Foliations of Hilbert Modular Surfaces

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>http://www.math.jhu.edu/~ajm/</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:3446012</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Foliations of Hilbert modular surfaces

Curtis T. McMullen*

21 February, 2005

Abstract

The Hilbert modular surface X_D is the moduli space of Abelian varieties A with real multiplication by a quadratic order of discriminant $D > 1$. The locus where A is a product of elliptic curves determines a finite union of algebraic curves $X_D(1) \subset X_D$.

In this paper we show the lamination $X_D(1)$ extends to an essentially unique foliation F_D of X_D by complex geodesics. The geometry of F_D is related to Teichmüller theory, holomorphic motions, polygonal billiards and Lattès rational maps. We show every leaf of F_D is either closed or dense, and compute its holonomy. We also introduce refinements $T_N(\nu)$ of the classical modular curves on X_D, leading to an explicit description of $X_D(1)$.

Contents

1 Introduction .. 1
2 Quaternion algebras 5
3 Modular curves and surfaces 12
4 Laminations .. 17
5 Foliations of Teichmüller space 20
6 Genus two ... 23
7 Holomorphic motions 25
8 Quasiconformal dynamics 27
9 Further results ... 30

*Research supported in part by the NSF and the Guggenheim Foundation.
1 Introduction

Let $D > 1$ be an integer congruent to 0 or 1 mod 4, and let \mathcal{O}_D be the real quadratic order of discriminant D. The Hilbert modular surface

$$X_D = (\mathbb{H} \times \mathbb{H})/\text{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^\vee)$$

is the moduli space for principally polarized Abelian varieties

$$A_\tau = \mathbb{C}^2/(\mathcal{O}_D \oplus \mathcal{O}_D^\vee \tau)$$

with real multiplication by \mathcal{O}_D.

Let $X_D(1) \subset X_D$ denote the locus where A_τ is isomorphic to a polarized product of elliptic curves $E_1 \times E_2$. The set $X_D(1)$ is a finite union of disjoint, irreducible algebraic curves (§4), forming a lamination of X_D. Note that $X_D(1)$ is preserved by the twofold symmetry $\iota(\tau_1, \tau_2) = (\tau_2, \tau_1)$ of X_D.

In this paper we will show:

Theorem 1.1 Up to the action of ι, the lamination $X_D(1)$ extends to a unique foliation \mathcal{F}_D of X_D by complex geodesics.

(Here a Riemann surface in X_D is a complex geodesic if it is isometrically immersed for the Kobayashi metric.)

Holomorphic graphs. The preimage $\tilde{X}_D(1)$ of $X_D(1)$ in the universal cover of X_D gives a lamination of $\mathbb{H} \times \mathbb{H}$ by the graphs of countably many M"obius transformations. To foliate X_D itself, in §6 we will show:

Theorem 1.2 For any $(\tau_1, \tau_2) \notin \tilde{X}_D(1)$, there is a unique holomorphic function

$$f : \mathbb{H} \to \mathbb{H}$$

such that $f(\tau_1) = \tau_2$ and the graph of f is disjoint from $\tilde{X}_D(1)$.

The graphs of such functions descend to X_D, and form the leaves of the foliation \mathcal{F}_D (§7). The case $D = 4$ is illustrated in Figure 1.

Modular curves. To describe the lamination $X_D(1)$ explicitly, recall that the Hilbert modular surface X_D is populated by infinitely many modular curves F_N [Hir], [vG]. The endomorphism ring of a generic Abelian variety in F_N is a quaternionic order R of discriminant N^2.

In general F_N can be reducible, and R is not determined up to isomorphism by N. In §3 we introduce a refinement $F_N(\nu)$ of the traditional modular curves, such that the isomorphism class of R is constant along
\(\mathcal{F}_\mathcal{N}(\nu) \) and \(\mathcal{F}_\mathcal{N} = \bigcup \mathcal{F}_\mathcal{N}(\nu) \). The additional finite invariant \(\nu \) ranges in the ring \(\mathcal{O}_D/\sqrt{D} \) and its norm satisfies \(N(\nu) = -N \mod D \). The curves \(T_\mathcal{N} = \bigcup \mathcal{F}_\mathcal{N}/\ell \) can be refined similarly, and we obtain:

Theorem 1.3 The locus \(X_D(1) \subset X_D \) is given by

\[
X_D(1) = \bigcup T_\mathcal{N}((e + \sqrt{D})/2),
\]

where the union is over all integral solutions to \(e^2 + 4N = D, N > 0 \).

Remark. Although \(X_D(1) = \bigcup T_{(D-e^2)/4} \) when \(D \) is prime, in general (e.g. for \(D = 12, 16, 20, 21, \ldots \)) the locus \(X_D(1) \) cannot be expressed as a union of the traditional modular curves \(T_\mathcal{N} (\S 3) \).

Here is a corresponding description of the lamination \(\tilde{X}_D(1) \). Given \(N > 0 \) such that \(D = e^2 + 4N \), let

\[
\Lambda^N_D = \left\{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : a, b \in \mathbb{Z}, \mu \in \mathcal{O}_D, \det(U) = N \ \text{and} \ \mu \equiv \pm(e + \sqrt{D})/2 \in \mathcal{O}_D/(\sqrt{D}) \right\}.
\]

Let \(\Lambda_D \) be the union of all such \(\Lambda^N_D \). Choosing a real place \(\iota_1 : \mathcal{O}_D \to \mathbb{R} \), we can regard \(\Lambda_D \) as a set of matrices in \(\text{GL}_2^+(\mathbb{R}) \), acting by Möbius transformations on \(\mathbb{H} \).

Theorem 1.4 The lamination \(\tilde{X}_D(1) \) of \(\mathbb{H} \times \mathbb{H} \) is the union of the loci \(\tau_2 = U(\tau_1) \) over all \(U \in \Lambda_D \).
We also obtain a description of the locus $X_D(E) \subset X_D$ where A_r admits an action of both O_D and O_E ($\S 3$).

Quasiconformal dynamics. Although its leaves are Riemann surfaces, \mathcal{F}_D is not a holomorphic foliation. Its transverse dynamics is given instead by quasiconformal maps, which can be described as follows.

Let $q = q(z) \, dz^2$ be a meromorphic quadratic differential on \mathbb{H}. We say a homeomorphism $f : \mathbb{H} \to \mathbb{H}$ is a *Teichmüller mapping* relative to q if it satisfies

$$\frac{\partial f}{\partial \bar{f}} = \frac{\alpha q}{|q|}$$

for some complex number $|\alpha| < 1$; equivalently, if f has the form of an orientation-preserving real-linear mapping

$$f(x + iy) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = D_q(f) \begin{pmatrix} x \\ y \end{pmatrix}$$

in local charts where $q = dz^2 = (dx + i dy)^2$.

Fix a transversal $\mathbb{H}_s = \{s\} \times \mathbb{H}$ to $\tilde{\mathcal{F}}_D$. Any $g \in \text{SL}(O_D \oplus O_D^\vee)$ acts on $\mathbb{H} \times \mathbb{H}$, permuting the leaves of $\tilde{\mathcal{F}}_D$. The permutation of leaves is recorded by the *holonomy map*

$$\phi_g : \mathbb{H}_s \to \mathbb{H}_s,$$

characterized by the property that $g(s, z)$ and $(s, \phi_g(z))$ lie on the same leaf of $\tilde{\mathcal{F}}_D$.

In §8 we will show:

Theorem 1.5 The holonomy acts by Teichmüller mappings relative to a fixed meromorphic quadratic differential q on \mathbb{H}_s. For $s = i$ and $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we have

$$D_q(\phi_g) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PSL}_2(\mathbb{R}).$$

On the other hand, for $z \in \partial \mathbb{H}_s$ we have

$$\phi_g(z) = (a'z - b')/(-c'z + d');$$

in particular, the holonomy acts by Möbius transformations on $\partial \mathbb{H}_s$.

Here $(x + y\sqrt{D})' = (x - y\sqrt{D})$. Note that both Galois conjugate actions of g on \mathbb{R}^2 appear, as different aspects of the holonomy map ϕ_g.

Quantum Teichmüller curves. For comparison, consider an isometrically immersed *Teichmüller curve*

$$f : V \to \mathcal{M}_g,$$
generated by a holomorphic quadratic differential \((Y, q)\) of genus \(g\). For simplicity assume \(\text{Aut}(Y)\) is trivial. Then the pullback of the universal curve \(X = f^*(\mathcal{M}_{g,1})\) gives an algebraic surface

\[
p : X \to V
\]

with \(p^{-1}(v) = Y\) for a suitable basepoint \(v \in V\). The surface \(X\) carries a canonical foliation \(\mathcal{F}\), transverse to the fibers of \(p\), whose leaves map to Teichmüller geodesics in \(\mathcal{M}_{g,1}\). The holonomy of \(\mathcal{F}\) determines a map

\[
\pi_1(V, v) \to \text{Aff}^+(Y, q)
\]

giving an action of the fundamental group by Teichmüller mappings; and its linear part yields the isomorphism

\[
\pi_1(V, v) \cong \text{PSL}(Y, q) \subset \text{PSL}_2(\mathbb{R}),
\]

where \(\text{PSL}(Y, q)\) is the stabilizer of \((Y, q)\) in the bundle of quadratic differentials \(Q\mathcal{M}_g \to \mathcal{M}_g\). (See e.g. [V1], [Mc4, §2].)

The foliated Hilbert modular surface \((X_D, \mathcal{F}_D)\) presents a similar structure, with the fibration \(p : X \to V\) replaced by the holomorphic foliation \(\mathcal{A}_D\) coming from the level sets of \(\tau_1\) on \(\tilde{X}_D = \mathbb{H} \times \mathbb{H}\). This suggests that one should regard \((X_D, \mathcal{A}_D, \mathcal{F}_D)\) as a quantum Teichmüller curve, in the same sense that a 3-manifold with a measured foliation can be regarded as a quantum Teichmüller geodesic [Mc3].

Question. Does every fibered surface \(p : X \to C\) admit a foliation \(\mathcal{F}\) by Riemann surfaces transverse to the fibers of \(p\)?

Complements. We conclude in §9 by presenting the following related results.

1. Every leaf of \(\mathcal{F}_D\) is either closed or dense.

2. When \(D \neq d^2\), there are infinitely many eigenforms for real multiplication by \(\mathcal{O}_D\) that are isoperiodic but not isomorphic.

3. The Möbius transformations \(\Lambda_D\) give a maximal top-speed holomorphic motion of a discrete subset of \(\mathbb{H}\).

4. The foliation \(\mathcal{F}_4\) also arises as the motion of the Julia set in a Lattès family of iterated rational maps.
The link with complex dynamics was used to produce Figure 1.

Notes and references. The foliation \(\mathcal{F}_D \) is constructed using the connection between polygonal billiards and Hilbert modular surfaces presented in [Mc4]. For more on the interplay of dynamics, holomorphic motions and quasiconformal mappings, see e.g. [MSS], [BR], [Sl], [Mc2], [Sul], [McS], [EKK] and [Dou]. A survey of the theory of holomorphic foliations of surfaces appears in [Br1]; see also [Br2] for the Hilbert modular case.

