covering space corresponding to the immersed surface.

Proof of Theorem A.2. Consider any Mn converging to M∞ algebraically
and to N geometrically as in the Lemma. Since M∞ is in the boundary of
a Bers slice, the projective surface Z = ∂pM∞ is defined and Z is the limit
of standard surfaces Z ′

n = ∂M ′
n, where M ′

n ∈ BZ tends to M∞.
The holonomy map is a local homeomorphism, so there also are pro-

jective surfaces Zn → Z with µ(Zn) = Mn. Since Z does not represent a
boundary component of N , the image δ(Z̃) of its universal cover under the
developing map meets the limit set Λ of π1(N). But Mn → N geometrically,
so Λ ⊂ lim inf Λn, where Λn is the limit set of π1(Mn). Thus the developing

image of Z̃n meets Λn for all n 3 0. Since Λn is the limit set of µ(Zn), we
have shown Zn is exotic for all n 3 0.

Proof of Theorem A.1. We have seen there is a projective surface such
that Z = limZn = lim Z ′

n, where Zn are exotic and Z ′
n are standard. Let U

be a neighborhood of [ρ] = µ(Z) ∈ V (S). Since µ is a local homeomorphism,
a neighborhood V of Z maps homeomorphically to U when U is sufficiently
small. Since V contains both standard and exotic surfaces, V ∩µ−1(QF (S))
is disconnected; therefore U ∩ QF (S) is also disconnected.

By the theory of holomorphic motions (Theorem 5.2), QF (S) ⊂ V (S)
is the interior of its closure (since all groups in int(QF (S)) are quasiconfor-
mally conjugate). If QF (S) ⊂ V (S) were a topological manifold, then there
would be a small neighborhood U of [ρ] ∈ ∂QF (S) meeting the manifold’s
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interior QF (S) in a connected set, contrary to what we have just seen. Thus
QF (S) is not a manifold with boundary.
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