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Automorphisms of even unimodular lattices and

unramified Salem numbers

Benedict H. Gross and Curtis T. McMullen

1 January, 2002

Abstract

In this paper we study the characteristic polynomials

S(x) = det(xI − F | IIp,q)

of automorphisms of even, unimodular lattices with signature (p, q).
In particular we show any Salem polynomial of degree 2n satisfying
S(−1)S(1) = (−1)n arises from an automorphism of an indefinite lat-
tice, a result with applications to K3 surfaces.
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1 Introduction

Let IIp,q denote the even, indefinite, unimodular lattice with signature (p, q).
As is well-known, such a lattice exists iff p ≡ q mod 8, in which case IIp,q is
unique up to isomorphism [Ser], [MH].

Let SO(IIp,q) denote the group of isomorphisms F : IIp,q → IIp,q preserv-
ing the inner product and orientation. This paper addresses:

Question 1.1 What are the possibilities for the characteristic polynomial
S(x) = det(xI − F ) of an automorphism F ∈ SO(IIp,q)?

Upon tensoring with R, we can regard F as an element of the orthogonal
group SOp,q(R) of a quadratic form of signature (p, q) on R2n, 2n = p + q.
The condition F ∈ SOp,q(R) already implies:

• S(x) is a reciprocal polynomial (we have x2nS(1/x) = S(x)); and

• (p, q) ≥ (s, s) and (p, q) ≡ (s, s)mod 2, where 2s is the number of roots
of S(x) off the unit circle.

A subtler arithmetic condition satisfied by the characteristic polynomial of
an automorphism of IIp,q is:

• The integers |S(−1)|, |S(1)| and (−1)nS(1)S(−1) are all squares.

See §6. We speculate that these 3 conditions may be sufficient for a monic
irreducible polynomial S(x) ∈ Z[x] to be realized as the characteristic poly-
nomial of an automorphism of IIp,q.

Unramified polynomials. The main result of this paper answers Question
1.1 in a special case. Let us say a monic reciprocal polynomial S(x) ∈ Z[x]
is unramified if

• |S(−1)| = |S(1)| = 1; equivalently, if S(−1)S(1) = (−1)n (see §3).

Theorem 1.2 Let S(x) ∈ Z[x] be an unramified, irreducible, monic recip-
rocal polynomial, of degree 2n, with 2s roots off the unit circle. Let IIp,q be
an even, indefinite unimodular lattice with signature (p, q) satisfying

p + q = 2n, (p, q) ≥ (s, s), and (p, q) ≡ (s, s)mod 2.

Then there is an automorphism

F : IIp,q → IIp,q

with characteristic polynomial S(x).
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The following more precise form of the theorem allows one to control the
real conjugacy class of F .

Theorem 1.3 Let F ∈ SOp,q(R) be an orthogonal transformation with ir-
reducible, unramified characteristic polynomial S(x) ∈ Z[x]. If p ≡ q mod 8,
then there is an even unimodular lattice L ⊂ Rp+q preserved by F .

To prove these results, we synthesize a lattice automorphism from its
characteristic polynomial. The construction takes place in the quadratic
extension of number fields K/k, where K = Q[x]/S(x) and Gal(K/k) is
generated by the involution α '→ α sending x to x−1. Given a fractional
ideal L ⊂ K and ξ ∈ k∗, we define an automorphism F : L → L by
F (α) = xα. Then F belongs to the orthogonal group SO(L) for the inner
product

〈α,β〉L = TrK
Q (ξαβ).

Using class field theory, we show L can be chosen to be an even, unimodular
lattice of any signature compatible with the condition p ≡ q mod8; and by
construction, the characteristic polynomial of F is S(x). See §§2–5.
Cyclotomic polynomials. It is easy to see that the cyclotomic polynomial
Φd(x) ∈ Z[x] of degree φ(d) is unramified unless d = re or 2re for some prime
r (see §7). So the preceding results imply:

Corollary 1.4 The indefinite lattice IIp,q admits a symmetry of order d
whenever p + q = φ(d) and d does not have the form re or 2re for some
prime r.

We also recover a result first obtained in [Ba1]:

Corollary 1.5 There exists a definite even unimodular lattice L of rank
φ(d) with a symmetry of order d whenever φ(d) = 0mod 8 and d *= re or
2re, r prime.

Salem polynomials. A Salem polynomial S(x) ∈ Z[x] is a monic, ir-
reducible reciprocal polynomial with exactly two roots off the unit circle,
both real and positive. The unique root λ > 1 is a Salem number. (We
permit quadratic Salem numbers.)

If a Salem polynomial of degree 2n is unramified, then n is odd (see
Proposition 3.3). In §7 we show such polynomials are abundant in each
possible degree.
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Theorem 1.6 For any odd integer n ≥ 3, there exist infinitely many un-
ramified Salem polynomials of degree 2n.

To construct these polynomials, we start with a separable polynomial C(x) ∈
Z[x] of degree n − 3 with all its roots in the interval (−2, 2). Setting

R(x) = C(x)(x2 − 4)(x − a) − 1,

we show S(x) = xnR(x + x−1) is an unramified Salem polynomial for all
a + 0.

Lehmer’s polynomial. Inverting this construction yields interesting fac-
torizations for certain Salem polynomials. For example, the smallest known
Salem number λ ≈ 1.17628 is a root of the Lehmer polynomial

S(x) = 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10. (1.1)

Note that S(x) is unramified. Writing S(x) = x5R(x + x−1), we find

R(x) = (x + 1)2(x2 − 4)(x − 1) − 1.

See §7 for more details and examples.

Automorphisms of K3 surfaces. Our study of automorphisms of lattices
began with K3 surfaces [Mc], and we conclude with an application to these
varieties.

Let X be a complex K3 surface. With respect to the cup product,
the middle-dimensional cohomology group H2(X, Z) is an even, unimodular
lattice of signature (3, 19). The characteristic polynomial S(x) = det(xI −
f∗|H2(X)) of an automorphism f : X → X is a reciprocal polynomial
with at most two roots off the unit circle, both positive. Thus if S(x) is
irreducible, it is either a Salem polynomial or a cyclotomic polynomial.

Conversely, in §8 we show:

Theorem 1.7 Let S(x) be an unramified Salem polynomial of degree 22,
and let δ ∈ S1 be a root of S(x). Then there exists:

• A complex analytic K3 surface X, and an automorphism f : X → X,
such that

• S(x) = det(xI − f∗|H2(X)) and

• f∗ acts on H2,0(X) by multiplication by δ.
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(Remark: the surface X above is never projective.)
There are no known Salem numbers of trace less than −1, and only

recently have infinitely many Salem numbers of trace −1 been constructed
[Smy]. Using the fact that the Lefschetz number of f is non-negative, we
show:

Corollary 1.8 There are no unramified Salem numbers of degree 22 and
trace less than −2.

