Cyclotomic Factors of Coxeter Polynomials

Citation

Gross, Benedict H., Eriko Hironaka, and Curtis T. McMullen. 2009. Cyclotomic factors of coxeter polynomials. Journal of Number Theory 129(5): 1034-1043.

Published Version

doi:10.1016/j.jnt.2008.09.021

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:3446011

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use\#OAP

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story.

Accessibility

Cyclotomic factors of Coxeter polynomials

Benedict H. Gross, Eriko Hironaka and Curtis T. McMullen*

9 September, 2008

Abstract

In this paper we show that the cyclotomic factors of the E_{n} Coxeter polynomials depend only on the value of $n \bmod 360$, and come exclusively from spherical subdiagrams.

Contents

1 Introduction . 1
2 Roots of unity . 4
3 Joins . 7
4 Decorating A_{n}. 9

1 Introduction

In this paper we determine which roots of unity are zeros of the E_{n} Coxeter polynomial. We show these roots come exclusively from splittings of E_{n} into spherical subdiagrams; in particular they always have order $2,3,5,8,12,18$, or 30 , and they only depend on the value of $n \bmod 360$ (provided we exclude the special case $n=9$).

The proof uses Mann's theorem on linear relations between roots of unity, and generalizes to other sequences of Coxeter diagrams where nodes are added to a separating edge.

Figure 1. The E_{n} diagram.

The $\boldsymbol{E}_{\boldsymbol{n}}$ diagram. Coxeter systems are a useful source of Salem numbers, Pisot numbers and other interesting algebraic integers. For example, the smallest known Salem number arises from the Coxeter system E_{10}.

[^0]The E_{n} Coxeter diagram, defined for $n \geq 3$, is shown in Figure 1. Note that $E_{3} \cong A_{2} \oplus A_{1}$. The E_{n} diagram determines a quadratic form B_{n} on \mathbb{Z}^{n}, and a reflection group $W_{n} \subset O\left(\mathbb{Z}^{n}, B_{n}\right)$ (see $\S 3$). The product of the generating reflections is a Coxeter element $w_{n} \in W_{n}$; it is well-defined up to conjugacy, since E_{n} is a tree [Hum, $\left.\S 8.4\right]$.

The Coxeter number h_{n} is the order of the Coxeter element $w_{n} \in W_{n}$, and its characteristic polynomial

$$
E_{n}(x)=\operatorname{det}\left(x I-w_{n}\right)
$$

is the Coxeter polynomial. Explicitly, for $n \geq 3$ we have:

$$
E_{n}(x)=\frac{x^{n-2} Q(x)+R(x)}{(x-1)}
$$

where $Q(x)=x^{3}-x-1$ and $R(x)=x^{3}+x^{2}-1$. (See e.g. [MRS, Lemma 5], [Hir2, §4.2] or Corollary 4.3 below.)

We can write $E_{n}(x)$ uniquely as a product of monic integral polynomials

$$
E_{n}(x)=C_{n}(x) S_{n}(x),
$$

where the zeros of the cyclotomic factor $C_{n}(x)$ are roots of unity, and those of the Salem factor $S_{n}(x)$ are not. Table 2 lists $E_{n}(x)$ for $n \leq 10$, along with its factorization into irreducibles and the Coxeter number h_{n}. Here $\Phi_{k}(x)$ is the cyclotomic polynomial for the primitive k th roots of unity.
The spherical and affine cases. Since E_{i} is a spherical diagram (B_{i} is positive definite) when $3 \leq i \leq 8$, we have $E_{i}(x)=C_{i}(x)$ (and $\left.S_{i}(x)=1\right)$ in this range.

The diagram E_{9} is the affine version of E_{8}; its Coxeter element has infinite order, but still $E_{9}(x)=C_{9}(x)$. This is the only case where $E_{n}(x)$ has a multiple root (see Lemma 2.4 below).
The hyperbolic case. For $n \geq 10$, the diagram E_{n} is hyperbolic; that is, the signature of B_{n} is $(n-1,1)$. By [A'C] this implies that the factor $S_{n}(x)$ is a Salem polynomial: it is an irreducible, reciprocal polynomial, with a unique root $\lambda>1$ outside the unit disk. For $n=10, E_{n}(x)$ coincides with Lehmer's polynomial, and its root $\lambda \approx 1.1762808>1$ is the smallest known Salem number.