I would like to thank G. van der Geer, B. Gross and the referees for useful comments and suggestions.

2 Quaternion algebras

In this section we consider a real quadratic order \(\mathcal{O}_D \) acting on a symplectic lattice \(L \), and classify the quaternionic orders \(R \subset \text{End}(L) \) extending \(\mathcal{O}_D \).

Quadratic orders. Given an integer \(D > 0 \), \(D \equiv 0 \) or \(1 \) mod 4, the real quadratic order of discriminant \(D \) is given by

\[
\mathcal{O}_D = \mathbb{Z}[T]/(T^2 + bT + c), \quad \text{where } D = b^2 - 4c.
\]

Let \(K_D = \mathcal{O}_D \otimes \mathbb{Q} \). Provided \(D \) is not a square, \(K_D \) is a real quadratic field. Fixing an embedding \(\iota_1 : K_D \to \mathbb{R} \), we obtain a unique basis

\[
K_D = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \sqrt{D}
\]

such that \(\iota_1(\sqrt{D}) > 0 \). The conjugate real embedding \(\iota_2 : K_D \to \mathbb{R} \) is given by \(\iota_2(x) = \iota_1(x') \), where \((a + b\sqrt{D})' = (a - b\sqrt{D}) \).

Square discriminants. The case \(D = d^2 \) can be treated similarly, so long as we regard \(x = \sqrt{d^2} \) as an element of \(K_D \) satisfying \(x^2 = d^2 \) but \(x \notin \mathbb{Q} \).

In this case the algebra \(K_D \cong \mathbb{Q} \oplus \mathbb{Q} \) is not a field, so we must take care to distinguish between elements of the algebra such as

\[
x = d - \sqrt{d^2} \in K_D,
\]

and the corresponding real numbers

\[
\iota_1(x) = d - d = 0, \quad \text{and} \quad \iota_2(x) = d + d = 2d.
\]

Trace, norm and different. For simplicity of notation, we fix \(D \) and denote \(\mathcal{O}_D \) and \(K_D \) by \(K \) and \(\mathcal{O} \).
The trace and norm on K are the rational numbers $\text{Tr}(x) = x + x'$ and $\text{N}(x) = xx'$. The inverse different is the fractional ideal

$$\mathcal{O}^\vee = \{x \in K : \text{Tr}(xy) \in \mathbb{Z} \forall y \in \mathcal{O}\}.$$

It is easy to see that $\mathcal{O}^\vee = D^{-1/2}\mathcal{O}$, and thus the different $\mathcal{D} = (\mathcal{O}^\vee)^{-1} \subset \mathcal{O}$ is the principal ideal (\sqrt{D}). The trace and norm descend to give maps

$$\text{Tr}, \text{N} : \mathcal{O}/\mathcal{D} \to \mathbb{Z}/D,$$

satisfying

$$\text{Tr}(x)^2 = 4\text{N}(x) \mod D. \tag{2.1}$$

When D is odd, $\text{Tr} : \mathcal{O}/\mathcal{D} \to \mathbb{Z}/D$ is an isomorphism, and thus (2.1) determines the norm on \mathcal{O}/\mathcal{D}. On the other hand, when $D = 4E$ is even, we have an isomorphism

$$\mathcal{O}/\mathcal{D} \cong \mathbb{Z}/2E \oplus \mathbb{Z}/2$$

given by $a + b\sqrt{E} \mapsto (a, b)$, and the trace and norm on \mathcal{O}/\mathcal{D} are given by

$$\text{Tr}(a, b) = 2a \mod D, \quad \text{N}(a, b) = a^2 - Eb^2 \mod D.$$

Symplectic lattices. Now let $L \cong (\mathbb{Z}^{2g}, \left(\begin{smallmatrix} 0 & I \\ -I & 0 \end{smallmatrix}\right))$ be a unimodular symplectic lattice of genus g. (This lattice is isomorphic to the first homology group $H_1(\Sigma_g, \mathbb{Z})$ of an oriented surface of genus g with the symplectic form given by the intersection pairing.)

Let $\text{End}(L) \cong M_{2g}(\mathbb{Z})$ denote the endomorphism ring of L as a \mathbb{Z}-module. The *Rosati involution* $T \mapsto T^*$ on $\text{End}(L)$ is defined by the condition $\langle Tx, y \rangle = \langle x, T^*y \rangle$; it satisfies $(ST)^* = T^*S^*$, and we say T is *self-adjoint* if $T = T^*$.

Specializing to the case $g = 2$, let L denote the lattice

$$L = \mathcal{O} \oplus \mathcal{O}^\vee$$

with the unimodular symplectic form

$$\langle x, y \rangle = \text{Tr}(x \wedge y) = \text{Tr}^K(x_1y_2 - x_2y_1).$$

A standard symplectic basis for L (satisfying $\langle a_i \cdot b_j \rangle = \delta_{ij}$) is given by

$$(a_1, a_2, b_1, b_2) = ((1, 0), (\gamma, 0), (0, -\gamma'/\sqrt{D}), (0, 1/\sqrt{D})), \tag{2.2}$$
where $\gamma = (D + \sqrt{D})/2$.

The lattice L comes equipped with a proper, self-adjoint action of O, given by

$$k \cdot (x_1, x_2) = (kx_1, kx_2).$$

Conversely, any proper, self-adjoint action of O on a symplectic lattice of genus two is isomorphic to this model (see e.g. [Ru], [Mc7, Thm 4.1]). (Here an action of R on L is proper if it is indivisible: if whenever $T \in \text{End}(L)$ and $mT \in R$ for some integer $m \neq 0$, then $T \in R$.)

Matrices. The natural embedding of $L = O \oplus O^\vee$ into $K \oplus K$ determines an embedding of matrices

$$M_2(K) \to \text{End}(L \otimes \mathbb{Q}),$$

and hence a diagonal inclusion

$$K \to \text{End}(L \otimes \mathbb{Q})$$

extending the natural action (2.3) of O on L. Every $T \in \text{End}(L \otimes \mathbb{Q})$ can be uniquely expressed in the form

$$T(x) = Ax + Bx', \quad A, B \in M_2(K),$$

where $(x_1, x_2)' = (x_1', x_2')$; and we have

$$T^*(x) = A^\dagger x + (B^\dagger)'x',$$

where $(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})^\dagger = (\begin{smallmatrix} d & -b \\ -c & a \end{smallmatrix})$.

The automorphisms of L as a symplectic O-module are given, as a subgroup of $M_2(K)$, by

$$\text{SL}(O \oplus O^\vee) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \begin{pmatrix} O & D \\ O^\vee & O \end{pmatrix} : ad - bc = 1 \right\}. $$

Compare [vG, p.12].

Integrality. An endomorphism $T \in \text{End}(L \otimes \mathbb{Q})$ is integral if it satisfies $T(L) \subset L$.

Lemma 2.1 The endomorphism $\phi(x) = ax + bx'$ of K satisfies $\phi(O) \subset O$ iff $a, b \in O^\vee$ and $a + b \in O$.

Proof. Since $x - x' \in \sqrt{D}\mathbb{Z}$ for all $x \in O$, the conditions on a, b imply $\phi(x) = a(x - x') + (a + b)x' \in O$ for all $x \in O$. Conversely, if ϕ is integral, then $\phi(1) = a + b \in O$, and thus $a(x - x') \in O$ for all $x \in O$, which implies $a \in D^{-1/2}O = O^\vee$. \qed

7
Corollary 2.2 The endomorphism $T(x) = kx + \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)x'$ is integral iff we have

$$a, b, c, d, k \in \mathcal{O} \quad \text{and} \quad k + a, k - d \in \mathcal{O}.$$

Proof. This follows from the preceding Lemma, using the fact that $kx + dx'$ maps \mathcal{O}' to \mathcal{O}' iff $kx - dx'$ maps \mathcal{O} to \mathcal{O}.

Quaternion algebras. A rational quaternion algebra is a central simple algebra of dimension 4 over \mathbb{Q}. Every such algebra has the form

$$Q \cong \mathbb{Q}[i,j]/(i^2 = a, j^2 = b, ij = -ji) = \left(\begin{array}{cc} a & b \\ \overline{b} & \overline{a} \end{array}\right)$$

for suitable $a, b \in \mathbb{Q}^\ast$. Any $q \in Q$ satisfies a quadratic equation

$$q^2 - \text{Tr}(q)q + N(q) = 0,$$

where $\text{Tr}, N : Q \to \mathbb{Q}$ are the reduced trace and norm.

An order $R \subset Q$ is a subring such that, as an additive group, we have $R \cong \mathbb{Z}^4$ and $Q \cdot R = Q$. Its discriminant is the square integer

$$N^2 = |\det(\text{Tr}(q_iq_j))| > 0,$$

where $(q_i)_4^1$ is an integral basis for R. The discriminants of a pair of orders $R_1 \subset R_2$ are related by $N_1/N_2 = |R_2/R_1|^2$.

Generators. We say $V \in \text{End}(L)$ is a quaternionic generator if:

1. $V^* = -V$,
2. $V^2 = -N \in \mathbb{Z}$, $N \neq 0$,
3. $Vk = k'V$ for all $k \in K$, and
4. $k + D^{-1/2}V \in \text{End}(L)$ for some $k \in K$.

These conditions imply that $Q = K \oplus KV$ is a quaternion algebra isomorphic to $\left(\frac{D,-N}{\mathbb{Q}}\right)$. Conversely, we have:

Theorem 2.3 Any Rosati-invariant quaternion algebra Q with $K \subset Q \subset \text{End}(L \otimes \mathbb{Q})$

contains a unique pair of primitive quaternionic generators $\pm V$.

8
(A generator is \textit{primitive} unless \((1/m)V, m > 1\) is also a generator.)

\textbf{Proof.} By a standard application of the Skolem-Noether theorem, we can write \(Q = K \oplus KW\) with \(0 \neq W^2 \in \mathbb{Q}\) and \(Wk = kW\) for all \(k \in K\). Then \(KW\) coincides with the subalgebra of \(Q\) anticommuting with the self-adjoint element \(\sqrt{D}\), so it is Rosati-invariant. The eigenspaces of \(*|KW\) are exchanged by multiplication by \(\sqrt{D}\), so up to a rational multiple there is a unique nonzero \(V \in KW\) with \(V^* = -V\). A suitable integral multiple of \(V\) is then a generator, and a rational multiple is primitive. \hfill \Box

\textbf{Corollary 2.4} Quaternionic extensions \(K \subset Q \subset \text{End}(L)\) correspond bijectively to pairs of primitive generators \(\pm V \in \text{End}(L)\).

\textbf{Generator matrices.} We say \(U \in M_2(K)\) is a \textit{quaternionic generator matrix} if it has the form

\[U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} \]

with \(a, b \in \mathbb{Z}\), \(\mu \in \mathcal{O}\) and \(N = \det(U) \neq 0\).