Notes. This paper elaborates the construction of lattice automorphisms in
[Mc]. A similar method was used by J. G. Thompson to construct lattice
automorphisms of order p [CoS, 8.7.5], and by E. Bayer-Fluckiger to charac-
terize the cyclotomic polynomials that arise from automorphisms of definite
unimodular lattices [Ba1]. For a recent survey of the construction of lattices
using ideals in number fields, see [Ba2]. More examples of automorphisms
of K3 surfaces via automorphisms of lattices can be found in [Bor] and the
references therein.

We note that the Alexander polynomial of a knot is always a reciprocal
polynomial satisfying |S(1)| = 1 (see e.g. [Rol, 8.C.7]), so it verifies part of
the condition to be unramified. The Lehmer polynomial and other interest-
ing Salem polynomials arise as Alexander polynomials of pretzel knots and
links [Hir].

We would like to thank E. Bayer-Fluckiger for several helpful remarks.

2 Real orthogonal transformations

In this section we collect together elementary results classifying orthogonal
transformations with a given characteristic polynomial over R.

Let SOp,q(R) denote the Lie group of automorphisms F : Rp+q → Rp+q

with det F = 1, preserving the quadratic form

x2
1 + · · · + x2

p − x2
p+1 − · · ·− x2

p+q

of signature (p, q). Recall that a monic polynomial S(x) ∈ R[x] of degree 2n
is separable if its roots (in C) are all simple, and reciprocal if x2nS(1/x) =
S(x).

Theorem 2.1 Let F ∈ SOp,q(R) be an orthogonal transformation with sep-
arable characteristic polynomial S(x) of degree 2n. Then S(x) is reciprocal.
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Classification by sign invariant. For the remainder of this section we
fix the following data:

• S(x) ∈ R[x], a degree 2n monic, separable, reciprocal polynomial with
2s roots off the unit circle.

• R(x) ∈ R[x], the associated monic degree n trace polynomial, defined
by the condition

S(x) = xnR(x + x−1).

The roots of R(x) have the form τ = λ + λ−1 as λ ranges over the
roots of S(x).

• T ⊂ R, the n − s roots τ of R(x) that lie in the interval (−2, 2). The
roots of R(x) in (−2, 2) correspond to conjugate pairs of roots of S(x)
on S1.

Suppose F ∈ SOp,q(R) has characteristic polynomial S(x). For each τ ∈ T
let

Eτ = Ker(F + F−1 − τI) ⊂ Rp+q.

Then F acts on Eτ
∼= R2 by rotation by angle θ, where 2 cos θ = τ , so Eτ

has signature (2, 0) or (0, 2). Define the sign invariant εF : T → 〈±1〉 by

εF (τ) =

{
+1 if Eτ has signature (2, 0),

−1 if Eτ has signature (0, 2).

Theorem 2.2 The sign invariant of F ∈ SOp,q(R) with characteristic poly-
nomial S(x) satisfies

(p, q) = (s, s) +
∑

T

{
(2, 0) if εF (τ) = +1,

(0, 2) if εF (τ) = −1.
(2.1)

Conversely, any sign invariant compatible with this condition arises for some
F ∈ SOp,q(R) with characteristic polynomial S(x).

Corollary 2.3 The polynomial S(x) can be realized as S(x) = det(xI −F )
for some F ∈ SOp,q(R) ⇐⇒ p + q = 2n, (p, q) ≥ (s, s), and (p, q) ≡
(s, s)mod 2.

Theorem 2.4 Let F,G ∈ SOp,q(R) have characteristic polynomial S(x).
Then F and G are conjugate in Op,q(R) if and only if they have the same
sign invariant.
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Corollary 2.5 The number of Op,q(R) conjugacy classes of F ∈ SOp,q(R)
with characteristic polynomial S(x) is given by the binomial coefficient

N =

(
n − s

(p − s)/2

)
,

provided at least one such F exists.

Proof of Theorem 2.1. For each root λ ∈ C of S(x), let Vλ ⊂ Cp+q

denote the corresponding 1-dimensional eigenspace of F . Then for v ∈ Vα
and w ∈ Vβ we have

〈v,w〉 = 〈Fv, Fw〉 = αβ〈v,w〉,

so Vα and Vβ are orthogonal unless α = 1/β. Since the inner product is non-
degenerate, the roots of S(x) must be invariant under λ '→ λ−1. Moreover,
±1 are not roots of S(x) — otherwise both would be, since the number of
roots is even, but then we would have detF < 0. Thus S(x) is a reciprocal
polynomial.

Proof of Theorem 2.2. Consider the orthogonal, F -invariant splitting
Cp+q = U ⊕ V , where

U = ⊕|λ|=1Vλ and V = ⊕|λ| #=1Vλ.

The splitting above is defined over R, so the signatures of U and V are well-
defined. Indeed, V has signature (s, s) since ⊕|λ|>1Vλ is an s-dimensional
isotropic subspace of V . On the other hand, we can write U as an orthogonal
direct sum

U =
⊕

τ∈T

Eτ ⊗ C.

The signature of each summand Eτ
∼= R2 is recorded by the sign invariant

εF (τ). Since the signature (p, q) of Rp+q is the sum of the signatures of U
and V , we obtain (2.1).

Now suppose ε : T → 〈±1〉 satisfies (2.1). Partition the roots Λ of S(x)
into subsets of the form

Λi = {λ,λ,λ−1,λ
−1}.

For each i define a real vector space with a quadratic form, (Vi, Qi), and a
transformation Fi ∈ SO(Vi, Qi) with eigenvalues Λi, as follows.
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1. For Λi = {λ,λ−1}, with λ ∈ R, take

Vi = R2, Qi(x, y) = xy, and Fi(x, y) = (λx,λ−1y).

2. For Λi = {λ,λ}, with λ ∈ S1, take

Vi = C ∼= R2, Qi(z) = ε(τ)|z|2, and Fi(z) = λz,

where τ = λ+ λ.

3. For Λi = {λ,λ,λ−1,λ
−1} with λ *∈ S1 ∪ R, take

Vi = C2 ∼= R4, Qi(z,w) = Re zw, and Fi(z,w) = (λz,λ−1w).

Let (V,Q) = ⊕(Vi, Qi) and F = ⊕Fi. Then F belongs to the orthogonal
group SO(V,Q), S(x) = det(xI −F ), and by construction the sign invariant
satisfies ε = εF . The signature of (V,Q) is (p, q) by equation (2.1). Since a
real orthogonal space is determined up to isomorphism by its signature, F
is conjugate to a transformation in SOp,q(R), completing the proof.