We can now state our main result on the Coxeter polynomials $E_{n}(x)$.
Theorem 1.1 For all $n \neq 9$:

1. The cyclotomic factor $C_{n}(x)$ is the least common multiple of the polynomials $\Phi_{2}(x), \Phi_{3}(x)$ and $E_{i}(x), 3 \leq i \leq 8$, that divide $E_{n}(x)$;
2. $E_{n}(x)$ is divisible by $E_{i}(x), 3 \leq i \leq 8$, iff $n \equiv i \bmod h_{i}$; and
3. $E_{n}(x)$ is divisible by $\Phi_{2}(x)$ iff $n=1 \bmod 2$, and by $\Phi_{3}(x)$ iff $n=0 \bmod 3$.

Corollary 1.2 The cyclotomic factor $C_{n}(x)$ only depends on $n \bmod 360$.

Corollary 1.3 The Salem factor $S_{n}(x)$ satisfies $n-15 \leq \operatorname{deg}\left(S_{n}\right) \leq n$.
The value $n-15$ is first attained when $n=349$.
Corollary 1.4 For $n \geq 10$, the polynomial $E_{n}(x)$ is irreducible (and hence $\left.E_{n}(x)=S_{n}(x)\right)$ iff $n \equiv 2,10,16,20,22,26$ or $28 \bmod 30$.

n	h_{n}	Coxeter polynomial E_{n}	Factorization
3	6	$1+2 x+2 x^{2}+x^{3}$	$\Phi_{2}(x) \Phi_{3}(x)$
4	5	$1+x+x^{2}+x^{3}+x^{4}$	$\Phi_{5}(x)$
5	8	$1+x+x^{4}+x^{5}$	$\Phi_{2}(x) \Phi_{8}(x)$
6	12	$1+x-x^{3}+x^{5}+x^{6}$	$\Phi_{3}(x) \Phi_{12}(x)$
7	18	$1+x-x^{3}-x^{4}+x^{6}+x^{7}$	$\Phi_{2}(x) \Phi_{18}(x)$
8	30	$1+x-x^{3}-x^{4}-x^{5}+x^{7}+x^{8}$	$\Phi_{30}(x)$
9	∞	$1+x-x^{3}-x^{4}-x^{5}-x^{6}+x^{8}+x^{9}$	$\Phi_{1}(x)^{2} \Phi_{2}(x) \Phi_{3}(x) \Phi_{5}(x)$
10	∞	$1+x-x^{3}-x^{4}-x^{5}-x^{6}-x^{7}+x^{9}+x^{10}$	$S_{10}(x)$

Table 2. Coxeter polynomials for small n.

Figure 3. The A_{n} diagram.

Joins of diagrams and periodicity. This behavior of E_{n} can be understood as a consequence of two general phenomena.

For the first, recall that the A_{n} diagram (Figure 3) has Coxeter polynomial

$$
A_{n}(x)=\frac{x^{n+1}-1}{x-1}=1+x+\cdots+x^{n}
$$

In $\S 3$ we will show:
Theorem 1.5 Let F be the Coxeter diagram obtained by joining together diagrams F_{1}, \ldots, F_{n} at a single new vertex t. Then any zero of two or more of the Coxeter polynomials $F_{i}(x)$ is also a zero of $F(x)$.

Noting that E_{n} is a join of E_{i} and A_{n-i-1}, we obtain:
Corollary 1.6 $E_{n}(x)$ is divisible by $\operatorname{gcd}\left(E_{i}(x), A_{n-i-1}(x)\right)$ for $3 \leq i<n-1$.

This result explains why the spherical Coxeter polynomials $E_{i}(x), 3 \leq i \leq 8$, occur as factors of $E_{n}(x)$. For example, E_{38} is the join of E_{8} and A_{29}. The zeros of $A_{29}(x)$ are the 30 th roots of unity (save $\zeta=1$); thus they include the zeros of $E_{8}(x)$, and consequently $E_{8}(x)$ divides $E_{38}(x)$. It also explains the occurrence of the cyclotomic factors Φ_{2}, Φ_{3} and their product; these can occur as $\operatorname{gcd}\left(E_{3}, A_{n-4}\right)$, depending on the value of $n \bmod 6$.