\textbf{Theorem 2.5} The endomorphism \(V(x) = Ux'\) is a quaternionic generator iff \(U\) is a quaternionic generator matrix.

\textbf{Proof.} By (2.4) the condition \(V = -V^*\) is equivalent to \(U^\dagger = -U'\), and thus \(U\) can be written in the form (2.5) with \(a, b \in \mathbb{Q}\) and \(\mu \in K\). Assuming \(U^\dagger = -U'\), we have

\[N = \det(U) = UU^\dagger = -UU' = -V^2, \]

so \(V^2 \neq 0 \iff \det(U) \neq 0\). The condition that \(D^{-1/2}(k + V)\) is integral for some \(k\) implies, by Corollary 2.2, that the coefficients of \(U\) satisfy \(a, b \in \mathbb{Z}\) and \(\mu \in \mathcal{O}\); and given such coefficients for \(U\), the endomorphism \(D^{-1/2}(k + V)\) is integral when \(k = -\mu\). \hfill \Box

\textbf{The invariant} \(\nu(U)\). Given generator matrix \(U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix}\), let \(\nu(U)\) denote the image of \(\mu\) in the finite ring \(\mathcal{O}/D\). It is easy to check that

\[\nu(U) = \pm \nu(g'Ug^{-1}) \]

for all \(g \in \text{SL}(\mathcal{O} \oplus \mathcal{O}^\vee)\), and that its norm satisfies

\[N(\nu(U)) \equiv -N \text{ mod } D. \quad (2.6) \]
Quaternionic orders. Let $V(x) = Ux'$, and let

$$R_U = (K \oplus KV) \cap \text{End}(L).$$

Then R_U is a Rosati-invariant order in the quaternion algebra generated by V. Clearly $O \subset R_U$, so we can also regard (R_U, \ast) as an involutive algebra over O. We will show that $N = \det(U)$ and $\nu(U)$ determine (R_U, \ast) up to isomorphism.

Models. We begin by constructing a model algebra $(R_N(\nu), \ast)$ over O_D for every $\nu \in O/D$ with $N(\nu) = -N \neq 0 \mod D$.

Let $Q_N = K \oplus KV$ be the abstract quaternion algebra with the relations $V^2 = -N$ and $Vk = k'V$. Define an involution on Q_N by $(k_1 + k_2V)^* = (k_1 - k_2V)$, and let $R_N(\nu)$ be the order in Q_N defined by

$$R_N(\nu) = \{\alpha + \beta V : \alpha, \beta \in O^\vee, \alpha + \beta \nu \in O, \}$$

(2.7)

Note that $O^\vee : D \subset O$, so the definition of $R_N(\nu)$ depends only on the class of ν in O/D. To check that $R_N(\nu)$ is an order, note that

$$(\alpha + \beta V)(\gamma + \delta V) = (\kappa + \lambda V) = (\alpha\gamma - N\beta\delta') + (\alpha\delta + \beta\gamma')V;$$

since $-N \equiv N(\nu) = \nu\nu' \mod D$, we have

$$\kappa + \nu\lambda \equiv (\alpha\gamma + \nu\nu'\beta\delta'') + \nu(\alpha\delta + \beta\gamma') = \alpha(\gamma + \delta'') + \alpha(\gamma' + \delta'') + \alpha(\gamma - \gamma' + \nu\delta - \nu\delta') \equiv 0 + 0 \mod O,$$

and thus R_U is closed under multiplication.

Theorem 2.6 The quaternionic order $R_N(\nu)$ has discriminant N^2.

Proof. Note that the inclusions

$$O \oplus O V \subset R_N(\nu) \subset O^\vee \oplus O^\vee V$$

each have index D. The quaternionic order $O \oplus O V$ has discriminant D^2N^2, since $V^2 = -N$ and $\text{Tr} |OV = 0$, and thus $R_N(\nu)$ has discriminant N^2. \[\blacksquare\]
Theorem 2.7 We have \((R_N(\nu), *) \cong (R_M(\mu), *)\) iff \(N = M\) and \(\nu = \pm \mu\).

Proof. The element \(V \in R_N(\nu)\) is, up to sign, the order’s unique primitive generator, in the sense that \(V^* = -V\), \(Vk = k'V\) for all \(k \in \mathcal{O}_D\), \(V^2 \neq 0\), \(k + D^{-1/2}V \in R_N(\nu)\) for some \(k \in K\), and \(V\) is not a proper multiple of another element in \(R_N(\nu)\) with the same properties. Thus the structure of \((R_N(\nu), *)\) as an \(\mathcal{O}_D\)-algebra determines \(V \in R_N(\nu)\) up to sign, and \(V\) determines \(N = -V^2\) and the constant \(\nu \in \mathcal{O}/\mathcal{D}\) in the relation \(\alpha + \beta \nu \in \mathcal{O}\) defining \(R_N(\nu) \subset K \oplus KV\).

Theorem 2.8 If \(U\) is a primitive generator matrix, then we have

\[(R_U, *) \cong (R_N(\nu), *)\]

where \(N = \det(U)\) and \(\nu = \nu(U)\).

Proof. Setting \(V(x) = Ux'\), we need only verify that \((K \oplus KV) \cap \text{End}(L)\) coincides with the order \(R_N(\nu)\) defined by (2.7). To see this, let

\[T(x) = \alpha x + \beta V(x) = \alpha x + \beta \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} x'\]

in \(K \oplus KV\). By Corollary 2.2, \(T\) is integral iff

(i) \(a\beta, b\beta, \mu\beta, \mu'\beta \in \mathcal{O}'\),

(ii) \(\alpha \in \mathcal{O}'\),

(iii) \(\alpha + \beta \mu \in \mathcal{O}\) and

(iv) \(\alpha + \beta \mu' \in \mathcal{O}\).

Using (iii), condition (iv) can be replaced by

(iv') \(\beta(\mu - \mu')/\sqrt{D} \in \mathcal{O}'\).

Since \(U\) is primitive, the ideal \((a, b, \mu, (\mu - \mu')/\sqrt{D})\) is equal to \(\mathcal{O}\). Thus (i) and (iv') together are equivalent to the condition \(\beta \in \mathcal{O}'\), and we are left with the definition of \(R_N(\nu)\).

\[\square\]
Remark. In general, the invariants $\det(U)$ and $\nu(U)$ do not determine the embedding $R_U \subset \text{End}(L)$ up to conjugacy. For example, when D is odd, the generator matrices $U_1 = \begin{pmatrix} 0 & D^2 \\ -D & 0 \end{pmatrix}$ and $U_2 = \begin{pmatrix} 0 & D^3 \\ -1 & 0 \end{pmatrix}$ have the same invariants, but the corresponding endomorphisms are not conjugate in $\text{End}(L)$ because

$$L/V_1(L) \cong (\mathbb{Z}/D \times \mathbb{Z}/D^2)^2$$

while

$$L/V_2(L) \cong \mathbb{Z}/D \times \mathbb{Z}/D^2 \times \mathbb{Z}/D^3.$$

Extra quadratic orders. Finally we determine when the algebra $R_N(\nu)$ contains a second, independent quadratic order O_E.

Theorem 2.9 The algebra $(R_N(\nu), \ast)$ contains a self-adjoint element $T \notin O_D$ generating a copy of O_E iff there exist $e, \ell \in \mathbb{Z}$ such that

$$ED = e^2 + 4N\ell^2, \quad \ell \neq 0$$

and $(e + E\sqrt{D})/2 + \ell\nu = 0 \mod D$.

Proof. Given e, ℓ as above, let

$$T = \alpha + \beta V = D^{-1/2} \left(\frac{e + E\sqrt{D}}{2} + \ell V \right).$$

Then we have $T = T^\ast, T \in R_N(\nu)$ and $T^2 - eT + (E - E^2)/4 = 0$; therefore $\mathbb{Z}[T] \cong O_E$. A straightforward computation shows that, conversely, any independent copy of O_E in $R_N(\nu)$ arises as above.

For additional background on quaternion algebras, see e.g. [Vi], [MR] and [Mn].

3 Modular curves and surfaces

In this section we describe modular curves on Hilbert modular surfaces from the perspective of the Abelian varieties they determine.

Abelian varieties. A **principally polarized Abelian variety** is a complex torus $A \cong \mathbb{C}^g/L$ equipped with a unimodular symplectic form $\langle x, y \rangle$ on $L \cong \mathbb{Z}^{2g}$, whose extension to $L \otimes \mathbb{R} \cong \mathbb{C}^g$ satisfies

$$\langle x, y \rangle = \langle ix, iy \rangle \quad \text{and} \quad \langle x, ix \rangle \geq 0.$$
The ring $\text{End}(A) = \text{End}(L) \cap \text{End}(\mathbb{C}^g)$ is Rosati invariant, and coincides with the endomorphism ring of A as a complex Lie group. We have $\text{Tr}(TT^*) \geq 0$ for all $T \in \text{End}(A)$.

Every Abelian variety can be presented in the form

$$A = \mathbb{C}^g/(\mathbb{Z}^g \oplus \Pi \mathbb{Z}^g),$$

where Π is an element of the Siegel upper halfplane

$$\mathcal{H}_g = \{ \Pi \in M_g(\mathbb{C}) : \Pi^t = \Pi \text{ and } \text{Im}(\Pi) \text{ is positive-definite} \}.$$

The symplectic form on $L = \mathbb{Z}^g \oplus \Pi \mathbb{Z}^g$ is given by $\langle 0, I \rangle$. Any two such presentations of A differ by an automorphism of L, so the moduli space of abelian varieties of genus g is given by the quotient space

$$A_g = \mathcal{H}_g/\text{Sp}_{2g}(\mathbb{Z}).$$

Real multiplication. As in §2, let $D > 0$ be the discriminant of a real quadratic order \mathcal{O}_D, and let $K = \mathcal{O} \otimes \mathbb{Q}$. Fix a real place $\iota_1 : K \to \mathbb{R}$, and set $\iota_2(k) = \iota_1(k')$.

We will regard K as a subfield of the reals, using the fixed embedding $\iota_1 : K \subset \mathbb{R}$. The case $D = d^2$ is treated with the understanding that the real numbers (k, k') implicitly denote $(\iota_1(k), \iota_2(k))$, $k \in K$.

An Abelian variety $A \in A_2$ admits real multiplication by \mathcal{O}_D if there is a self-adjoint endomorphism $T \in \text{End}(A)$ generating a proper action of $\mathbb{Z}[T] \cong \mathcal{O}_D$ on A. Any such variety can be presented in the form

$$A_\tau = \mathbb{C}^2/(\mathcal{O}_D \oplus \mathcal{O}_D^\vee \tau) = \mathbb{C}^2/\phi_\tau(L),$$

where $\tau = (\tau_1, \tau_2) \in \mathbb{H} \times \mathbb{H}$ and where $L = \mathcal{O} \oplus \mathcal{O}_D^\vee$ is embedded in \mathbb{C}^2 by the map

$$\phi_\tau(x_1, x_2) = (x_1 + x_2\tau_1, x_1' + x_2'\tau_2).$$

As in §2, the symplectic form on L is given by $\langle x, y \rangle = \text{Tr}_{\mathcal{O}_D}(x \wedge y)$, and the action of \mathcal{O}_D on $\mathbb{C}^2 \supset L$ is given simply by $k \cdot (z_1, z_2) = (kz_1, k'z_2)$.