Proof of Theorem 2.4. Clearly εF = εG if F and G are conjugate.
To prove the converse, choose a basis (eλ) for Cp+q where λ ranges

through the zeros of S(x), such that F (eλ) = λeλ and

eλ = eλ. (2.2)

Then 〈eα, eβ〉 = 0 unless αβ = 1. For λ *∈ S1 we can scale eλ independently
from e1/λ to arrange that 〈eλ, e1/λ〉 = 1. But for λ ∈ S1 we must preserve
(2.2), so we can only arrange that

〈eλ, e1/λ〉 = εF (τ),

where τ = λ + λ−1.
In any case, if εF = εG then we can choose an eigenbasis (e′λ) for G with

the same normalizations. The complex linear map defined by H(eλ) = e′λ is
then an isometry, conjugating F to G. But by (2.2) H is actually defined
over R, and therefore F and G are conjugate in Op,q(R).
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3 Ramification

In this section we relate ramification of the reciprocal polynomial S(x) to
ramification of an associated field extension K/k.

Continuing in the setting of the preceding section, we now specialize to
the case where

• S(x) ∈ Z[x] is an irreducible reciprocal polynomial.

In this case we can associate to S(x) a quadratic field extension K/k, where

• K = Q[x]/S(x) is a number field of degree 2n over Q, and

• k = Q[y]/R(y) ⊂ K is the degree n subfield generated by y = x+x−1.

Here R is the degree n trace polynomial of S.
Recall that S(x) is unramified if |S(±1)| = 1. (An equivalent condition

is that S(−1)S(1) = (−1)n; see Proposition 3.3.) We will show:

Proposition 3.1 If the polynomial S(x) is unramified, then the field exten-
sion K/k is also unramified (at all finite primes).

Fields and traces. We start with some algebraic preliminaries; see e.g.
[FT] or [La] for more background.

Let OK ⊂ K be the ring of integers in a number field K/Q. The trace
form on K is defined by

〈α,β〉 = TrK
Q (αβ).

For any Z-module M ⊂ K generated by a basis of K over Q, we define the
dual module by

M∨ = {α ∈ K : 〈α,β〉 ∈ Z for all β ∈ M} ∼= Hom(M, Z).

If I ⊂ K is a fractional ideal, then so is I∨; in fact we have

I∨ = O∨
K · I−1. (3.1)

The ideal (O∨
K)−1 is the different of K.

Quadratic extensions. A finite extension of number fields K/k is unram-
ified (at all finite primes) if

O∨
K = OK · O∨

k .

(Here O∨
k ⊂ k is the dual of Ok with respect to the trace form on k.)
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Proposition 3.2 Let K = k[x]/(x2 − yx + 1) be a quadratic extension of
a number field k, where y ∈ Ok. If y2 − 4 is a unit in Ok, then K/k is
unramified.

Proof. If y2 − 4 is a unit, then Ok[x]∨ = O∨
k [x]. Indeed, writing β ∈ K

as β1 + β2x, βi ∈ k, the condition β ∈ Ok[x]∨ is the same as the condition
Tr(αβ) ∈ Z and Tr(αxβ) ∈ Z for all α ∈ Ok. Using the fact that x2 = yx−1,
this in turn translates into the condition

(
2 y

y y2 − 2

)(
β1

β2

)

∈ (O∨
k )2.

But the matrix on the right is invertible in M2(Ok), since its determinant
is the unit y2 − 4. Since O∨

k is an Ok-module, we conclude that β belongs
to Ok[x]∨ iff β1,β2 ∈ O∨

k .
It follows that OK = Ok[x], since we have

O∨
K ⊂ Ok[x]∨ = O∨

k [x] ⊂ O∨
K .

But then
O∨

K = O∨
k [x] = O∨

k · Ok[x] = O∨
k · OK ,

so K/k is unramified.

Proof of Proposition 3.1. The field K = Q[x]/S(x) is a quadratic
extension of k ∼= Q[y]/R(y) where y = x + x−1. Thus we have K ∼=
k[x]/(x2 − yx + 1).

Now the norm of x − a ∈ K = Q[x]/S(x) is given by

NK
Q (x − a) = S(a).

Since S(x) is reciprocal and unramified, we have |S(0)| = |S(±1)| = 1, and
thus x and x ± 1 are units (since they are algebraic integers of norm ±1).
Thus y2 − 4 = (x− x−1)2 = (x− 1)2(x + 1)2/x2 is also a unit, and therefore
K/k is unramified.

Parity. We conclude by pointing out some parity constraints on unramified
polynomials.

Proposition 3.3 Let S(x) be an unramified monic reciprocal polynomial
of degree 2n with 2s roots off the unit circle. Then s ≡ n mod2 and
S(−1)S(1) = (−1)n.
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Proof. Since S(x) is unramified we have |S(±1)| = |R(±2)| = 1, and clearly
R(−2) = R(2)mod 4. Thus R(2)R(−2) = 1 = (−1)nS(−1)S(1).

Since R(y) has the same sign at the endpoints of [−2, 2], it must have
an even number of zeros in this interval; but the number of zeros of R in
(−2, 2) is the same as the number of pairs of zeros of S on S1, which is n−s.

4 Lattices in number fields

In this section we give a construction of automorphisms of even unimodular
lattices using number theory. For a survey of related results, see [Ba2]

Lattices. A lattice L of rank r is an abelian group L ∼= Zr equipped with
a non-degenerate, symmetric, bilinear form (or inner product) 〈x, y〉L ∈ Z.

The lattice L is even if 〈x, x〉L ∈ 2Z for all x ∈ L; otherwise L is odd.
If the inner product gives an isomorphism between L and L∗ = Hom(L, Z),
then L is unimodular. We say L has signature (p, q) if the quadratic form
〈x, x〉L on L ⊗ R ∼= Rr is equivalent to

x2
1 + · · · + x2

p − x2
p+1 − · · ·− x2

p+q.

If (p, q) = (r, 0) or (0, r), then L is definite; otherwise L is an indefinite
lattice.

Any two even, indefinite, unimodular lattices with the same signature
are isomorphic. There exists an even, unimodular lattice with signature
(p, q) iff p ≡ q mod8. See [Ser, §5], [MH].

Number fields. Continuing in the notation of the preceding section,
let S(x) ∈ Z[x] be a monic irreducible reciprocal polynomial of even de-
gree 2n, with associated quadratic field extension K = Q[x]/S(x) over
k = Q[y]/R(y), y = x + x−1. The Galois group of K/k is generated by
the involution ι sending x to x−1. For brevity we write α = ι(α). The
Galois group acts on fractional ideals in K by L = ι(L).

Theorem 4.1 Let L ⊂ K be a fractional ideal satisfying

L · L · (ξ) = O∨
K

for some ξ ∈ k∗. Then L is a unimodular lattice with respect to the inner
product

〈α,β〉L = TrK
Q (ξαβ). (4.1)

If K/k is unramified, then L is even.
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Proof. From formula (3.1) for the dual module with respect to the trace
form on K, we have

L∨ = O∨
K · L−1 = L · (ξ). (4.2)

The dual of L with respect to the inner product (4.1) is thus given by

L∗ = {β ∈ K : ξβ ∈ L∨} = L.