The second phenomenon underlying the behavior of E_{n} is the following periodicity result, proved in $\S 4$.

Theorem 1.7 Let F_{n} be a sequence of Coxeter diagrams obtained by adjoining two fixed diagrams to the ends of A_{n}. Assume $F_{n}(x) \in \mathbb{Z}[x]$. Then either
(i) The cyclotomic factor of $F_{n}(x)$ is periodic for all $n \gg 0$, or
(ii) The diagram F_{n} is spherical or affine for all n.

In case (ii), F_{n} (if connected) must be a re-indexing of one of the well-known spherical or affine series $A_{n}, B_{n}, D_{n}, \widetilde{B_{n}}, \widetilde{C_{n}}$ or $\widetilde{D_{n}}$.

This result, made effective, reduces Theorem 1.1 to a finite computation.
It would be interesting to find a general condition to insure that the cyclotomic factors of $F_{n}(x)$ come exclusively from its spherical subdiagrams, as is the case for $E_{n}(x)$.
Notes and references. For background on Coxeter systems, see e.g. [Bou] and [Hum]. More on the relationship between Coxeter systems, Salem numbers and Pisot numbers can be found in [Mc], [MRS], [Hir1] and [MS]. A version of Theorem 1.1 was proved independently, and by different arguments, by Bedford and Kim [BK, Thm. 2.4].

2 Roots of unity

Let ζ_{k} denote the primitive k th root of unity $\exp (2 \pi i / k)$. In this section we formulate Mann's theorem, and use it to prove:

Theorem 2.1 Let $Q, R \in \mathbb{Z}[x]$ be polynomials, not both zero, such that

$$
\zeta_{k}^{n} Q\left(\zeta_{k}\right)+R\left(\zeta_{k}\right)=0
$$

for some $k \geq 1$ and $n \in \mathbb{Z}$. Then either $Q(x)= \pm x^{i} R(x)$ for some $i \in \mathbb{Z}$, or we have

$$
k \leq 2 s \max (\operatorname{deg} Q, \operatorname{deg} R)
$$

where s is the product of the primes $p \leq \ell(Q)+\ell(R)$.
Here $\ell(P)$ denotes the number of terms in the polynomial P (see below).
We then deduce Theorem 1.1 on the cyclotomic factor of $E_{n}(x)$.
Polar rational polygons. Let $\operatorname{Div}(\mathbb{C})$ denote the group of finite divisors on the complex plane. Any $D \in \operatorname{Div}(\mathbb{C})$ can be expressed as $D=\sum_{I} a_{i} \cdot z_{i}$ where each coefficient $a_{i} \in \mathbb{Z}$ is nonzero and $\operatorname{supp} D=\left\{z_{i}: i \in I\right\}$ is a set of distinct
points forming the support of D. There is a natural evaluation map $\operatorname{Div}(\mathbb{C}) \rightarrow \mathbb{C}$ defined by

$$
D \mapsto \sigma(D)=\sum a_{i} z_{i}
$$

We say D is effective if its coefficients are positive.
A polar rational polygon (prp) is an effective divisor $D=\sum a_{i} \cdot z_{i}$ such that each z_{i} is a root of unity and $\sigma(D)=0$. For each ordering of I, D determines an (immersed) polygon in the plane with vertices $v_{i}=\sum_{j<i} a_{j} z_{j}$; its angles are rational multiples of π, and its sides are of integral length.

The length of a prp is given by $\ell(D)=|\operatorname{supp} D|$. Its order is the cardinality $o(D)$ of the subgroup of \mathbb{C}^{*} generated by the roots of unity $\left\{z_{i} / z_{j}: i, j \in I\right\}$.

A prp is primitive if it cannot be expressed as a $\operatorname{sum} D=D^{\prime}+D^{\prime \prime}$ of two other nonzero prp's. Every prp is a sum of primitive prp's.

Figure 4. Three primitive polar rational polygons.

We can now state the main result of [Man]:
Theorem 2.2 (Mann) Let D be a primitive prp. Then the order $o(D)$ divides the product of the primes p less than or equal to the length $\ell(D)$.