Eigenforms. The Abelian variety A_τ comes equipped with a distinguished pair of normalized eigenforms $\eta_1, \eta_2 \in \Omega(A_\tau)$. Using the isomorphism $H_1(A_\tau, \mathbb{Z}) \cong L$, these forms are characterized by the property that

$$\phi_\tau(C) = \left(\int_C \eta_1, \int_C \eta_2 \right).$$
Modular surfaces. If we change the identification $L \cong H_1(A_\tau, \mathbb{Z})$ by an automorphism g of L, we obtain an isomorphic Abelian variety $A_{g_\cdot \tau}$. Thus the moduli space of Abelian varieties with real multiplication by O_D is given by the Hilbert modular surface

$$X_D = (\mathbb{H} \times \mathbb{H}) / \text{SL}(O_D \oplus O_D^\vee).$$

The point $g(\tau)$ is characterized by the property that

$$\phi_{g_\cdot \tau} = \chi(g, \tau) \cdot \phi_\tau \circ g^{-1}$$

for some matrix $\chi(g, \tau) \in \text{GL}_2(\mathbb{C})$; explicitly, we have

$$(a \ b) \cdot (\tau_1, \tau_2) = \left(\begin{array}{cc} \frac{a\tau_1 - b}{-c\tau_1 + d} & \frac{a'\tau_2 - b'}{-c'\tau_2 + d'} \\ \frac{\gamma_{2}}{\gamma'} & -c'\tau_2 + d' \end{array}\right)$$

and

$$\chi(g, \tau) = \left(\begin{array}{cc} (d - c\tau_1)^{-1} & 0 \\ 0 & (d' - c'\tau_2)^{-1} \end{array}\right).\quad (3.4)$$

A point $[\tau] \in X_D$ gives an Abelian variety $[A_\tau] \in \mathcal{A}_2$ with a *chosen* embedding $O_D \to \text{End}(A_\tau)$. Similarly, a point $\tau \in X_D = \mathbb{H} \times \mathbb{H}$ gives an Abelian variety with a distinguished isomorphism or *marking*, $L \cong H_1(A_\tau, \mathbb{Z})$, sending O_D into $\text{End}(A_\tau)$.

Modular embedding. The *modular embedding*

$$p_D : X_D \to \mathcal{A}_2$$

is given by $[\tau] \mapsto [A_\tau]$. To write p_D explicitly, note that the embedding $\phi_\tau : L \to \mathbb{C}^2$ can be expressed with respect to the basis (a_1, a_2, b_1, b_2) for L given in (2.2) by the matrix

$$\phi_\tau = \left(\begin{array}{cc} 1 & \gamma - \tau_1\gamma'/\sqrt{D} \\ 1 & \gamma' - \tau_2\gamma/\sqrt{D} \end{array}\right) = (A, B).$$

Consequently we have $A_\tau \cong \mathbb{C}^2/(\mathbb{Z}^2 \oplus \mathbb{Z}^2)$, where

$$\Pi = \overline{p_D(\tau)} = A^{-1}B = \frac{1}{D} \left(\begin{array}{cc} \tau_1(\gamma/)^2 + \tau_2\gamma^2 & -\tau_1\gamma - \tau_2\gamma \\ -\tau_1\gamma - \tau_2\gamma & \tau_1 + \tau_2 \end{array}\right).$$

The map $X_D \to p_D(X_D)$ has degree two.
Modular curves. Given a matrix \(U(x) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K) \cap \text{End}(L) \) such that \(U' = -U^* \), let \(V(x) = Ux' \) and define
\[
\mathbb{H}_U = \{ \tau \in \mathbb{H} \times \mathbb{H} : V \in \text{End}(A_{\tau}) \}.
\]
It is straightforward to check that
\[
\mathbb{H}_U = \{ (\tau_1, \tau_2) : \tau_2 = \frac{d\tau_1 + b}{c\tau_1 + a} \} ; \quad (3.5)
\]
indeed, when \(\tau_1 \) and \(\tau_2 \) are related as above, the map \(\phi_{\tau} : L \to \mathbb{C}^2 \) satisfies
\[
\phi_{\tau}(V(x)) = \begin{pmatrix} 0 & a + c\tau_1 \\ a' + c'\tau_2 & 0 \end{pmatrix} \phi_{\tau}(x),
\]
exhibiting the complex-linearity of \(V \). Note that \(\mathbb{H}_U = \emptyset \) if \(\det(U) < 0 \).

We now restrict attention to the case where \(U \) is a generator matrix. Then by the results of §2, we have:

Theorem 3.1 The ring \(\text{End}(A_{\tau}) \) contains a quaternionic order extending \(\mathcal{O}_D \) if and only if \(\tau \in \mathbb{H}_U \) for some generator matrix \(U \).

Let \(F_U \subset X_D \) denote the projection of \(\mathbb{H}_U \) to the quotient \((\mathbb{H} \times \mathbb{H}) / \text{SL}(\mathcal{O}_D \oplus \mathcal{O}_D') \).

Following [Hir, §5.3], we define the modular curve \(F_N \) by
\[
F_N = \bigcup \{ F_U : U \text{ is a primitive generator matrix with } \det(U) = N \}.
\]
It can be shown that \(F_N \) is an algebraic curve on \(X_D \).

To describe this curve more precisely, let
\[
F_N(\nu) = \{ F_U : U \text{ is primitive, } \det(U) = N \text{ and } \nu(U) = \pm \nu \},
\]
where \(\nu \in \mathcal{O}_D / \mathcal{D}_D \). Note that we have
\[
F_N(\nu) \neq \emptyset \iff N(\nu) = -N \mod D
\]
by equation (2.6), \(F_N(\nu) = F_N(-\nu) \), and \(F_N = \bigcup F_N(\nu) \).

The results of §2 give the structure of the quaternion ring generated by \(V(x) = Ux' \).

Theorem 3.2 The curve \(F_N(\nu) \subset X_D \) coincides with the locus of Abelian varieties such that
\[
\mathcal{O}_D \subset R \subset \text{End}(A_{\tau}),
\]
for some properly embedded quaternionic order \((R,*) \) isomorphic to \((R_N(\nu),*) \).
Corollary 3.3 The curve F_N is the locus where $\mathcal{O}_D \subset \text{End}(A_\tau)$ extends to a properly embedded, Rosati-invariant quaternionic order of discriminant N^2.

Two quadratic orders. We can now describe the locus $X_D(E)$ of Abelian varieties with an independent, self-adjoint action of \mathcal{O}_E. (We do not require the action of \mathcal{O}_E to be proper.)

To state this description, it is useful to define:

\[T_N = \bigcup \{ F_U : \det(U) = N \} = \bigcup F_{N/\ell^2}, \]

and

\[T_N(\nu) = \bigcup \{ F_U : \det(U) = N, \nu(U) = \pm \nu \}. \]

Then Theorem 2.9 implies:

Theorem 3.4 The locus $X_D(E)$ is given by

\[X_D(E) = \bigcup T_N((e + E\sqrt{D})/2), \]

where the union is over all $N > 0$ and $e \in \mathbb{Z}$ such that $ED = e^2 + 4N$.

Corollary 3.5 We have $X_D(1) = \bigcup \{ T_N((e + \sqrt{D})/2) : e^2 + 4N = D \}$.

Refined modular curves. To conclude we show that in general the expression $F_N = \bigcup F_N(\nu)$ gives a proper refinement of F_N. First note:

Theorem 3.6 We have $F_N(\nu) = F_N$ iff $\pm \nu$ are the only solutions to

\[N(\xi) = -N \mod D, \quad \xi \in \mathcal{O}_D / \mathcal{D}_D. \]

Corollary 3.7 If $D = p$ is prime, then $F_N = F_N(\nu)$ whenever $F_N(\nu) \neq \emptyset$.

Proof. In this case, according to (2.1), the norm map

\[N : \mathcal{O}_D / \mathcal{D}_D \xrightarrow{\text{Tr}} \mathbb{Z}/p \rightarrow \mathbb{Z}/p \]

is given by $N(\xi) = \xi^2 / 4$. Since $F_N(\nu) \neq \emptyset$, we have $N(\nu) = -N$; and since \mathbb{Z}/p is a field, $\pm \nu$ are the only solutions to this equation.

\[\blacksquare \]
Corollary 3.8 When D is prime, we have $X_D(E) = \bigcup T_{(ED-e^2)/4}$.

Now consider the case $D = 21$, the first odd discriminant which is not a prime. Then the norm map is still given by $N(\xi) = \xi^2/4$ on $O_D/\mathcal{D} \cong \mathbb{Z}/D$, but now \mathbb{Z}/D is not a field. For example, the equation $\xi^2 = 1 \mod D$ has four solutions, namely $\xi = 1, 8, 13$ or 20. These give four solutions to the equation $N(\xi) = -5$, and hence contribute two distinct terms to the expression

$$F_5 = \bigcup F_5(\nu) = F_5((1 + \sqrt{21})/2) \cup F_5((8 + \sqrt{21})/2).$$

Only one of these terms appears in the expression for $X_D(1)$. In fact, since $21 = 1^2 + 4 \cdot 5 = 3^2 + 4 \cdot 3$, by Corollary 3.5 we have

$$X_{21}(1) = F_3 \cup F_5((1 + \sqrt{21})/2) \neq F_3 \cup F_5.$$

(The full curve F_3 appears because the only solutions to $N(\xi) = \xi^2/4 = -3 \mod 21$ are $\xi = \pm 3$.)

Using Theorem 3.6, it is similarly straightforward to check other small discriminants; for example:

Theorem 3.9 For $D \leq 30$ we have $X_D(1) = \bigcup_{\nu^2+4N=D} T_N$ when $D = 4, 5, 8, 9, 13, 17, 25$ and 29, but not when $D = 12, 16, 20, 21, 24$ or 28.

Notes. For more background on modular curves and surfaces, see [Hir], [HZ2], [HZ1], [BL], [Mc7, §4] and [vG]. Our $U = \left(\begin{smallmatrix} \mu & bD \\ -a & -\mu' \end{smallmatrix} \right)$ corresponds to the skew-Hermitian matrix $B = \sqrt{D} \left(\begin{smallmatrix} a & \mu' \\ \mu & bD \end{smallmatrix} \right)$ in [vG, Ch. V]. Note that (3.3) agrees with the standard action $(a\tau + b)/(c\tau + d)$ up to the automorphism $(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \mapsto \left(\begin{smallmatrix} a & -b \\ -c & d \end{smallmatrix} \right)$ of $\text{SL}_2(K)$. We remark that X_D can also be presented as the quotient $(\mathbb{H} \times -\mathbb{H})/\text{SL}_2(O_D)$, using the fact that $\sqrt{D} = -\sqrt{\mathcal{D}}$; on the other hand, the surfaces $(\mathbb{H} \times \mathbb{H})/\text{SL}_2(O_D)$ and X_D are generally not isomorphic (see e.g. [HH]).