Therefore L is a unimodular lattice. For α ∈ L we have

ξαα ∈ ((ξ) · L · L) ∩ k = O∨
K ∩ k.

If K/k is unramified, then we have

O∨
K ∩ k = (OK · O∨

k ) ∩ k = O∨
k ;

therefore
〈α,α〉L = 2Trk

Q(ξαα) ∈ 2Z,

so L is even.

Note. For L to be even it is sufficient that K/k be unramified at the primes
of Ok dividing 2; see [Ba2, §2.6].
Isometries of L. Now define f : K → K by f(α) = xα; then S(x)
is the characteristic polynomial of f . Since x is a unit, f restricts to an
automorphism f : L → L for any fractional ideal L ⊂ K.

Let T be the set of real places of k that become complex in K. Since the
discriminant of x2 − yx+ 1 is y2 − 4, we can identify T with the set of roots
τ of R(y) in the interval (−2, 2). If we regard elements ξ ∈ k ∼= Q[y]/R(y)
as polynomials in y, then the valuation of ξ at the real place τ ∈ T is simply
ξ(τ). We record the sign of this valuation for ξ ∈ k∗ by

signτ (ξ) =

{
+1 if ξ(τ) > 0,

−1 if ξ(τ) < 0.

Theorem 4.2 The map f : L → L is an orthogonal transformation of the
form 〈α,β〉L = TrK

Q (ξαβ), with sign invariant

εf (τ) = signτ (ξ).
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Proof. The automorphism f is an isometry because

〈f(α), f(β)〉L = TrK
Q (ξxαxβ) = TrKQ (ξxαx−1β) = 〈α,β〉L.

To compute its sign invariant, just observe that the inner product on L⊗R

restricts to the form

〈α,β〉L = ξ(τ) · TrC
R(αβ) = 2ξ(τ)Reαβ

on Eτ
∼= C.

Example: Z2. Let S(x) = x2 + 1. Then Ok = Z ⊂ OK = Z[i], and
O∨

K = (1/2)OK . Thus Theorem 4.1 holds for L = OK and ξ = 1/2, yielding
the automorphism f(α) = iα of the unimodular lattice L = Z[i] ∼= Z2 with
the usual positive-definite inner product

〈α,β〉L = TrKQ (ξαβ) = Reαβ.

In this case K/k is ramified (at the prime 2) and the unimodular lattice
L ∼= Z2 is odd.

Remark: completeness. In the special case where OK = Z[x]/S(x), all
automorphisms f : L → L of lattices with characteristic polynomial S(x)
arise via the construction above. Indeed, any such L is an OK -module, hence
represented by a fractional ideal in K; and any f -invariant inner product on
L with values in Q has the form TrK

Q (ξαβ) for some ξ ∈ k.
For example, let S(x) = Φd(x) be the cyclotomic polynomial for the

primitive dth roots of unity; then OK = Z[x]/S(x). Therefore every order d
automorphism f : L → L of a lattice of rank 2n = φ(d) comes from an ideal
L ⊂ OK by the construction above.

5 Class field theory

We now use class field theory to complete the proof of our main results on
lattice automorphisms, Theorems 1.2 and 1.3.

In this section we specialize to the case where:

• S(x) ∈ Z[x] is a monic, irreducible, unramified reciprocal polynomial
of degree 2n.

As in the preceding sections, we let K/k denote the associated quadratic
field extension, where K = Q[x]/S(x), k = Q[y]/R(y) and y = x + x−1. By
Proposition 3.1, the extension K/k is unramified at all finite primes.
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Class groups. Let T be the set of roots of R(y) in (−2, 2). As before we
identify T with the set of real places of k which ramify (become complex)
in K.

Let CK and Ck denote the ideal class groups (fractional ideals modulo
principal ideals) of K and k. Let C+

k (T ) be the restricted class group of k
at the places T ; that is, the group of fractional ideals in k modulo principal
ideals (α) such that signτ (α) = 1 for all τ ∈ T .

The Artin map. Let A : C+
k (T ) → Gal(K/k) be the Artin homomorphism

of global class field theory. Identifying Gal(K/k) with the multiplicative
group 〈±1〉, the value of the Artin homomorphism on the prime ideals p

generating C+
k (T ) is given by:

A(p) =

{
+1 if p splits in K/k, and

−1 if p is inert in K/k.

(These are the only possibilities, since K/k is unramified at p.) On a prin-
cipal ideal (α) = α · Ok, the Artin map assumes the value

A((α)) =
∏

τ∈T

signτ (α). (5.1)

Norms of ideals. The norm map from fractional ideals in K to those in k
is defined by

N(L) = NK
k (L) = (L · L) ∩ k.

Given a principal ideal (β) in K, we have N((β)) = (N(β)), and signτ (N(β)) =
1 for all τ ∈ T . Thus the norm map descends to a group homomorphism

N : CK → C+
k (T ).

As a consequence of basic results in global class field theory, we have:

Proposition 5.1 Let K/k be an abelian extension of number fields, un-
ramified outside the (real) places in T . Then the sequence of finite abelian
groups

CK
N−→ C+

k (T )
A−→ Gal(K/k) −→ 0

is exact.

Proof. By [Ta, Theorem 5.1] we have an exact sequence of abelian groups,

IK/K∗ N−→ Ik/k
∗ A−→ Gal(K/k) −→ 0,
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where IK and Ik are the idèles of K and k. Since K/k is ramified only at
T , the subgroup

∏

v∈T

(k∗
v)+ ×

∏

v|∞,v #∈T

k∗
v ×

∏

p

O∗
k,p ⊂ Ik

is in the kernel of the Artin homomorphism, and thus A descends to the quo-
tient group C+

k (T ) of Ik/k∗. Similarly, the induced norm map N : IK/K∗ →
C+

k (T ) descends to the quotient CK of IK/K∗.

Proof of Theorem 1.3. Let F ∈ SOp,q(R) be an orthogonal transfor-
mation with irreducible, unramified characteristic polynomial S(x) ∈ Z[x].
Assume p ≡ q mod8. Then S(x) is a monic, irreducible, unramified recip-
rocal polynomial, of even degree 2n = p + q, to which the discussion above
applies.

As above we let T denote the roots of the reciprocal polynomial R(x) in
(−2, 2). Since S(x) is unramified, the associated quadratic extension K/k
is unramified at all finite primes; it is only ramified at the infinite places in
T . We now distinguish two cases.

Case 1. Assume T = ∅. (In this case the signature (p, q) is (n, n) by (2.1).)
By a result of Hecke [Wl, Theorem 13, p.291], the class [O∨

k ] is equal to
a square in Ck. That is, there is a fractional ideal J ⊂ k and a ξ ∈ k such
that J2 · (ξ) = O∨

k .
Let L = OK · J . Then L ⊂ K is a fractional ideal whose norm satisfies

N(L) · (ξ) = J2 · (ξ) = O∨
k .