Examples. The regular p-gons are primitive prp's whenever p is prime. The smallest primitive prp other than these has length 6 and order 15 ; it is given by

$$
D=\zeta_{5}+\zeta_{5}^{2}+\zeta_{5}^{3}+\zeta_{5}^{4}+\zeta_{6}+\zeta_{6}^{-1}
$$

The corresponding hexagon (for a suitable ordering of the terms in the prp), with sides of length one, is shown at the left in Figure 4. Two other primitive prp's, of length 7 and order 30, are shown in the center and at the right. Together with the regular p-gons for $p=3,5,7$, these are (up to rotation) all the primitive prp's of length <8 [Man].
Polynomials. Any polynomial $P(x) \in \mathbb{Z}[x]$ can be uniquely expressed in the form

$$
P(x)=\sum_{i \in I} \epsilon_{i} a_{i} x^{i}
$$

where $a_{i}>0$ and $\epsilon_{i}= \pm 1$. The length $\ell(P)=|I|$ is the number of terms in P.
Given $\zeta \in \mathbb{C}$, let $D P(\zeta)$ denote the effective divisor

$$
D P(\zeta)=\sum_{i \in I} a_{i} \cdot\left(\epsilon_{i} \zeta^{i}\right)
$$

If ζ is a root of unity and $P(\zeta)=0$, then $D P(\zeta)$ is a prp.
Proof of Theorem 2.1. Let $P(x)=x^{n} Q(x)+R(x)$. Then there are finite sums $Q(x)=\sum Q_{j}(x)$ and $R(x)=\sum R_{j}(x)$ such that

$$
D P\left(\zeta_{k}\right)=\sum_{j} D P_{j}\left(\zeta_{k}\right)=\sum_{j} \zeta_{k}^{n} D Q_{j}\left(\zeta_{k}\right)+D R_{j}\left(\zeta_{k}\right)
$$

gives a decomposition of $D P\left(\zeta_{k}\right)$ into primitive prps.
If $\ell\left(Q_{j}\right)>1$ for some j, then we have $o\left(D P_{j}\left(\zeta_{k}\right)\right) \geq k /(2 \operatorname{deg}(Q))$, since the ratio of any two roots of unity occurring in $D Q_{j}\left(\zeta_{k}\right)$ has the form $\pm \zeta_{k}^{e}$ with $1 \leq e \leq \operatorname{deg}(Q)$. By Mann's theorem, $o\left(D P_{j}\left(\zeta_{k}\right)\right)$ is bounded above by the product of the primes less than or equal to $\ell\left(P_{j}\right) \leq \ell(Q)+\ell(R)$, and so the desired upper bound for k follows. The same argument applies if $\ell\left(R_{j}\right)>1$ for some j.

Now assume $\ell\left(Q_{j}\right)=\ell\left(R_{j}\right)=1$ for all j, but the desired bound on k fails. Then $k>4 m$, where $m=\max (\operatorname{deg}(Q), \operatorname{deg}(R))$. Writing $Q_{j}(x)=a_{j} x^{e_{j}}$ and $R_{j}(x)=b_{j} x^{f_{j}}$, we have

$$
\zeta^{n} Q_{j}\left(\zeta_{k}\right)+R_{j}\left(\zeta_{k}\right)=a_{j} \zeta_{k}^{n+e_{j}}+b_{j} \zeta_{k}^{f_{j}}=0
$$

for all j. Consequently $\zeta_{k}^{f_{j}-e_{j}}= \pm \zeta_{k}^{n}$ for all j. This implies $f_{j}-e_{j}$ is constant $\bmod k$ or $\bmod (k / 2)$ (depending on the parity of k). But $k>4 m$ and $\left(f_{j}-e_{j}\right) \in$ $[-m, m]$, so the difference of exponents $i=f_{j}-e_{j}$ is also constant in \mathbb{Z}. We then have

$$
a_{j} \zeta_{k}^{n-i+f_{j}}+b_{j} \zeta_{k}^{f_{j}}=0
$$

for all j; thus $\epsilon=\zeta_{k}^{n-i}= \pm 1$ and $\epsilon a_{j}+b_{j}=0$, which gives $\epsilon x^{i} Q_{j}(x)+R_{j}(x)=0$ and hence $Q(x)= \pm x^{-i} R(x)$.