It is known that the intersection numbers $\langle T_N, T_M \rangle$ form the coefficients of a modular form [HZ1], [vG, Ch. VI]. The results of [GKZ] suggest that the intersection numbers of the refined modular curves $T_N(\nu)$ may similarly yield a Jacobi form.

4 Laminations

In this section we show algebraically that $\tilde{X}_D(1)$ gives a lamination of $\mathbb{H} \times \mathbb{H}$ by countably many disjoint hyperbolic planes. We also describe these
laminations explicitly for small values of D. Another proof of laminarity appears in §7.

Jacobian varieties. Let $\Omega(X)$ denote the space of holomorphic 1-forms on a compact Riemann surface X. The *Jacobian* of X is the Abelian variety $\text{Jac}(X) = \Omega(X)^*/H_1(X,\mathbb{Z})$, polarized by the intersection pairing on 1-cycles.

In the case of genus two, any principally polarized Abelian variety A is either a Jacobian or a product of polarized elliptic curves. The latter case occurs iff A admits real multiplication by \mathcal{O}_1, generated by projection to one of the factors of $A \cong B_1 \times B_2$. In particular, we have:

Theorem 4.1 For any $D \geq 4$, the locus of Jacobian varieties in X_D is given by $X_D - X_D(1)$.

Laminations. To describe $X_D(1)$ in more detail, given $N > 0$ such that $D = e^2 + 4N$ let

$$\Lambda_D^N = \{ U \in M_2(K) : U \text{ is a generator matrix}, \det(U) = N \text{ and } \nu(U) \equiv \pm(e + \sqrt{D})/2 \mod D_D \},$$

and let Λ_D be the union of all such Λ_D^N. Note that if U is in Λ_D, then $-U, U', U^*$ are also in Λ_D.

By Corollary 3.5, the preimage of $X_D(1)$ in $\tilde{X}_D = \mathbb{H} \times \mathbb{H}$ is given by:

$$\tilde{X}_D(1) = \bigcup \{ \mathbb{H}_U : U \in \Lambda_D \}.$$

Note that each \mathbb{H}_U is the graph of a Möbius transformation.

Theorem 4.2 The locus $\tilde{X}_D(1)$ gives a lamination of $\mathbb{H} \times \mathbb{H}$ by countably many hyperbolic planes.

(This means any two planes in $\tilde{X}_D(1)$ are either identical or disjoint.)

For the proof, it suffices to show that the difference $g \circ h^{-1}$ of two Möbius transformations in Λ_D is never elliptic. Since Λ_D is invariant under $U \mapsto U^* = (\det(U))U^{-1}$, this in turn follows from:

Theorem 4.3 For any $U_1, U_2 \in \Lambda_D$, we have $\text{Tr}(U_1 U_2)^2 \geq 4 \det(U_1 U_2)$.

Proof. By the definition of Λ_D, we can write $D = e^2_i + 4 \det(U_i) = e^2_i + 4N_i$, where $e_i \geq 0$. We can also assume that

$$U_i = \begin{pmatrix} \mu_i & b_i \sqrt{D} \\ -a_i & -\mu_i \end{pmatrix}$$

18
satisfies
\[\mu_i \equiv (x_i + y_i \sqrt{D})/2 \equiv (e_i + \sqrt{D})/2 \mod D \]
(replacing \(U_i \) with \(-U_i \) if necessary). It follows that \(y_i \) is odd and \(x_i = e_i \mod D \), which implies
\[\text{Tr}(U_1U_2) \equiv \text{Tr}(\mu_1\mu_2) = (x_1x_2 + Dy_1y_2)/2 \equiv (e_1e_2 - D)/2 \mod D. \] (4.1)
(The factor of 1/2 presents no difficulties, because \(x_i \) is even when \(D \) is even.)

Now suppose
\[\text{Tr}(U_1U_2)^2 < 4\text{det}(U_1U_2) = 4N_1N_2. \] (4.2)
Then we have \(|\text{Tr}(U_1U_2)| < 2\sqrt{N_1N_2} \leq D/2 \), and thus (4.1) implies
\[\text{Tr}(U_1U_2) = (e_1e_2 - D)/2. \]

But this implies
\[4\text{Tr}(U_1U_2)^2 = (D - e_1e_2)^2 \geq (D - e_1^2)(D - e_2^2) = (4N_1)(4N_2) = 16\text{det}(U_1U_2), \]
contradicting (4.2).

Small discriminants. To conclude we record a few cases where \(\Lambda_D \) admits a particularly economical description.

For concreteness, we will present \(\Lambda_D \) as a set matrices in \(\text{GL}_2^+(\mathbb{R}) \) using the chosen real place \(\iota_1 : K \to \mathbb{R} \). This works even when \(D = d^2 \), since both \(\mu \) and \(\mu' \) appear on the diagonal of \(U \in \Lambda_D \) (no information is lost). Under the standard action \((a b \atop c d) \cdot z = (az + b)/(cz + d) \) of \(\text{GL}_2^+(\mathbb{R}) \) on \(\mathbb{H} \), we can then write
\[\tilde{X}_D(1) = \bigcup_{\Lambda_D} \{ (\tau_1, \tau_2) : \tau_2 = U(\tau_1) \}. \]
This holds despite the twist in the definition (3.5) of \(\mathbb{H}_U \), because \(\Lambda_D \) is invariant under \((a b \atop c d) \mapsto (d b \atop c -a) \).

Theorem 4.4 For \(D = 4, 5, 8, 9 \) and 13 respectively, we have:
\[
\begin{align*}
\Lambda_4 &= \{ U \in M_2(\mathbb{Z}) : \det(U) = 1 \text{ and } U \equiv (\ast \ast) \mod 4 \}, \\
\Lambda_5 &= \{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : \det(U) = 1 \}, \\
\Lambda_8 &= \Lambda_8^1 \cup \Lambda_8^2 = \{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : \det(U) = 1 \text{ or } 2 \}, \\
\Lambda_9 &= \{ U \in M_2(\mathbb{Z}) : \det(U) = 2 \text{ and } U \equiv (\ast \ast) \mod 9 \}, \quad \text{and} \\
\Lambda_{13} &= \Lambda_{13}^1 \cup \Lambda_{13}^3 = \{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : \det(U) = 1 \text{ or } 3 \},
\end{align*}
\]
where it is understood that $a, b \in \mathbb{Z}$ and $\mu \in \mathcal{O}_D$.

Proof. Recall from Theorem 3.9 that $X_D(1) = \bigcup_{e^2+4N=D} T_N$ when $D = 4, 5, 8, 9$ and 13. When this equality holds, we can ignore the condition on $\nu(U)$ in the definition of Λ_D. The cases $D = 5, 8$ and 13 then follow directly from the definition of Λ^N_D. For $D = 9$, we note that any integral matrix satisfying $\det \begin{pmatrix} x & 9b \\ -a & y \end{pmatrix} = 2$ also satisfies $x + y = 0 \mod 3$, and thus it can be written in the form $\begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix}$ with

$$\mu = \frac{(x - y) + (x + y)\sqrt{3}/3}{2}.$$

Similar considerations apply when $D = 4$. $lacksquare$

5 Foliations of Teichmüller space

In this section we introduce a family of foliations F_i of Teichmüller space, related to normalized Abelian differentials and their periods $\tau_{ij} = \int_{b_i} \omega_j$. We then show:

Theorem 5.1 There is a unique holomorphic section of the period map $\tau_{ii} : T_g \to \mathbb{H}$ through any $Y \in T_g$. Its image is the leaf of F_i containing Y.

The case $g = 2$ will furnish the desired foliations of Hilbert modular surfaces.

Abelian differentials. Let Z_g be a smooth oriented surface of genus g. Let T_g be the Teichmüller space of Riemann surfaces Y, each equipped with an isotopy class of homeomorphism or marking $Z_g \to Y$. The marking determines a natural identification between $H_1(Z_g)$ and $H_1(Y)$ used frequently below.

Let $\Omega T_g \to T_g$ denote the bundle of nonzero Abelian differentials (Y, ω), $\omega \in \Omega(Y)$. For each such form we have a period map

$$I(\omega) : H_1(Z_g, \mathbb{Z}) \to \mathbb{C}$$

given by $I(\omega) : C \to \int_C \omega$. There is a natural action of $GL_2^+(\mathbb{R})$ on ΩT_g, satisfying

$$I(A \cdot \omega) = A \circ I(\omega) \quad (5.1)$$

20
under the identification \(\mathbb{C} = \mathbb{R}^2 \) given by \(x + iy = (x, y) \).

Each orbit \(\text{GL}_2^+(\mathbb{R}) \cdot (Y, \omega) \) projects to a complex geodesic

\[
f : \mathbb{H} \to T_g,
\]

which can be normalized so that \(f(i) = Y \) and

\[
\nu = \frac{df}{dt} \bigg|_{t=i} = \frac{i \overline{\omega}}{2 \omega}.
\]

The subspace of \(H^1(Z_g, \mathbb{R}) \) spanned by \((\text{Re} \omega, \text{Im} \omega) \) is constant along each orbit (cf. [Mc7, §3]).

Symplectic framings. Now let \((a_1, \ldots, a_g, b_1, \ldots, b_g) \) be a real symplectic basis for \(H_1(Z_g, \mathbb{R}) \) (with \(\langle a_i, b_i \rangle = -\langle b_i, a_i \rangle = 1 \) and all other products zero). Then for each \(Y \in T_g \), there exists a unique basis \((\omega_1, \ldots, \omega_g) \) of \(\Omega(Y) \) such that \(\int_a \omega_j = \delta_{ij} \). The period matrix

\[
\tau_{ij}(Y) = \int_{Y_i} \omega_j
\]

then determines an embedding

\[
\tau : T_g \to \delta_g.
\]

This agrees with the usual Torelli embedding, up to composition with an element of \(\text{Sp}_{2g}(\mathbb{R}) \). Note that \(\text{Im} \tau_{ii}(Y) > 0 \) since \(\text{Im} \tau \) is positive definite.

The normalized 1-forms \((\omega_i) \) give a splitting

\[
\Omega(Y) = \oplus_1^g \mathbb{C} \omega_i = \oplus_1^g F_i(Y),
\]

and corresponding subbundles \(F_i \subset \Omega T_g \).

Complex subspaces. Let \((a_1^*, b_1^*) \) denote the dual basis for \(H^1(Z_g, \mathbb{R}) \), and let \(S_i \) be the span of \((a_i^*, b_i^*) \). It easy to check that the following conditions are equivalent:

1. \(S_i \) is a complex subspace of \(H^1(Y, \mathbb{R}) \cong \Omega(Y) \).
2. \(S_i \) is spanned by \((\text{Re} \omega_i, \text{Im} \omega_i) \).
3. The period matrix \(\tau(Y) \) satisfies \(\tau_{ij} = 0 \) for all \(j \neq i \).
Let $T_g(S_i) \subset T_g$ denote the locus where these condition hold. Note that condition (3) defines a totally geodesic subset

$$H_i \cong \mathbb{H} \times S_{g-1} \subset S_g$$

such that $T_g(S_i) = \tau^{-1}(H_i)$.