Since K/k is unramified at all finite places, this equation implies

L · L · (ξ) = OK · O∨
k = O∨

K .

Define f : L → L by f(α) = xα. Then Theorem 4.1 provides an f -
invariant inner product making L into an even, unimodular lattice (of sig-
nature (n, n)).

By construction, the orthogonal transformations f and F share the same
characteristic polynomial, S(x). Moreover the sign invariants εF and εf
trivially agree, since T = ∅. Therefore, by Theorem 2.4, there is an isometry

I : L ⊗Q R → Rp+q

conjugating f to F . Then F leaves invariant the even unimodular lattice
I(L) ⊂ Rp+q, completing the proof in the case T = ∅.
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Case 2. Now assume T *= ∅. Recall that |T | = n− s is even by Proposition
3.3. Within the group 〈±1〉T of all possible sign maps ε : T → 〈±1〉, let

G = {ε :
∏

T

ε(τ) = A(O∨
k )}, and

H = {ε :
∏

T

ε(τ) = (−1)|T |/2}.

Clearly |G| = |H| = 2|T |−1 (since T *= ∅).
Let h ∈ SOu,v(R) be an orthogonal transformation with characteristic

polynomial S(x). From equation (2.1), which relates the signature (u, v) of
h to its sign invariant, we readily conclude that u ≡ v mod8 iff εh ∈ H. In
particular, we have εF ∈ H.

Now consider ε ∈ G. By density of k in k⊗QR, we can find an element ξ ∈
k∗ such that signτ (ξ) = ε(τ) for all τ ∈ T . By (5.1), we have A(O∨

k ·ξ−1) = 1.
The exact sequence of Proposition 5.1 then implies that, after modifying ξ
without changing the values of signτ (ξ), τ ∈ T , we can find a fractional ideal
L ⊂ K such that

N(L) · ξ = O∨
k .

Define f : L → L by f(α) = xα. As in Case 1, Theorem 4.1 provides an
f -invariant inner product making L into an even, unimodular lattice. By
Theorem 4.2, the sign invariant of f is given by:

εf (τ) = signτ (ξ) = ε(τ).

Since the signature (u, v) of L satisfies u ≡ v mod8 (by basic results on
unimodular lattices [Ser, §5]), we have ε = εf ∈ H for every ε ∈ G.

But |G| = |H|, so in fact G = H. Therefore we can choose ξ and L such
that εf = εF . Theorem 2.4 then provides an isometry I conjugating f to F ,
and therefore F preserves the even unimodular lattice I(L) ⊂ Rp+q.

Remark. As a by-product of the proof we have shown that A(O∨
k ) =

(−1)|T |/2.

Proof of Theorem 1.2. By Corollary 2.3, under the stated conditions on
(p, q) and s there is an F ∈ SOp,q(R) with characteristic polynomial S(x).
By Theorem 1.3, just proved, there is an indefinite even unimodular lattice
L ⊂ Rp+q, invariant under F . Since L is determined up to isomorphism
by its signature, we can regard S(x) as the characteristic polynomial of an
automorphism of IIp,q.
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Remark: reducible polynomials. We have restricted our attention to
the problem of realizing irreducible polynomials via automorphisms of IIp,q.
The same local and global conditions are not sufficient in the reducible case,
as the following example shows.

Proposition 5.2 There is a monic unramified reciprocal polynomial S(x) ∈
Z[x] of degree 10, with 2s = 2 roots off the unit circle, that does not arise
as the characteristic polynomial of any F ∈ SO(II9,1).

Proof. Consider the product of a degree 4 cyclotomic polynomial and a
degree 6 Salem polynomial given by

S(x) = C(x)D(x) = (x4 − x2 + 1) · (x6 − 3x5 − x4 + 5x3 − x2 − 3x + 1).

Clearly S(x) is monic, reciprocal and unramified, with 2 roots off the unit
circle. This polynomial is chosen so that C and D are relatively prime over
Z; that is, so there exist A,B ∈ Z[x] such that AC + BD = 1.

Now assume F ∈ SO(II9,1) has characteristic polynomial S(x). Then
there is an F -invariant splitting of II9,1 into an orthogonal sum of even
unimodular lattices,

II9,1 = LC ⊕ LD,

corresponding to the factorization of F . (Take LC to be the image of II9,1

under the endomorphism B(F ) ◦ D(F ), and let LD be the image under
A(F ) ◦ C(F ).) The lattices LC and LD have ranks 4 and 6 respectively, so
their signatures must be (2, 2) and (3, 3) by the condition p ≡ q mod8. But
then LC ⊕ LD has signature (5, 5) *= (9, 1). So no such F exists.

6 The spinor norm

This section establishes an arithmetic constraint on the characteristic poly-
nomials of lattice automorphisms.

Theorem 6.1 Let F : L → L be an automorphism of an even, unimodular
lattice, with separable characteristic polynomial S(x) ∈ Z[x] of degree 2n.
Then the integers |S(−1)|, |S(1)| and (−1)nS(1)S(−1) are squares.

Spin. The proof is based on the relationship between the orthogonal group
and its spin double-cover, which we now recall.
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Let V be a finite-dimensional vector space over a field k, char(k) *= 2,
equipped with a non-degenerate inner product 〈v,w〉 ∈ k. Let q : V → k be
the quadratic form defined by 2q(v) = 〈v, v〉.

Consider the short exact sequence of algebraic groups over k,

1 → 〈±1〉 → Spin(V ) → SO(V ) → 1,

where SO(V ) is the special orthogonal group of (V, q), and Spin(V ) is its
double cover, constructed using the Clifford algebra of (V, q). Taking Galois
cohomology gives the long exact sequence

1 → 〈±1〉 → Spin(V, k) → SO(V, k)
δ−→ H1(k, 〈±1〉) ∼= k∗/(k∗)2. (6.1)

The connecting homomorphism

δ : SO(V, k) → k∗/(k∗)2

is the spinor norm; it measures the obstruction to lifting an element F ∈
SO(V, k) to Spin(V, k). More precisely, if δ(F ) ≡ amod(k∗)2, then F lifts to
an element F̃ ∈ Spin(V,K) defined over the quadratic extension K = k[

√
a].

The spinor norm δ(F ) can be computed as follows (see [Art, Ch.5].)
Write F as a product of reflections ρ(vi) through the normal hyperplanes of
vectors vi ∈ V . Then

δ(F ) ≡
∏

q(vi)

as a class in k∗/(k∗)2.

Theorem 6.2 Let F : V → V be an automorphism of a finite-dimensional
orthogonal space over Q, preserving an even, unimodular lattice L ⊂ V .
Then its spinor norm satisfies δ(F ) ≡ ±1mod(Q∗)2.