Application to $\boldsymbol{E}_{\boldsymbol{n}}$. Now recall that for $n \geq 3$ we have

$$
E_{n}(x)(x-1)=x^{n-2}\left(x^{3}-x-1\right)+\left(x^{3}+x^{2}-1\right)=x^{n-2} Q(x)+R(x)
$$

Since $\operatorname{deg}(Q)=\operatorname{deg}(R)=3$ and $\ell(Q)+\ell(R)=6$, the Theorem above implies:
Corollary 2.3 If $E_{n}\left(\zeta_{k}\right)=0$, then $k \leq 180$.
Lemma 2.4 The polynomial $E_{n}(x)$ is separable for all $n \neq 9$.
Proof. The only possible multiple roots of $E_{n}(x)$ are in its cyclotomic factor $C_{n}(x)$. But for $|x|=1$ we have

$$
\left|\left(E_{n}(x)(x-1)\right)^{\prime}\right|>(n-2)|Q(x)|-\left|Q^{\prime}(x)\right|-\left|R^{\prime}(x)\right|>0.3(n-2)-9
$$

so $E_{n}(x)$ is separable once $n \geq 32$. The remaining cases are easily checked individually.

Proof of Theorem 1.1. It is straightforward to verify that the Theorem is correct for $3 \leq n \leq 182$. Thus $E_{n}\left(\zeta_{k}\right)=0$ for some n in this range, $n \neq 9$, iff $k \in\{2,3,5,8,12,18,30\}=K$.

By separability, the cyclotomic factor only depends on the roots of unity where $E_{n}\left(\zeta_{k}\right)=0$. But the vanishing of $E_{n}\left(\zeta_{k}\right)$ only depends on the value of $n \bmod k$, so by Corollary 2.3 no new roots of unity can occur as zeros of $E_{n}(x)$ for $n>182$. So once the Theorem is checked for all $n \leq 182$ it also holds for all larger values of n.

3 Joins

In this section we define the join of a collection of Coxeter systems, and establish the following more precise version of Theorem 1.5.

Theorem 3.1 Let (W, S) be the join of Coxeter systems $\left(W_{i}, S_{i}\right)_{i=1}^{m}$, with bicolored Coxeter elements w_{i}. Suppose λ is an eigenvalue of w_{i} with multiplicity $m_{i} \geq 0$. Then λ occurs as an eigenvalue of the bicolored Coxeter element $w \in W$ with multiplicity at least $\left(\sum m_{i}\right)-1$.

Coxeter systems. Recall that a Coxeter system (W, S) is an abstract group W with a distinguished set of generators S, such that the product st $\in W$ of two generators has finite order $m_{s t} \geq 2$, the generators themselves have order 2 , and these relations give a presentation for W.

The pair (W, S) determines a quadratic form B on \mathbb{R}^{S} with matrix $B_{s t}=$ $-2 \cos \left(\pi / m_{s t}\right)$, and a geometric representation $W \hookrightarrow O\left(\mathbb{R}^{S}, B\right)$ where the generators act by the reflections

$$
\begin{equation*}
s \cdot v=v-B\left(e_{s}, v\right) e_{s} \tag{3.1}
\end{equation*}
$$

The Coxeter diagram F of (W, S) is the (undirected) graph with vertex set S and an edge of weight $m_{s t}-2$ joining s to t whenever $m_{s t}>2$. By convention an unlabeled edge has weight one, and i parallel unlabeled edges indicate a single edge of weight i.

The product of the generators $w=s_{1} \cdots s_{n}$ of W, taken in any order, is a Coxeter element of (W, S). If the diagram F is a tree, then the conjugacy class of w is independent of the choice of ordering. If F is bipartite (meaning we can write $S=S_{0} \sqcup S_{1}$ with all edges connecting S_{0} to S_{1}), then the bicolored Coxeter element

$$
w=\prod S_{0} \prod S_{1}
$$

is well-defined up to conjugacy (cf.[Mc, §5]). Thus in Theorem 3.1 we implicitly assume the Coxeter systems $\left(W_{i}, s_{i}\right)$ are bipartite.