Foliations. Next we show that the complex geodesics generated by the forms (Y, ω_i) give a foliation of Teichmüller space.

Theorem 5.2 The sub-bundle $F_i T_g \subset \Omega T_g$ is invariant under the action of $GL_2^+(\mathbb{R})$, as is its restriction to $T_g(S_i)$.

Proof. The invariance of $F_i T_g$ is immediate from (5.1). To handle the restriction to $T_g(S_i)$, recall that the span W of $(\text{Re} \omega_i, \text{Im} \omega_i)$ is constant along orbits; thus the condition $W = S_i$ characterizing $T_g(S_i)$ is preserved by the action of $GL_2^+(\mathbb{R})$.

Corollary 5.3 The foliation of $F_i T_g$ by $GL_2^+(\mathbb{R})$ orbits projects to a foliation F_i of T_g by complex geodesics.

Corollary 5.4 The locus $T_g(S_i)$ is also foliated by F_i: any leaf meeting $T_g(S_i)$ is entirely contained therein.

Proof of Theorem 5.1. The proof uses Ahlfors’ variational formula [Ah] and follows the same lines as the proof of [Mc4, Thm. 4.2]; it is based on the fact that the leaves of F_i are the geodesics along which the periods of ω_i change most rapidly.

Let $s : \mathbb{H} \to T_g$ be a holomorphic section of τ_{ii}. Let $v \in \mathbb{TH}$ be a unit tangent vector with respect to the hyperbolic metric $\rho = \frac{1}{(2 \text{Im } z)}$ of constant curvature -4, mapping to $Ds(v) \in T_Y T_g$. By the equality of the Teichmüller and Kobayashi metrics [Gd, Ch. 7], $Ds(v)$ is represented by a Beltrami differential $\nu = \nu(z) d\bar{\nu} / dz$ on Y with $\|\nu\|_{\infty} \leq 1$. But s is a section, so the composition

$$\tau_{ii} \circ s : \mathbb{H} \to \mathbb{H}$$

is the identity; thus the norm of its derivative, given by Ahlfors’ formula as

$$\|D(\tau_{ii} \circ s)(\nu)\| = \left| \int_Y \omega_i^2 \nu \right| / \int_Y |\omega_i|^2,$$

is one. It follows that $\nu = \overline{s_i / \omega_i}$ up to a complex scalar of modulus one, and thus $Ds(v)$ is tangent to the complex geodesic generated by (Y, ω_i). Equivalently, $s(\mathbb{H})$ is everywhere tangent to the foliation F_i; therefore its image is the unique leaf through Y.

22
6 Genus two

We can now obtain results on Hilbert modular surfaces by specializing to the case of genus two. In this section we will show:

Theorem 6.1 There is a unique holomorphic section of τ_1 passing through any given point of $\mathbb{H} \times \mathbb{H} - \tilde{X}_D(1)$.

Here $\tau_1 : \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{H}$ is simply projection onto the first factor. This result is a restatement of Theorem 1.2; as in §1, we assume $D \geq 4$.

Framings for real multiplication. Let $g = 2$, and choose a symplectic isomorphism

$$L = H_1(Z_g, \mathbb{Z}) \cong \mathcal{O}_D \oplus \mathcal{O}_D^*.$$

We then have an action of \mathcal{O}_D on $H_1(Z_g, \mathbb{Z})$, and the elements $\{a, b\} = \{(1, 0), (0, 1)\}$ in L give a distinguished basis for

$$H_1(Z_g, \mathbb{Q}) = L \otimes \mathbb{Q} \cong K^2$$

as a vector space over $K = \mathcal{O}_D \otimes \mathbb{Q}$. Using the two Galois conjugate embeddings $K \rightarrow \mathbb{R}$, we obtain an orthogonal splitting

$$H_1(Z_g, \mathbb{R}) = L \otimes \mathbb{R} = V_1 \oplus V_2$$

such that $k \cdot (C_1, C_2) = (kC_1, k'C_2)$. The projections (a_i, b_i) of $a, b \in L$ to each summand yield bases for V_i, which taken together give a standard symplectic basis for $H_1(Z_g, \mathbb{R})$. (Note that (a_i, b_i) is generally not an integral symplectic basis; indeed, when K is a field, the elements (a_i, b_i) do not even lie in $H_1(Z_g, \mathbb{Q})$.)

Let $S_1^D \subset H^1(Z_g, \mathbb{R})$ be the span of the dual basis a_1^*, b_1^*.

Theorem 6.2 The ring $\mathcal{O}_D \subset \text{End}(L)$ acts by real multiplication on $\text{Jac}(Y)$ if and only if $Y \in T_g(S_1^D)$.

Proof. Since $g = 2$ we have $S_2^D = (S_1^D)^\perp$, and thus $T_g(S_1^D) = T_g(S_2^D)$.

But $\text{Jac}(Y)$ has real multiplication iff S_1^D and S_2^D are complex subspaces of $H^1(Y, \mathbb{R}) \cong \Omega(Y)$ so the result follows. (Cf. [Mc4, Lemma 7.4].) ■
Sections. Let $E_D = X_D - X_D(1)$ denote the space of Jacobians in X_D, and $\tilde{E}_D = \mathbb{H} \times \mathbb{H} - \tilde{X}_D(1)$ its preimage in the universal cover. (The notation comes from [Mc7, §4], where we consider the space of eigenforms ΩE_D as a closed, $GL_2^+(\mathbb{R})$-invariant subset of ΩM_g.)

By the preceding result, the Jacobian of any $Y \in T_g(S^1_D)$ is an Abelian variety with real multiplication. Moreover, the marking of Y determines a marking

$$L \cong H_1(Y, \mathbb{Z}) \cong H_1(Jac(Y), \mathbb{Z})$$

of its Jacobian, and thus a map

$$Jac : T_g(S^1_D) \to \tilde{E}_D = \tilde{X}_D - \tilde{X}_D(1).$$

The basis (a_i, b_i) yields a pair of normalized forms $\omega_1, \omega_2 \in \Omega(Y)$. Similarly, we have a pair of normalized eigenforms $\eta_1, \eta_2 \in \Omega(A_\tau)$ for each $\tau \in \tilde{X}_D$, characterized by (3.2). Under the identification $\Omega(Y) = \Omega(Jac(Y))$, we find:

Theorem 6.3 The forms ω_i and η_i are equal for any $Y \in T_g(S^1_D)$. Thus $Jac(Y) = A_{(\tau_1, \tau_2)}$, where

$$\begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_2 \end{pmatrix} = \tau_{ij}(Y) = \left(\int_{b_i} \omega_j \right).$$ \hspace{1cm} (6.1)

Proof. The period map $\phi_\tau : L \to \mathbb{C}^2$ for $A_\tau = Jac(Y)$ is given by

$$\phi_\tau(C) = \left(\int_C \eta_1, \int_C \eta_2 \right) = (x_1 + x_2\tau_1, x'_1 + x'_2\tau_2),$$

where $C = (x_1, x_2) \in \mathcal{O}_D \oplus \mathcal{O}'_D$; in particular, we have

$$\phi_\tau(a) = \phi_\tau(1, 0) = (1, 1).$$

Since ϕ_τ diagonalizes the action of K, we also have

$$\phi_\tau(C) = \left(\int_{C_1} \eta_1, \int_{C_2} \eta_2 \right)$$

for any $C = C_1 + C_2 \in L \otimes \mathbb{R} = V_1 \oplus V_2$. Setting $C = a$, this implies $\phi_\tau(a_1) = (1, 0)$ and $\phi_\tau(a_2) = (0, 1)$; thus $\int_{a_i} \eta_j = \delta_{ij}$, and therefore $\eta_i = \omega_i$ for $i = 1, 2$. Similarly, we have

$$\phi_\tau(b) = (\tau_1, \tau_2) = (\tau_{11}, \tau_{22}),$$

which implies Y and A_τ are related by (6.1).
Corollary 6.4 We have a commutative diagram

\[
\begin{array}{ccc}
T_g(S^D_1) & \xrightarrow{\text{Jac}} & \tilde{E}_D \\
\tau_{11} & & \downarrow \tau_1 \\
\mathbb{H} & &
\end{array}
\]

Proof of Theorem 6.1. Using the Torelli theorem, it follows easily that \(\text{Jac} : T_g(S^D_1) \to \tilde{E}_D \) is a holomorphic covering map. Since \(\mathbb{H} \) is simply-connected, any section \(s \) of \(\tau_1 \) lifts to a section \(\text{Jac}^{-1} \circ s \) of \(\tau_{11} \). Thus Theorem 5.1 immediately implies Theorem 6.1.

7 Holomorphic motions

In this section we use the theory of holomorphic motions to define and characterize the foliation \(\mathcal{F}_D \).

Holomorphic motions. Given a set \(E \subset \mathbb{C} \) and a basepoint \(s \in \mathbb{H} \), a holomorphic motion of \(E \) over \((\mathbb{H}, s) \) is a family of injective maps

\[F_t : E \to \hat{\mathbb{C}}, \quad t \in \mathbb{H}, \]

such that \(F_s(z) = z \) and \(F_t(z) \) is a holomorphic function of \(t \).

A holomorphic motion of \(E \) has a unique extension to a holomorphic motion of its closure \(\overline{E} \); and each map \(F_t : E \to \hat{\mathbb{C}} \) extends to a quasiconformal homeomorphism of the sphere. In particular, \(F_t|\text{int}(E) \) is quasiconformal (see e.g. [Dou]).

These properties imply:

Theorem 7.1 Let \(P \) be a partition of \(\mathbb{H} \times \mathbb{H} \) into disjoint graphs of holomorphic functions. Then:

1. \(P \) is the set of leaves of a transversally quasiconformal foliation \(\mathcal{F} \) of \(\mathbb{H} \times \mathbb{H} \); and

2. If we adjoin the graphs of the constant functions \(f : \mathbb{H} \to \partial\mathbb{H} \) to \(P \), we obtain a continuous foliation of \(\mathbb{H} \times \mathbb{H} \).

The foliation \(\mathcal{F}_D \). Recall that every component of \(\tilde{X}_D(1) \subset \mathbb{H} \times \mathbb{H} \) is the graph of a Möbius transformation. By Theorem 6.1, there is a unique partition of \(\mathbb{H} \times \mathbb{H} - \tilde{X}_D(1) \) into the graphs of holomorphic maps as well.
Taken together, these graphs form the leaves of a foliation \tilde{F}_D of $\mathbb{H} \times \mathbb{H}$ by the preceding result. Since $\tilde{X}_D(1)$ is invariant under $\text{SL}(O_D \oplus O_D^\vee)$, the foliation \tilde{F}_D descends to a foliation F_D of X_D.

To characterize F_D, recall that the surface X_D admits a holomorphic involution $\iota(\tau_1, \tau_2) = (\tau_2, \tau_1)$ which preserves $X_D(1)$.