Proof. Over Z we have an exact sequence in flat cohomology, analogous to
(6.1), of the form

1 → 〈±1〉 → Spin(L, Z) → SO(L, Z)
∆−→ Z∗/(Z∗)2 = 〈±1〉,

by [Kn, III.3.2.5 and IV.6.2.6] (using the fact that Pic(Z) = 1). Here ∆ is
a refinement of the spinor norm over Q; it satisfies ∆(F ) ≡ δ(F )mod(Q∗)2.
Therefore δ(f) ≡ ±1.
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Proof of Theorem 6.1. Let F : L → L be an automorphism of an even,
unimodular lattice of rank 2n, with separable, reciprocal characteristic poly-
nomial S(x). Since δ(F ) = ±1, there is always a lift F̃ of F to Spin(V,K)
where K = Q[

√
−1]. Let t± denote the traces of F̃ on the two half-spin rep-

resentations W± of Spin(V,K). By [FH, pp. 378–379] these traces satisfy

S(−1) = (t− + t+)2,

(−1)nS(+1) = (t− − t+)2.

Since we have t± ∈ Q[
√
−1] and S(±1) ∈ Z, the integers |S(±1)| are squares.

Finally, by Proposition A.3 of the Appendix, the integer (−1)nS(−1)S(1)
represents the discriminant of L in Q∗/(Q∗)2. Since L is unimodular of
signature (p, q), we have

disc(L) = (−1)n det(L) = (−1)n(+1)p(−1)q.

But L is also even, so p ≡ q mod8, and thus q ≡ n mod4. Therefore
disc(L) = 1, and thus (−1)nS(−1)S(1) is also square.

7 Salem polynomials

This section gives a construction of infinitely many unramified Salem poly-
nomials, proving Theorem 1.6.

Cyclotomic polynomials. The cyclotomic polynomial Φd(x) ∈ Z[x] is the
monic polynomial vanishing at the primitive dth roots of unity. For d ≥ 3,
Φd(x) is a reciprocal polynomial of even degree 2n = φ(d). We begin by
characterizing the unramified cyclotomic polynomials.

Theorem 7.1 For any d ≥ 3 we have

(Φd(−1),Φd(+1)) =






(2, 2) if d = 2e, some e > 0;

(1, p) if d = pe, p an odd prime;

(p, 1) if d = 2pe, p an odd prime; and

(1, 1) otherwise.

Proof. Cyclotomic polynomials obey the recursion formula:

Φd(x) =
1 + x + · · · + xd−1

∏
{Φe(x) : e|d and 1 < e < d}·

Thus Φd(1) = d/
∏
Φe(1). From this expression the values of Φd(1) are

easily determined by induction. The proof for Φd(−1) is similar.
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Corollary 7.2 The cyclotomic polynomial Φd(x) is unramified unless d =
pe or 2pe for some prime p.

Cyclotomic trace polynomials. The associated cyclotomic trace poly-
nomial Rd(x) of degree φ(d)/2 vanishes at the points x = 2cos(2πk/d),
(k, d) = 1. Its zeros are the traces of matrices in SO(2, R) of order d. The
first few cyclotomic trace polynomials are given by

R3(x) = x + 1,

R4(x) = x,

R5(x) = x2 + x − 1,

R6(x) = x − 1,

R7(x) = x3 + x2 − 2x − 1.

Among irreducible monic polynomials in Z[x], the cyclotomic trace polyno-
mials are exactly those with all roots in (−2, 2).

Salem numbers. A Salem polynomial S(x) ∈ Z[x] is a monic, irreducible
reciprocal polynomial with exactly two roots outside the unit circle, both
positive real numbers. The unique root λ > 1 is a Salem number.

A Salem trace is an algebraic integer τ > 2 whose other conjugates all
lie in the interval [−2, 2]; its minimal polynomial R(x) is a Salem trace
polynomial. Salem traces and Salem numbers correspond bijectively, via the
relation τ = λ+ λ−1, and R(x) is the trace polynomial of S(x).

Recall that a Salem polynomial of degree 2n is unramified if |S(±1)| = 1;
equivalently, if |R(±2)| = 1. This condition implies n is odd and R(±2) =
−1 (see Proposition 3.3). Conversely, whenever n is odd, Salem polynomials
of degree 2n can be constructed using the following result.

Theorem 7.3 Let C(x) ∈ Z[x] be a monic separable polynomial of even
degree n − 3, with all roots in (−2, 2). Then for all a ∈ Z sufficiently large,

R(x) = C(x)(x2 − 4)(x − a) − 1

is an unramified Salem trace polynomial of degree n, and hence

S(x) = xnR(x + x−1)

is an unramified Salem polynomial of degree 2n.

Note that C(x) must be a product of cyclotomic trace polynomials.
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Figure 1. The graphs of y = C(x)(x2 − 4) and y = 1/(x − a).

Proof. Clearly n = deg R(x). We first show R(x) has n−1 roots in (−2, 2).
Indeed, for a + 0, the roots in (−2, 2) are the solutions to the equation

C(x)(x2 − 4) =
1

x − a
≈ −1

a
< 0.

Inspecting the graphs of these functions, we see they cross at n − 1 points
in (−2, 2), near the n − 1 roots of D(x) = C(x)(x2 − 4) (see Figure 1).
More precisely, the condition that C(x) has even degree implies D′(−2) < 0
and D′(2) > 0, so the zeros of D(x) at the endpoints of [−2, 2] give rise
to zeros of R(x) inside (−2, 2). The other roots of D(x) are simple and lie
strictly inside of (−2, 2), so they also give rise to roots of R(x) in (−2, 2),
by transversality.

Thus R(x) has n − 1 roots in (−2, 2), and the remaining root lies near
x = a + 0. By construction R(±2) = −1, so R(x) is unramified. To
complete the proof we need only check that R(x) is irreducible.

If R(x) is reducible, then one of its irreducible factors P (x) has all its
roots in (−2, 2), and hence is a cyclotomic trace polynomial. The set of such
polynomials of given degree is finite. As a → ∞, the roots of R(x) in (−2, 2)
converge to those of D(x), so eventually P (x) would have to divide C(x).
But R(x) = 1 at the zeros of C(x), so no factor of C(x) can be a factor of
R(x). Thus R(x) is irreducible for all a sufficiently large.

It follows that S(x) = xnR(x + x−1) is also irreducible, and hence S(x)
is an unramified Salem polynomial.
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Remark: double roots. It is not hard to see that Theorem 7.3 continues
to hold if C(x) is allowed to have one or more double roots, so long as
C ′′(x) > 0 at each such root.

Examples.

1. Let C(x) = 1. Then R(x) = (x2−4)(x−a)−1 is an unramified Salem
trace polynomial for all a ≥ 0. The corresponding Salem polynomials
are given by:

S(x) = x6 − ax5 − x4 + (2a − 1)x3 − x2 − ax + 1, a ≥ 0.