The Coxeter polynomial of a bipartite Coxeter system (W, S) is the characteristic polynomial

$$
F(x)=\operatorname{det}(x I-w)
$$

of its bicolored Coxeter elements. We generally denote it using the same symbol as the diagram. Note that if the diagram F has no multiple edges, then W preserves the lattice \mathbb{Z}^{S} and thus $F(x) \in \mathbb{Z}[x]$.
Pointed Coxeter systems. A pointed Coxeter system is a triple (W, S, s) with $s \in S$. It is determined up to isomorphism by a pointed diagram (F, s). By deleting s, we obtain a Coxeter subsystem (\widehat{W}, \widehat{S}) with Coxeter polynomial $\widehat{F}(x)$.

We let $\left(A_{n}, i\right)$ and $\left(E_{n}, i\right)$ denote the A_{n} and E_{n} diagrams with the i th vertex distinguished, using the numbering in Figures 1 and 3.
Joins. The join (W, S) of pointed Coxeter systems $\left(W_{i}, S_{i}, s_{i}\right)_{i=1}^{m}$ is defined by taking an independent generator t, setting $S=\{t\} \bigcup S_{i}$, and setting

$$
W=\left(W_{1} * \cdots * W_{m} *\langle t\rangle\right) /\left\langle t^{2}=\left(s_{1} t\right)^{3}=\cdots=\left(s_{m} t\right)^{3}=\mathrm{id}\right\rangle
$$

The corresponding diagram F is obtained from $\sqcup F_{i}$ by adding a new vertex t and connecting it to each s_{i} with a single edge (see Figure 5). If all the diagrams F_{i} are bipartite, so is F.

In Theorem 3.1, basepoints $s_{i} \in S_{i}$ must be chosen to make the join (W, S) well-defined, but the conclusion holds independent of the choice of basepoints.

Figure 5. The join of A_{3}, B_{2} and D_{4}.

Proof of Theorem 3.1. Let (W, S) be the join of $\left(W_{i}, S_{i}\right)_{1}^{m}$. By equation (3.1), a given reflection $s(v)$ only changes the coordinate v_{s} of a vector $v \in \mathbb{R}^{S}$. Thus we have natural inclusions $W_{i} \subset W$ compatible with the inclusions $\mathbb{R}^{S_{i}} \subset \mathbb{R}^{S}$.

Since $s, t \in S$ commute whenever they are not joined by an edge in the Coxeter diagram, we can write the bicolored Coxeter element $w \in W$ in the form

$$
w=t w_{1} \cdots w_{m}
$$

Let $E_{i} \subset \mathbb{C}^{S_{i}} \subset \mathbb{C}^{S}$ be the λ-eigenspaces for w_{i}, extended by zero in the remaining coordinates. By (3.1) we have $w_{i} \mid E_{j}=\mathrm{id}$ for $i \neq j$. Thus $\oplus E_{i}$ is a λ-eigenspace for $w_{1} \cdots w_{m}$. Since $t(v)$ only changes v_{t}, there is a codimensionone subspace $E \subset \oplus E_{i}$ such that $t \mid E=\mathrm{id}$. Consequently the multiplicity of λ as an eigenvalue for w is bounded below by

$$
\operatorname{dim}(E)=\left(\sum \operatorname{dim}\left(E_{i}\right)\right)-1=\left(\sum m_{i}\right)-1
$$

The Coxeter polynomial of a join. Here is an alternative approach to the result above. When F is the join of $\left(F_{i}, s_{i}\right)_{1}^{m}$, a straightforward matrix computation yields the following useful formula for its Coxeter polynomial:

$$
\begin{equation*}
F(x)=F_{1}(x) \cdots F_{m}(x)\left((x+1)-x \sum_{1}^{m} \frac{\widehat{F}_{i}(x)}{F_{i}(x)}\right) \tag{3.2}
\end{equation*}
$$

Cf. [CDS, Prob 9, p.78], [MRS, Cor. 4].
By writing the Coxeter element of $\left(W_{i}, S_{i}\right)$ with s_{i} at the end, one can verify that the order of vanishing of its Coxeter polynomial satisfies ord $\left(P_{i}, \lambda\right)-1 \leq$ $\operatorname{ord}\left(\widehat{P}_{i}, \lambda\right)$. Thus equation (3.2) implies

$$
\operatorname{ord}(F, \lambda) \geq-1+\sum \operatorname{ord}\left(F_{i}, \lambda\right)
$$

This inequality is equivalent to Theorem 3.1 when the quadratic form B of (W, S) is non-degenerate, as it is for $E_{n}, n \neq 9$.