Theorem 7.2 The only leaves shared by F_D and $\iota(F_D)$ are the curves in $X_D(1)$.

Proof. Let $f : \mathbb{H} \to \mathbb{H}$ be a holomorphic function whose graph F is both a leaf of \tilde{F}_D and $\iota(\tilde{F}_D)$. Then $\iota(F)$ is also a graph, so f is an isometry. But if $F \cap \tilde{X}_D(1) = \emptyset$, then F lifts to a leaf of the foliation F_1 of Teichmüller space, and hence f is a contraction by [Mc4, Thm. 4.2].

Corollary 7.3 The only leaves of \tilde{F}_D that are graphs of Möbius transformations are those belonging to $\tilde{X}_D(1)$.

Complex geodesics. Let us say F is a foliation by complex geodesics if each leaf is a hyperbolic Riemann surface, isometrically immersed for the Kobayashi metric. We can then characterize F_D as follows.

Theorem 7.4 Up to the action of ι, F_D is the unique extension of the lamination $X_D(1)$ to a foliation of X_D by complex geodesics.

Proof. Let F be a foliation by complex geodesics extending $X_D(1)$. Then every leaf of its lift \tilde{F} to \tilde{X}_D is a Kobayashi geodesic for $\mathbb{H} \times \mathbb{H}$. But a complex geodesic in $\mathbb{H} \times \mathbb{H}$ is either the graph of a holomorphic function or its inverse, so every leaf belongs to either \tilde{F}_D or $\iota(\tilde{F}_D)$. Consequently every leaf of F is a leaf of F_D or $\iota(F_D)$. Since these foliations have no leaves in common on the open set $U = X_D - X_D(1)$, F coincides with one or the other.

Stable curves. The Abelian varieties $E \times F$ in $X_D(1)$ are the Jacobians of certain stable curves with real multiplication, namely the nodal curves $Y = E \vee F$ obtained by gluing E to F at a single point. If we adjoin these stable curves to M_2, we obtain a partial compactification M^*_2 which maps isomorphically to A_2. The locus $X_D(1)$ can then be regarded as the projection to X_D of a finite set of $\text{GL}_2^+(\mathbb{R})$ orbits in ΩM^*_2, giving another proof that it is a lamination.
8 Quasiconformal dynamics

In this section we use the relative period map \(\rho = \int_{y_1}^{y_2} \eta_1 \) to define a meromorphic quadratic differential \(q = (d\rho)^2 \) transverse to \(F_D \). We then show the transverse dynamics of \(F_D \) is given by Teichmüller mappings relative to \(q \).

Absolute periods. The level sets of \(\tau \) form the leaves of a holomorphic foliation \(\tilde{A}_D \) on \(\mathbb{H} \times \mathbb{H} \) which covers foliation \(A_D \) of \(X_D \). By (3.2), every \(\tau = (\tau_1, \tau_2) \) determines a pair of eigenforms \(\eta_1, \eta_2 \in \Omega(A_\tau) \) such that the absolute periods

\[
\int_C \eta_1, \quad C \in H_1(A_\tau, \mathbb{Z})
\]

are constant along the leaves of \(\tilde{A}_D \). Since every leaf of \(\tilde{F}_D \) is the graph of a function \(f : \mathbb{H} \to \mathbb{H} \), we have:

Theorem 8.1 The foliation \(A_D \) is transverse to \(F_D \).

The Weierstrass curve. Recall that \(E_D \subset X_D \) denotes the locus of Jacobians with real multiplication by \(\mathcal{O}_D \). For \([A_\tau] = \text{Jac}(Y) \in E_D \) we can regard the eigenforms \(\eta_1, \eta_2 \) as holomorphic 1-forms in \(\Omega(Y) \cong \Omega(A_\tau) \).

Let \(W_D \subset E_D \) denote the locus where \(\eta_1 \) has a double zero on \(Y \). By [Mc5] we have:

Theorem 8.2 The locus \(W_D \) is an algebraic curve with one or two irreducible components, each of which is a leaf of \(F_D \).

We refer to \(W_D \) as the Weierstrass curve, since \(\eta_1 \) vanishes at a Weierstrass point of \(Y \).

Relative periods. Let \(E_D(1,1) = X_D - (W_D \cup X_D(1)) \) denote the Zariski open set where \(\eta_1 \) has a pair of simple zeros, and let \(\tilde{E}_D(1,1) \) be its preimage in the universal cover \(\tilde{X}_D \). Let

\[
\mathbb{H}_s = \{ s \} \times \mathbb{H} \subset \mathbb{H} \times \mathbb{H},
\]

and let \(\mathbb{H}_s^* = \mathbb{H}_s \cap \tilde{E}_D(1,1) \).

For each \(\tau \in \mathbb{H}_s^* \), let \(y_1, y_2 \) denote the zeros of the associated form \(\eta_1 \in \Omega(Y) \). We can then define the (multivalued) relative period map \(\rho_s : \mathbb{H}_s^* \to \mathbb{C} \) by

\[
\rho_s(\tau) = \int_{y_1}^{y_2} \eta_1.
\]
To make $\rho_s(\tau)$ single-valued, we must (locally) choose (i) an ordering of the zeros y_1 and y_2, and (ii) a path on Y connecting them.

Quadratic differentials. Let z be a local coordinate on H_s, and recall that the absolute periods of η_1 are constant along H_s. Thus if we change the choice of path from y_1 to y_2, the derivative $d\rho/dz$ remains the same; and if we interchange y_1 and y_2, it changes only by sign. Thus the quadratic differential

$$q = (d\rho/dz)^2 dz^2$$

is globally well-defined on H^*_s.

Theorem 8.3 The form q extends to a meromorphic quadratic differential on H_s, with simple zeros where H_s meets \tilde{W}_D, and simple poles where it meets $\tilde{X}_D(1)$.

Proof. It is a general result that the period map provides holomorphic local coordinates on any stratum of ΩM_g (see [V2], [MS, Lemma 1.1], [KZ]). Thus $\rho_s|_{H^*_s}$ is holomorphic with $d\rho_s \neq 0$, and hence $q|_{H^*_s}$ is a nowhere vanishing holomorphic quadratic differential.

To see q acquires a simple zero when η_1 acquires a double zero, note that the relative period map $\rho(t) = \int_{-\sqrt{t}}^{\sqrt{t}} (z^2 - t) \, dz = (-4/3)t^{3/2}$ of the local model $\eta_t = (z^2 - t) \, dz$ satisfies $(d\rho/dt)^2 = 4t$. Similarly, a point of $H_s \cap \tilde{X}_D(1)$ is locally modeled by the family of connected sums

$$(Y_t, \eta_t) = (E_1, \omega_1) \#_I (E_2, \omega_2),$$

with $I = [0, \rho(t)] = [0, \pm \sqrt{t}]$. Since $(d\rho/dt)^2 = 1/(4t)$, at these points q has simple poles.

See [Mc7, §6] for more on connected sums.

Teichmüller maps. Now let $f : H_s \to H_t$ be a quasiconformal map. We say f is a **Teichmüller map**, relative to a holomorphic quadratic differential q, if its complex dilatation satisfies

$$\mu(f) = \left(\frac{\partial f}{\partial \bar{z}} \right) \frac{d\bar{z}}{dz} = \frac{\bar{q}}{|q|}$$

28
for some $\alpha \in \mathbb{C}^*$. This is equivalent to the condition that $w = f(z)$ is real-linear in local coordinates where $q = dz^2$ and dw^2 respectively. In such charts we can write

$$w = w_0 + D_q(f) \cdot z,$$

with $D_q(f) \in \text{SL}_2(\mathbb{R})$. We refer to $D_q(f)$ as the linear part of f; it is only well-defined up to sign, since $z \mapsto -z$ preserves dz^2.

Theorem 8.4 Given $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(\mathcal{O}_D + \mathcal{O}_D^\vee)$ and $s \in \mathbb{H}$, let $\mathbb{H}_t = g(\mathbb{H}_s)$. Then the linear part of $g : \mathbb{H}_s \to \mathbb{H}_t$ is given by $D_q(g) : z \mapsto (d - cs)^{-1} z$.

Proof. Since the Riemann surfaces Y at corresponding points of \mathbb{H}_s and \mathbb{H}_t differ only by marking, the relative period maps ρ_s and ρ_t differ only by the normalization of η_1. This discrepancy is accounted for by equation (3.4), which gives $\rho_t/\rho_s = \chi(g,s) = (d - cs)^{-1}$. Since the coordinates ρ_s and ρ_t linearize q, the map $D_q(g)$ is given by multiplication by $(d - cs)^{-1}$. \blacksquare

Now let $C_{st} : \mathbb{H}_s \to \mathbb{H}_t$ be the unique map such that z and $C_{st}(z)$ lie on the same leaf of $\tilde{\mathcal{F}}_D$.

Theorem 8.5 The linear part of C_{st} is given by $D_q(C_{st}) = A_t A_s^{-1}$, where $A_u = \begin{pmatrix} 1 & \text{Re}(u) \\ 0 & \text{Im}(u) \end{pmatrix} \in \text{PSL}_2(\mathbb{R})$.

Proof. By the definition of \mathcal{F}_D, the forms η_1 at corresponding points of \mathbb{H}_s and \mathbb{H}_t are related by some element $B \in \text{GL}_2^+(\mathbb{R})$ acting on $\Omega \mathcal{T}_g$. Thus $\rho_t = B \circ \rho_s$ and therefore $D_q(C_{st}) = B$. Since the action of B on the absolute periods of η_1 satisfies

$$B(\mathcal{O}_D + \mathcal{O}_D^\vee s) = \mathcal{O}_D + \mathcal{O}_D^\vee t$$

(in the sense of equation (3.1)), we have $B(1) = 1$ and $B(s) = t$, and thus $B = A_t A_s^{-1}$ as above. \blacksquare

Dynamics. Every leaf of $\tilde{\mathcal{F}}_D$ meets the transversal \mathbb{H}_s in a single point. Thus the action of $g \in \text{SL}(\mathcal{O}_D + \mathcal{O}_D^\vee)$ on the space of leaves determines a holonomy map

$$\phi_g : \mathbb{H}_s \to \mathbb{H}_s,$$

characterized by the property that $(s, \phi_g(z))$ lies on the same leaf as $g(s, z)$.

Theorem 8.6 The group $\text{SL}(\mathcal{O}_D + \mathcal{O}_D^\vee)$ acts on \mathbb{H}_s by Teichmüller mappings, satisfying $D_q(\phi_g) = g$ in the case $s = i$. 29
As usual we regard g as a real matrix using $\iota_1 : K \to \mathbb{R}$.

Proof. Let $g = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$, and $t = (as - b)/(-cs + d)$; then $\mathbb{H}_t = g(\mathbb{H}_s)$.