These are the only unramified Salem polynomials of degree 6. The
case a = 0 corresponds to λ ≈ 1.40127, the smallest Salem number
of degree 6. By Theorem 1.2, these Salem polynomials all arise as
characteristic polynomials of automorphisms F ∈ SO(II3,3).

2. Let C(x) = (x + 1)2. Then R(x) = C(x)(x2 − 4)(x − a) − 1 is an
unramified Salem trace polynomial for all a ≥ 1. The case a = 1
corresponds to the smallest known Salem number, λ ≈ 1.17628, a root
of Lehmer’s polynomial (1.1). The corresponding degree 10 Salem
polynomials S(x) can be realized by automorphisms of II9,1 and by
automorphisms of II5,5.

In fact, the six smallest known Salem numbers (which can be found in
[B]) are all unramified, and the corresponding Salem trace polynomials
all arise as special cases of Theorem 7.3.

3. Let C(x) = R17(x), where

R17(x) = 1 − 4x − 10x2 + 10x3 + 15x4 − 6x5 − 7x6 + x7 + x8

is the cyclotomic trace polynomial for the 17th roots of unity. Then
R(x) = C(x)(x2−4)(x−a)−1 is an unramified Salem trace polynomial
for all a ≥ 31. The corresponding Salem polynomials have degree 22
and arise from K3 surface automorphisms, according to Theorem 1.7.

Proof of Theorem 1.6. Let n ≥ 3 be an odd integer. We will show there
exist infinitely many unramified Salem polynomials of degree 2n.

Writing n − 3 in base 2, we obtain exponents 1 ≤ k1 < k2 < · · · < kn

such that n−3 =
∑n

1 2ki . Let Rd(x) denote the cyclotomic trace polynomial
for the primitive d roots of unity, let di = 2ki+2 and let

C(x) = Rd1
(x)Rd2

(x) · · ·Rdn
(x).

21



(If n = 3 we take C(x) = 1.)
Noting that deg R2k = 2k−2, we find deg C(x) = n − 3. Since the roots

of Rd(x) lie in (−2, 2), the same is true of the roots of C(x). Moreover
the roots of C(x) are simple since the di are distinct. Thus Theorem 7.3
provides infinitely many unramified Salem trace polynomials R(x) of degree
n, and hence infinitely many unramified Salem polynomials of degree 2n.

8 K3 surfaces

In this section we prove Theorem 1.7, showing in particular that every un-
ramified degree 22 Salem polynomial arises as the characteristic polynomial
of f∗|H2(X) for an automorphism f : X → X of a complex K3 surface X.

The pair (X, f) is synthesized from a lattice automorphism (L,F ).

Theorem 8.1 Let F : L → L be an automorphism of an even, unimod-
ular lattice of signature (3, 19). Suppose S(x) = det(xI − F ) is a Salem
polynomial. Then there is:

• A K3 surface automorphism f : X → X, and

• An isomorphism of lattices ι : L → H2(X, Z), making the diagram

L
F−−−−→ L

ι

1 ι

1

H2(X, Z)
f∗

−−−−→ H2(X, Z)

commute.

See [Mc, Theorem 3.4]; the proof is based on the Torelli theorem and sur-
jectivity of the period mapping.

Proof of Theorem 1.7. By Theorem 2.2, there is an F ∈ SO3,19(R) with
characteristic polynomial S(x) such that for τ = δ+δ, the sum of eigenspaces

Eτ = Vδ ⊕ Vδ ⊂ C3+19

has signature (2, 0). By Theorem 1.3 there is an even, unimodular lattice
L ⊂ R3+19 preserved by F . Applying Theorem 8.1 above, we obtain a K3
surface automorphism f with S(x) = det(xI − f∗|H2(X)), compatible with
an isomorphism ι : L → H2(X, Z).
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Since
Q = H2,0(X) ⊕ H0,2(X) ⊂ H2(X, C)

is the unique f∗-invariant subspace defined over R with signature (2, 0), the
map ι ⊗ C : L ⊗ C → H2(X, C) sends Eτ to Q. Thus f∗ acts on H2,0(X)
by multiplication by δ or δ. In the latter case, we can replace X and f with
their complex conjugates to change δ to δ.

Proof of Corollary 1.8. Let S(x) be an unramified degree 22 Salem
number of trace t. We must show t ≥ −2.

Let f : X → X be a K3 surface automorphism with characteristic poly-
nomial S(x), furnished by the preceding result. Then the Lefschetz number
of f is given by

L(f) = Tr
(
f∗|H0(X) ⊕ H2(X) ⊕ H4(X)

)
= 2 + t.

Since S(x) irreducible, f∗|H2(X, Q) is also irreducible and thus

Pic(X) = H1,1(X) ∩ H2(X, Z) = (0).

Every K3 surface is Kähler, so the vanishing of Pic(X) implies the only
proper subvarieties of X are finite sets of points. In particular, the fixed-
points of f are isolated, so their total number (counted with multiplicity)
is L(f). Since f is holomorphic, every fixed-point has positive multiplicity,
and thus 2 + t ≥ 0.

A Appendix: Orthogonal automorphisms over a

general field

Let k0 be any field with char(k0) *= 2. This Appendix reviews the classi-
fication of automorphisms of even-dimensional orthogonal spaces over k0,
extending the results over R given in §2.

An orthogonal space V of dimension 2n over k0 is a vector space equipped
with a non-degenerate inner product 〈v,w〉 ∈ k0. Let SO(V ) denote the
group of k0-linear maps T : V → V with det(T ) = 1 preserving the inner
product. As in the real case, we have:

Proposition A.1 The characteristic polynomial S(x) = det(xI − F ) ∈
k0[x] of any F ∈ SO(V ) is a reciprocal polynomial.
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Proof. The polynomial S(x) =
∑

aixi is reciprocal if and only if ai = a2n−i

for all i. To see this identity, note that

a2n−i = (−1)i Tr(∧iF ).

The bilinear form on V gives rise to a natural isomorphism between the
representations ∧iV and ∧2n−iV of SO(V ), and thus ai = a2n−i.

Equivalent automorphisms. Our goal is to classify pairs (V, F ) of or-
thogonal spaces equipped with automorphisms F ∈ SO(V ).

Let us say (V, F ) and (V ′, F ′) are equivalent if there is an isometry I :
V → V ′ (a k0-linear isomorphism preserving the inner product) such that
the diagram

V
F−−−−→ V

I

1 I

1

V ′ F ′

−−−−→ V ′

commutes. Equivalent pairs have the same characteristic polynomial.

Separable polynomials. A monic degree d polynomial P (x) ∈ k0[x] is
separable if it has d distinct roots in the algebraic closure k0 of k0. For such
a polynomial, the algebra A = k0[x]/P (x) is a product of finite separable
field extensions A1 × · · ·×Am of k0, one for each irreducible factor of P (x).
The trace map TrAk0

: A → k0 agrees with the sum of the trace maps for
each factor Ai/k0.