4 Decorating A_{n}

In this section we generalize our results on E_{n} to more general diagrams F_{n} of the form shown in Figure 6. Our main result is:

Theorem 4.1 Let F_{n} be the sequence of Coxeter diagrams obtained by attaching pointed diagrams (B, s) and (C, t) to the ends of A_{n}. Assume $F_{n}(x) \in \mathbb{Z}[x]$ for all n. Then either

1. The diagram F_{n} is spherical or affine for all n, or
2. The cyclotomic factor of $F_{n}(x)$ is periodic for $n \gg 0$.

Figure 6 . The diagram F_{n} obtained by attaching (B, s) and (C, t) to the ends of A_{n}.

Coxeter polynomials. We begin by determining the Coxeter polynomial $F_{n}(x)$. First, by repeatedly applying equation (3.2) with $m=1$, we obtain:

Proposition 4.2 The Coxeter polynomial of the diagram B_{n} obtained by attaching (B, s) to one end of A_{n} satisfies:

$$
B_{n}(x)(x-1)=x^{n+1}(B(x)-\widehat{B}(x))+(x \widehat{B}(x)-B(x)) .
$$

Here is an example:
Corollary 4.3 For $n \geq 4$, we have

$$
E_{n}(x)(x-1)=x^{n-2}\left(x^{3}-x-1\right)+\left(x^{3}+x^{2}-1\right)
$$

Proof. Take $(B, s)=\left(A_{4}, 2\right)$; then $B(x)=A_{4}(x), \widehat{B}(x)=A_{1}(x) A_{2}(x)$, and $B_{n}(x)=E_{n+4}(x)$. Thus $B(x)-\widehat{B}(x)=x\left(x^{3}-x-1\right)$ and $x \widehat{B}(x)-B(x)=$ $x^{3}+x^{2}-1$, which gives

$$
E_{n+4}(x)(x-1)=x^{n+2}\left(x^{3}-x-1\right)+\left(x^{3}+x^{2}-1\right)
$$

Since F_{n} is the join of B_{n-1} and C, by applying equation (3.2) once more we find:

Proposition 4.4 The Coxeter polynomials of $F_{n},(B, s)$ and (C, t) are related by $F_{n}(x)(x-1)=x^{n+1} Q(x)-R(x)$, where

$$
\begin{aligned}
Q(x) & =(B(x)-\widehat{B}(x))(C(x)-\widehat{C}(x)) \quad \text { and } \\
R(x) & =(x \widehat{B}(x)-B(x))(x \widehat{C}(x)-C(x))
\end{aligned}
$$

We will also need the following result. Let $\beta\left(F_{n}\right) \geq 1$ denote the largest real zero of $F_{n}(x)$; equivalently, the spectral radius of the bicolored Coxeter element for F_{n}.

Proposition 4.5 (Hoffman-Smith) If $\beta\left(F_{n}\right)>1$, then $\beta\left(F_{n}\right) \neq \beta\left(F_{n+1}\right)$.
Proof. Let $A_{s t}=2 I-B_{s t}$ denote the symmetric 'adjacency matrix' for the F_{n} diagram, and $\alpha\left(F_{n}\right)$ its spectral radius. Then since $\beta\left(F_{n}\right)>1$, we have

$$
\alpha\left(F_{n}\right)=\left(2+\beta\left(F_{n}\right)+\beta\left(F_{n}\right)^{-1}\right)^{1 / 2}>2,
$$

(see e.g. [Mc, Thm. 5.1]).
By [HS, Lem. 2.3 and Prop. 2.4], the condition $\alpha\left(F_{n}\right)>2$ implies that $\alpha\left(F_{n+1}\right)<\alpha\left(F_{n}\right)$ if we are adding nodes to an internal path, and that $\alpha\left(F_{n+1}\right)>$ $\alpha\left(F_{n}\right)$ if we are adding nodes to an external path (i.e. if (B, s) or (C, t) is equal to $\left(A_{i}, 1\right)$.) (The proof in [HS] is given for graphs, but it applies without change to Coxeter diagrams, using the following key fact: if s is an endpoint of a maximal A_{k} embedded in F_{n}, either s is an endpoint of F_{n}, or $\sum_{t \neq s} A_{s t} \geq 1+\sqrt{2}$.)