Since $\phi_g(z)$ is obtained from $g(s, z)$ by combing it along the leaves of \mathcal{F}_D back into \mathbb{H}_s, we have $\phi_g(s, z) = C_{ts}(g(s, z))$. Thus the chain rule implies

$$D_q(\phi_g) \cdot z = B \cdot z = A_s \circ A_t^{-1}(z/(-cs + d)).$$

Now assume $s = i$. Then we have $B(ia - b) = A_t^{-1}(t) = i$ and $B(-ci + d) = A_t^{-1}(1) = 1$; therefore $B^{-1} = \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$ and thus $B = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = g$.

Corollary 8.7 The foliation \mathcal{F}_D carries a natural transverse invariant measure.

Proof. Since $\det D_q(\phi_g) = 1$ for all g, the form $|q|$ gives a holonomy-invariant measure on the transversal \mathbb{H}_s.

Finally we show that, although $\phi_g|\mathbb{H}_s$ is quasiconformal, its continuous extension to $\partial \mathbb{H}_s$ is a Möbius transformation.

Theorem 8.8 For any $g = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^\vee)$ and $z \in \partial \mathbb{H}_s$, we have

$$\phi_g(z) = (a'z - b')/(-c'z + d').$$

Proof. By Theorem 7.1, the combing maps C_{st} extend to the identity on $\partial \mathbb{H}_s$. Thus $(t, \phi_g(z)) = g(s, z)$, and the result follows from equation (3.3).

Note: if we use the transversal \mathbb{H}_t instead of \mathbb{H}_s, the holonomy simply changes by conjugation by C_{st}.

9 Further results

In this section we summarize related results on the density of leaves, isoperiodic forms, holomorphic motions and iterated rational maps.

I. Density of leaves. By [Mc7], the closure of the complex geodesic $f : \mathbb{H} \to \mathcal{M}_2$ generated by a holomorphic 1-form is either an algebraic curve, a Hilbert modular surface or the whole moduli space. Since the leaves of \mathcal{F}_D are examples of such complex geodesics, we obtain:
Theorem 9.1 Every leaf of \mathcal{F}_D is either a closed algebraic curve, or a dense subset of X_D.

It is easy to see that the union of the closed leaves is dense when $D = d^2$. On the other hand, the classification of Teichmüller curves in [Mc5] and [Mc6] implies:

Theorem 9.2 If D is not a square, then \mathcal{F}_D has only finitely many closed leaves. These consist of the components of $W_D \cup X_D(1)$ and, when $D = 5$, the Teichmüller curve generated by the regular decagon.

II. Isoperiodic forms. Next we discuss interactions between the foliations \mathcal{F}_D and \mathcal{A}_D. When $D = d^2$ is a square, the surface X_D is finitely covered by a product, and hence every leaf of \mathcal{A}_D is closed.

Theorem 9.3 If D is not a square, then every leaf L of \mathcal{A}_D is dense in X_D, and $L \cap F$ is dense in F for every leaf F of \mathcal{F}_D.

Proof. The first result follows from the fact that $\text{SL}(O_D \oplus O_D^\perp)$ is a dense subgroup of $\text{SL}_2(\mathbb{R})$, and the second follows from the first by transversality of \mathcal{A}_D and \mathcal{F}_D.

Let us say a pair of 1-forms $(Y_i, \omega_i) \in \Omega \mathcal{M}_g$ are isoperiodic if there is a symplectic isomorphism

$$\phi : H_1(Y_1, \mathbb{Z}) \to H_1(Y_2, \mathbb{Z})$$

such that the period maps

$$I(\omega_i) : H_1(Y_i, \mathbb{Z}) \to \mathbb{C}$$

satisfy $I(\omega_1) = I(\omega_2) \circ \phi$. Since the absolute periods of η_1 are constant along the leaves of \mathcal{A}_D, from the preceding result we obtain:

Corollary 9.4 The $\text{SL}_2(\mathbb{R})$-orbit of any eigenform for real multiplication by O_D, $D \neq d^2$, contains infinitely many isoperiodic forms.

For a concrete example, let $Q \subset \mathbb{C}$ be a regular octagon containing $[0, 1]$ as an edge. Identifying opposite sides of Q, we obtain the octagonal form

$$(Y, \omega) = (Q, dz)/\sim$$
of genus two.

Let \(\mathbb{Z}[\zeta] \subset \mathbb{C} \) denote the ring generated by \(\zeta = (1+i)/\sqrt{2} = \exp(2\pi i/8) \), equipped with the symplectic form

\[
\langle z_1, z_2 \rangle = \text{Tr}_Q^\mathbb{Q}(\zeta^2 + \zeta^3)z_1z_2/4.
\]

Then it is easy to check that:

1. The octagonal form \(\omega \) has a single zero of order 2, and
2. Its period map \(I(\omega) \) sends \(H_1(Y, \mathbb{Z}) \) to \(\mathbb{Z}[\zeta] \) by a symplectic isomorphism.

However, these two properties do not determine \((Y, \omega) \) uniquely. Indeed, \(\omega \) is an eigenform for real multiplication by \(\mathcal{O}_8 \), so the preceding Corollary ensures there are infinitely many isoperiodic forms \((Y_i, \omega_i) \) in its \(\text{SL}_2(\mathbb{R}) \) orbit. In other words we have:

Corollary 9.5 There are infinite many fake octagonal forms in \(\Omega \mathcal{M}_2 \).

Note that the forms \((Y_i, \omega_i) \) cannot be distinguished by their relative periods either, since they all have double zeros.

A similar statement can be formulated for the pentagonal form on the curve \(y^2 = x^5 - 1 \).

III. Top-speed motions. Let \(F_t : E \to \mathbb{H} \) be a holomorphic motion of \(E \subset \mathbb{H} \) over \((\mathbb{H}, s) \). By the Schwarz lemma, we have \(||dF_t(z)/dt|| \leq 1 \) with respect to the hyperbolic metric on \(\mathbb{H} \). Let us say \(F_t \) is a top-speed holomorphic motion if equality holds everywhere; equivalently, if \(t \mapsto F_t(z) \) is an isometry of \(\mathbb{H} \) for every \(z \in E \).

A top-speed holomorphic motion is maximal if it cannot be extended to a top-speed motion of a larger set \(E' \supset E \).

Theorem 9.6 For any discriminant \(D \geq 4 \), the map

\[
F_t(U(s)) = U(t), \quad U \in \Lambda_D
\]

gives a maximal top-speed holomorphic motion of \(E = \Lambda_D \cdot s \) over \((\mathbb{H}, s) \).

Proof. Let \(t \mapsto f(t) = F_t(z) \) be an extension of the motion to a point \(z \notin E \). Then the graph of \(f \) is a leaf of \(\tilde{F}_D \), since it is disjoint from \(\tilde{X}_D(1) \). But the only leaves that are graphs of Möbius transformations are those in \(\tilde{X}_D(1) \), by Corollary 7.3. \(\blacksquare \)
Corollary 9.7 The group $\Gamma(2) = \{ A \in \text{SL}_2(\mathbb{Z}) : A \equiv I \mod 2 \}$ gives a maximal top-speed holomorphic motion of $E = \Gamma(2) \cdot s$ over (\mathbb{H}, s).

Proof. We have $\Gamma(2) = g\Lambda_4 g^{-1}$, where $g = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix}$ (Theorem 4.4).

IV. Iterated rational maps. Finally we explain how the foliation \mathcal{F}_4 of X_4 arises in complex dynamics.

First recall that the moduli space of elliptic curves can be described as the quotient orbifold $\mathcal{M}_1 = \tilde{\mathcal{M}}_1 / S_3$, where

$$\tilde{\mathcal{M}}_1 = \mathbb{H} / \Gamma(2) \cong \mathbb{C} - \{0, 1\}.$$

The deck group S_3 also acts diagonally on $\tilde{\mathcal{M}}_1 \times \tilde{\mathcal{M}}_1$, preserving the diagonal Δ.

Theorem 9.8 For $D = 4$, we have $(X_D, X_D(1)) \cong (\tilde{\mathcal{M}}_1 \times \tilde{\mathcal{M}}_1, \Delta) / S_3$.

Proof. Since $\mathcal{O}_4^\vee = (1/2) \mathcal{O}_4$, the surface X_4 is isomorphic to $(\mathbb{H} \times \mathbb{H}) / \text{SL}_2(\mathcal{O}_4)$. In these coordinates we have $\Lambda_4 = \Gamma(2)$. Since

$$\text{SL}_2(\mathcal{O}_4) \cong \{ (A_1, A_2) \in \text{SL}_2(\mathbb{Z}) : A_1 \equiv A_2 \mod 2 \}$$

contains $\Gamma(2) \times \Gamma(2)$ as a subgroup of index 6, the result follows.

Now consider, for each $t \in \tilde{\mathcal{M}}_1$, the elliptic curve E_t defined by $y^2 = x(x-1)(x-t)$. There is a unique rational map $f_t : \mathbb{P}^1 \to \mathbb{P}^1$ such that

$$x(2P) = f_t(x(P))$$

with respect to the usual group law on E_t. Indeed, using the fact that $-2P$ lies on the tangent line to E_t at P, we find

$$f_t(z) = \frac{(z^2 - t)^2}{4z(z-1)(z-t)}.$$

Note that the postcritical set

$$P(f_t) = \bigcup \{f^n_t(z) : n > 0, f'_t(z) = 0 \}$$

coincides with the branch locus $\{0, 1, t, \infty\}$ of the map $x : E_t \to \mathbb{P}^1$.

The rational maps $f_t(z)$ form a stable family of Lattès examples. It is well-known that the Julia set of any Lattès example is the whole Riemann sphere; and that in any stable family, the Julia set varies by a holomorphic motion respecting the dynamics (see e.g. [MSS], [Mc1, Ch. 4], [Mil].)
Theorem 9.9 As \(t \) varies in \(\tilde{M}_1 \), the holomorphic motion of \(J(f_t) \) sweeps out the lift of the foliation \(\mathcal{F}_4 \) to the covering space \(\tilde{M}_1 \times \tilde{M}_1 \) of \(X_4 \).

Proof. Let \(\mathcal{G} \) be the foliation of \(\tilde{M}_1 \times \mathbb{P}^1 \) swept out by \(J(f_t) \). Since the holomorphic motion respects the dynamics, it preserves the post-critical set, and thus the leaves of \(\mathcal{G} \) include the loci \(z = 0, 1, \infty \) as well as the diagonal \(t = z \). In particular, \(\mathcal{G} \) restricts to a foliation of the finite cover \(\tilde{M}_1 \times \tilde{M}_1 - \Delta \) of \(X_4 - X_4(1) \). Since each leaf of \(\mathcal{G} \) lifts to the graph of a holomorphic function in the universal cover \(\mathbb{H} \times \mathbb{H} \), it lies over a leaf of \(\mathcal{F}_D \) by the uniqueness part of Theorem 1.2.

Algebraic curves. The loci \(f^n_t(z) = \infty \) form a dense set of algebraic leaves of \(\mathcal{G} \) that can easily be computed inductively. The real points of these curves are graphed in Figure 1; thus the figure depicts the lift of \(\mathcal{F}_4 \) to the finite cover \(\tilde{M}_1 \times \tilde{M}_1 \) of \(X_4 \).

References