A key property of the algebra A, which we will use below, is that the
trace form is non-degenerate; that is, we have an isomorphism

A ∼= Homk0
(A, k0) by α '→ ψα(β) = TrA

k0
(αβ).

This follows from the corresponding fact for the separable extensions Ai/k0.

Classification. In this section we assume:

• S(x) ∈ k0[x] is a monic, separable reciprocal polynomial of degree 2n.

As usual we can associate to S(x) its degree n trace polynomial R(x), sat-
isfying S(x) = xnR(x + x−1); it is also separable.

Let K/k be the corresponding extension of algebras, where K = k0[x]/S(x),
k = k0[y]/R(y) and y = x+x−1. As remarked above, K and k are products
of separable field extensions of k0.
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The ‘Galois group’ of K/k is generated by the automorphism satisfying
ι(x) = x−1, and for α ∈ K we write α = ι(α). Let N = NK

k : K → k be the
norm map, given by

N(α) = αα.

Our main result determines the structure of the space

V(S) = {(V, F ) : F : V → V is an orthogonal automorphism over k0

with det(xI − F ) = S(x)}/(equivalence).

Theorem A.2 Given a monic separable reciprocal polynomial S(x) ∈ k0[x],
there is a natural bijection between V(S) and the 2-group

coker(N) = k∗/N(K∗).

For any (V, F ) in V(S), the centralizer Z(V, F ) of F in O(V ) is naturally
isomorphic to the abelian group

ker(N) = {λ ∈ K∗ : λλ = 1}.

Proof. Given ξ ∈ k∗, let Vξ = K equipped with the k0-valued inner product

〈α,β〉ξ = TrK
k0

(ξαβ).

Then we have (Vξ, f) ∈ V(S), where f : K → K is given by f(α) = xα.
If ξ,λ ∈ k∗ are related by ξ = λN(δ), δ ∈ K∗, then the map I : K → K

given by I(α) = δα is an isometry between (Vξ, f) and (Vλ, f). Thus we
obtain a well-defined map

φ : k∗/N(K∗) → V(S),

given by φ(ξ) = (Vξ, f).
Conversely, suppose I : Vξ → Vλ is an isometry giving an equivalence

between (Vξ, f) and (Vλ, f). Then I is k0-linear; moreover, I(xα) = xI(α),
and thus I is K-linear. That is, upon identifying Vξ and Vλ with K, there
exists a δ ∈ K∗ such that I(α) = δα. Therefore we have:

TrK
k0

(ξαβ) = TrK
k0

(λδδαβ)

for all α,β ∈ K. Since the trace form establishes an isomorphism between
K and Homk0

(K,k0), we conclude that ξ = λN(δ). Thus φ is injective.
We now show φ is surjective. Given (V, F ) ∈ V(S), we can make V into

a 1-dimensional vector space over K = k0[x]/S(x) by setting α(x) · v =
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α(F )(v). Choosing a basis, we obtain an identification between V and K
such that F (α) = xα. Under this identification, there is a unique element
ξ ∈ K∗ such that

〈1,β〉V = TrK
k0

(ξβ)

for all β ∈ K. (Here again we use the fact that the trace form identifies K
with Homk0

(K,k0).) Since the inner product on V is F -invariant, we have

〈xi,β〉V = 〈1, x−iβ〉V = TrK
k0

(ξxiβ)

for all i, and thus
〈α,β〉V = TrK

k0
(ξαβ) = 〈α,β〉ξ

for all α,β ∈ K. Moreover we have ξ ∈ k because 〈α,β〉V = 〈β,α〉V ,
and ξ ∈ k∗ because the inner product is non-degenerate. Thus (V, F ) is
equivalent to (Vξ, f), ξ ∈ k∗, and therefore φ is surjective.

Finally we observe that for (V, F ) ∼= (Vξ, f), the centralizer of (V, F ) in
GL(V ) can be identified with K∗, and thus the centralizer of (V, F ) in O(V )
can be identified with the elements λ ∈ K∗ such that

〈λα,λβ〉ξ = 〈α,λλβ〉ξ = 〈α,β〉ξ

for all α,β ∈ K. But this condition holds iff λλ = 1, and thus Z(V, F ) is
isomorphic to the kernel of the norm map N : K∗ → k∗.

Real polynomials. As an example, suppose k0 = R. Then in R[x] the
trace polynomial R(x) factors as a product of r linear and c irreducible
quadratic polynomials, where r + 2c = n. Let r = t + u where t is the
number of roots of R(x) in the interval (−2, 2). Then we have

k ∼= Rt ⊕ Ru ⊕ Cc and K ∼= Ct ⊕ R2u ⊕ C2c.

Therefore k∗/N(K∗) = (R∗)t/N(C∗)t = 〈±1〉t. This group parameterizes
the possible sign invariants εF introduced in §2.
The discriminant. We conclude by showing that the discriminant of the
quadratic space V/k0 is determined by the characteristic polynomial of F .

The determinant of a non-degenerate orthogonal space V over k0 is de-
fined by choosing a basis (v1, . . . , vn) for V and setting

det(V ) ≡ det(〈vi, vj〉) in k∗
0/(k

∗
0)2.

If V has dimension 2n, we define its discriminant by

disc(V ) ≡ (−1)n det(V )
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as a class in k∗
0/(k

∗
0)2. The sign is chosen so that the discriminant of a split

orthogonal space of dimension 2n (i.e., one with an isotropic subspace of
dimension n) is a square in k∗

0.

Proposition A.3 Let F ∈ SO(V ) be an orthogonal transformation with
separable, reciprocal, characteristic polynomial S(x) of degree 2n. Then the
discriminant of V is given by

disc(V ) = (−1)nS(1)S(−1)

as a class in k∗
0/(k

∗
0)

2.

Proof. We have seen that (V, F ) is equivalent to (Vξ, f) for some ξ ∈ k∗,
where Vξ = K with inner product 〈α,β〉ξ = TrK

k0
(ξαβ), and f(α) = xα.

As an orthogonal space over k0, the space Vξ is a direct sum of two
n-dimensional subspaces:

Vξ = K = k ⊕ k⊥ = k ⊕ k · (x − x−1).

Here k and k⊥ are the +1 and −1 eigenspaces of the Galois automorphism
of K/k, which acts by isometry. Therefore

det(Vξ) = det(k) det(k⊥) = det(k)2 · NK
k0

(x − x−1) ≡ NK
k0

(x − x−1)

modulo (k∗
0)

2. But the norm of x is 1, so we have

NK
k0

(x − x−1) = N(x2 − 1) = N(x − 1)N(x + 1) = S(−1)S(1).

Taking into account the sign convention, we obtain disc(V ) = disc(Vξ) =
(−1)nS(−1)S(1).

Notes. Many of the results reviewed above are also discussed in [Mil].
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