In particular, we have $\alpha\left(F_{n+1}\right) \neq \alpha\left(F_{n}\right)$, and hence $\beta\left(F_{n}\right) \neq \beta\left(F_{n+1}\right)$.

Proof of Theorem 4.1. Since $\operatorname{deg} B>\operatorname{deg} \widehat{B}$ and $\operatorname{deg} C>\operatorname{deg} \widehat{C}$, we have $Q(x) \neq 0$. By Theorem 2.1, either:
(i) $F_{n}(x)(x-1)=\left(x^{n} \pm x^{i}\right) Q(x)$, or
(ii) Only finitely many k satisfy $F_{n}\left(\zeta_{k}\right)=0$ for some n.

In case (i), the zeros of $F_{n}(x)$ outside the unit circle must be constant as n varies. This implies the spectral radius $\beta\left(F_{n}\right)$ of the bicolored Coxeter element is constant; hence $\beta\left(F_{n}\right)=1$ by Proposition 4.5 , which means F_{n} is spherical or affine by $\left[\mathrm{A}^{\prime} \mathrm{C}\right]$.

For case (ii), fix k such that $F_{n}\left(\zeta_{k}\right)=0$. Clearly the values of $F_{n}\left(\zeta_{k}\right)$ are periodic in n. To complete the proof, we must show the order of vanishing of F_{n} at ζ_{k} is also periodic. For this we may assume $Q(x)$ and $R(x)$ are relatively prime. Then $Q\left(\zeta_{k}\right) \neq 0$, and hence for all $n \gg 0, F_{n}^{\prime}\left(\zeta_{k}\right) \neq 0$, since the dominant term in the derivative is $(n+1) \zeta_{k}^{n} Q\left(\zeta_{k}\right)$. Consequently the cyclotomic zeros of F_{n} are simple for all $n \gg 0$, and the proof is complete.

Notes. For a survey of results on the largest eigenvalues of graphs, including the inequality of Hoffman and Smith used above, see [CR].

References

[A'C] N. A'Campo. Sur les valeurs propres de la transformation de Coxeter. Invent. math. 33(1976), 61-67.
[BK] E. Bedford and K. Kim. Dynamics of rational surface automorphisms: Linear fractional recurrences. Preprint, 2006.
[Bou] N. Bourbaki. Groupes et algèbres de Lie, Ch. IV-VI. Hermann, 1968; Masson, 1981.
[CDS] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press, 1980.
[CR] D. Cvetković and P. Rowlinson. The largest eigenvalue of a graph: a survey. Linear and Multilinear Algebra 28(1990), 3-33.
[Hir1] E. Hironaka. Salem-Boyd sequences and Hopf plumbing. Osaka J. Math. 43(2006), 497-516.
[Hir2] E. Hironaka. Hyperbolic perturbations of algebraic links and small Mahler measure. In Singularities in Geometry and Topology 2004, pages 77-94. Math. Soc. of Japan, 2007.
[HS] A. J. Hoffman and J. H. Smith. On the spectral radii of topologically equivalent graphs. In Recent Advances in Graph Theory (Proc. Second Czechoslovak Sympos., Prague, 1974), pages 273-281. Academia, 1975.
[Hum] J. E. Humphreys. Reflection Groups and Coxeter Groups. Cambridge University Press, 1990.
[Man] H. B. Mann. On linear relations between roots of unity. Mathematika 12(1965), 107-117.
[MRS] J. F. McKee, P. Rowlinson, and C. J. Smyth. Pisot numbers from stars. In Number Theory in Progress, Vol. I, pages 309-319. de Gruyter, 1999.
[MS] J. F. McKee and C. J. Smyth. Pisot numbers, Mahler measure, and graphs. Experiment. Math. 14(2005), 211-229.
[Mc] C. McMullen. Coxeter groups, Salem numbers and the Hilbert metric. Publ. Math. IHES 95(2002), 151-183.

Mathematics Department
Harvard University
Cambridge, MA 02138-2901
Mathematics Department
Florida State University
Tallahassee, FL 32306-4510

[^0]: *This research was supported in part by the NSF.

