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PATHOLOGIES OF MODULAR ALGEBRAIC SURFACES.*

By Davip MUMFORD.

The purpose of this note is to present two counterexamples to conjectures
about the geometry of algebraic surfaces, which are, on the contrary, true in
characteristic zero. Thus if F is a non-singular algebraic surface defined over
an algebraically closed field %, one can form the vector spaces

H0,1=H1(F,Q°),
H1,0=H°(F.~Ql):

where Q¢ is the sheaf of regular ¢-forms. One also has the vector space

A, = cotangent space to the Albanese Variety
A of F at the origin 0.

Among these vector spaces various maps may be defined regardless of the
ground field. TFirst, the canonical map

¢: F—>4
induces a homomorphism
¢* . AO b d Hl,O}

which Igusa [4] has shown to be one-one. Secondly, if an embedding of F
in projective space is fixed, and hence a canonical element A in H!(F,Q'),
then cup product and Serre duality induces a pairing

N:Hyy XHy o> k.
(See Kodaira [6] and Serre [9]).

Now in the classical case, the usual constructive existence proof of the
Albanese variety A shows immediately that ¢* is onto (see Weil [12]) ; while
the famous topological results of Lefschetz on the embeddings of varieties in
projective space (see Wallace [11], and Kodaira [6]), allow one to conclude
that the pairing % is non-degenerate. One deduces the *fundamental
equalities” of Italian surface theory:

dim Ao = dim HI,O = dim HO,I;

* Received January 4, 1961.
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340 DAVID MUMFORD.

proven first by Poincaré by his method of normal functions in 1910, (Poincaré
[8]). A corollary of ¢* being onto, combined with the easy proof (valid in
all characteristics—see Koizumi [7]) that regular differentials on an Abelian
variety are closed, shows that the differentials in H,,, are all closed. This
has been generalized by Hodge, and has led ultimately to the result: analytic
regular differentials on a K#hler manifold are closed (see Weil [12]).
The question is what extends to the modular, or non-zero characteristic
case. Igusa showed, first of all, that ¢* is not always onto [5]. Serre showed
next that the pairing & is not always non-degenerate, since it can happen
that Hy,o= (0), while Ho,, 5~ (0), (see [10]). There remain the questions:

(a) Are all differentials in H, , closed?

(b) Does the pairing ¥ have the property that if « in H, , is such that
H(z,y) =0 for all y in H,,,, then 2=07?

The answer to both is no.

I.
To answer (a), we prove (assuming the characteristic £0):

THEOREM. Let F be a non-singular algebraic surface, o any simple
differential on F (i.e. 1-form) ; then there exists a non-singular surface F*
and a regular map ¢: F*— F which is separable and algebraic, such that
¢*(w) s regular on F*.

Proof. Note first that it is enough to prove:

(#) For all P in F, there exists an open U containing P, a surface
F* and a regular map ¢ : F'* — F separable and algebraic such that
¢*(U) is non-singular, and ¢*(w) is regular on ¢*(U).

If this is proven, then we can find a finite set U;* of open sets covering F
and of surfaces F;*, and maps ¢;: F;* — F with the above properties. Then
let F* be some non-singular model of the function field of any compositum
of k(F;*) (compatible with the identification of the common subfields k (7)),
that dominates the models F;* (such exists by Abhyankar [1] and Zariski
[13]). Let ¢ be the map from F* to F. Then for all P in F'*, say ¢(P)
in Ui Then ¢;*(w) is regular at ¢;2(¢(P)), hence ¢*(w) is regular at P.
But in fact it is enough to prove:

(##) Same as (#) except for differentials w — A4 dz,  a uniformizing
parameter at P.
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For if at P, w=A dx 4 B dy, then pick F,* that does the trick for 4 dz
and then F,* that does the trick for Bdy, and take a suitable non-singu-
larization of their join as in (#).

But now if o= (4,/A4,)dz, A, and A4, regular at P, and 4, =0 at P,
consider the extension

ZP + (AsP-Z) + (2) =0, where p is the characteristic.
It follows

de=—A,PdZ.

Now in the normalization F* of F in this field extension, there is a unique
point P* above P. Moreover, it is simple since if z, y are uniformizing para-
meters at P, then Z, y are uniformizing parameters at P*. Finally,

o= (do/A,)dx =A, A7 (dz/A,?) —— A4, dZ.
Hence o is regular at P*, hence in an open set about P*. QED

CoroLLARY. There exist algebraic surfaces, non-singular and with a
simple regular differential o that is not closed.

Proof. Take in the above theorem F — P? the projective plane, and
o=uzdy. Then the differential ¢*(w) on the covering F* given by the
theorem satisfies the corollary. One must merely note that d¢*(w) — ¢* (dw)
=0 as the covering is separable. QED

II.

To answer (b), consider the famous Enriques surface E, which is, in
any characteristic, the normalization of the sextic surface E, in P3:

0= 2%y + 2%* 4 %2 + y*2* 4- wy2f, (2,9, 2),

where f, is a general polynomial of second degree. Its normalization is non-
singular and, regardless of characteristic, can be constructed as the join of
the graphs of the following set of maps:

¢.: By— P, given by zy/z,
¢2: Ey— P, given by a2/y,
¢s: Ey— P, given by yz/z,
as the reader may with some pains verify. It follows that the surface E in

characteristic ® is a specialization of F in characteristic 0, hence has the same
Pa (see Hironaka [3]), which has long been known to be 0 (for a modern
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treatment, see Artin’s thesis [2]). On the other hand, the classical theory
of adjoint surfaces tells us that canonical divisors on F, as divisors on K,
must be cut out by (6 —4)=2nd order forms in P*® passing through the
double lines (see Zariski [14]) ; in this case, we have a tetrahedron of double
lines and such are contained in no quadric. Hence p, =0, hence H** = (0).

Now in the remarkable case of characteristic 2, it is also the case that
H%°5£ (0). In fact, let ¢ be a coordinate on P*; then:

$1* (d8) = $,* (dt) = ps*(dt) = d(ay2)

is immediately seen to be a regular differential on E.

HARVARD UNIVERSITY.
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