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1 Introduction

LetMg denote the moduli space of Riemann surfaces of genus g, and ΩMg →
Mg the bundle of pairs (X, ω), where ω 6= 0 is a holomorphic 1-form on X ∈ Mg.

There is a natural action of GL+

2 (R) on ΩMg, whose orbits project to com-
plex geodesics in Mg. The projection of an orbit is almost always dense. If
the stabilizer SL(X, ω) ⊂ SL2(R) of a given form is a lattice, however, then the
projection of its orbit gives a closed, algebraic Teichmüller curve

f : V = H/ SL(X, ω)→Mg.

A Teichmüller curve is primitive if it does not arise from a curve in Mh,
h < g, via a covering construction. Our main result completes the classification
of primitive Teichmüller curves in genus two.

Theorem 1.1 The decagon form ω = dx/y on the curve y2 = x(x5 − 1) gen-
erates the only primitive Teichmüller curve f : V → M2 coming from a form
with simple zeros.

In contrast to this uniqueness, in genus two there are countably many prim-
itive Teichmüller curves coming from forms with double zeros. Each such curve
is uniquely determined by its discriminant and its spin invariant [Mc3].
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Figure 1. The billiard table L(b, e), with λ = (e +
√

e2 + 4b)/2.

Billiards. As a corollary of Theorem 1.1, we obtain a related classification of
billiards in polygons.

Let P ⊂ C be a polygon with angles in πQ. Via an unfolding construction, P
determines a holomorphic 1-form (X, ω) ∈ ΩMg such that billiard trajectories
in P correspond to geodesics on (X, |ω|). We refer to g as the genus of P .

For example, let P denote the right triangle with smallest internal angle
π/10. Then P unfolds, under repeated reflection through its long sides, to give
a tiling of the regular decagon Q by 20 triangles. The associated 1-form (X, ω)
is obtained from (Q, dz) by identifying opposite sides; it has genus two, and
agrees with the decagon form cited above.

We say P and P ′ are equivalent if A·(X, ω) = (X ′, ω′) for some A ∈ GL+

2 (R).
Equivalence is a form of scissors congruence that respects the billiard dynamics.

1



Veech showed that if SL(X, ω) is a lattice, then the billiard flow in P is
dynamically optimal: every trajectory is either periodic or uniformly distributed,
and the number of types of periodic trajectories of length ≤ L is asymptotic to
c(P ) · L2; see [V].

Theorem 1.2 Let P ⊂ C be a polygon of genus two. Then the billiard flow in
P is dynamically optimal if and only if P is equivalent to:

• A polygon tiled by congruent 30-60-90 triangles or isoceles right triangles;

• The L-shaped polygon L(b, e), for some b, e ∈ Z (Figure 1); or

• The 18-72-90 triangle that tiles the regular decagon.

Otherwise, there is a billiard trajectory in P that is neither periodic nor dense.

Proof. By [Mc4, Thm. 7.1], either SL(X, ω) is a lattice, or P has a trajectory
that is neither periodic nor dense.

Assume we are in the former case. Then P is dynamically optimal, and
(X, ω) generates a Teichmüller curve f : V →M2.

If ω has a double zero, then P is equivalent to an L-shaped polygon L(b, e)
[Mc3, Cor. 1.3], and all such polygons are optimal

If ω has a pair of simple zeros and the Teichmüller curve it generates is
primitive, then P is equivalent to the 18-72-90 triangle by Theorem 1.1.

Otherwise, ω is the pullback of a form of genus one via a covering π : X →
C/Λ branched over just one point. We can assume Λ is the square or hexagonal
lattice, and thus P is equivalent to a polygon tiled as above. (Examples of this
type include rectangles with rational barriers [EMS].) Conversely SL(X, ω) is
commensurable to SL2(Z) whenever P can be tiled in this way, and thus P is
optimal.

Infinitely generated groups. Theorem 1.1 also yields a large family of ex-
amples where SL(X, ω) is infinitely generated.

Theorem 1.3 Let (X, ω) be a form of genus two with simple zeros, such that
the trace field of SL(X, ω) is irrational. Then either:

• (X, ω) is equivalent to the decagon form, or

• SL(X, ω) is an infinitely generated group.

This follows from [Mc2, §10].

Torsion divisors. The proof of our main result relies on:

Theorem 1.4 (Möller) Suppose SL(X, ω) is a lattice with trace field K, and
deg(K/Q) agrees with the genus of X. Then the divisor [P −Q] has finite order
in Jac(X), whenever P and Q are two zeros of ω.
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See [Mo, Cor 3.4]. The proof also uses an elementary fact about cyclotomic
fields (§2):

Theorem 1.5 There are only 15 pairs of rational numbers 0 < α < β < 1/2
such that sin(πα)/ sin(πβ) is a quadratic irrational.

To see how these results are related to Theorem 1.1, let f : V → M2 be
a primitive Teichmüller curve generated by a form (X, ω) ∈ ΩM2 with simple
zeros. Normalizing by the action of GL+

2 (R), we can assume

(X, ω) = (E1, ω1)#
I
(E2, ω2)

is the connected sum of two forms of genus one, with period lattices given by

Per(ω1) = Z(λ, 0)⊕ Z(0, λ), λ = (e +
√

e2 + 4bc)/2, and

Per(ω2) = Z(b, 0)⊕ Z(a, c)

for suitable integers (a, b, c, e) (see §4). We can then use the diagonal matrices
As = ( 1 0

0 s ) to push (X, ω) to the boundary of moduli space, and obtain a
limiting stable Abelian differential (Y, dx/y). The limit Y is a stable curve of
genus zero with two nodes, that can be expressed in the form

y2 = (1− x2)(x −A)2(x −B)2

with −1 < A < B < 1. (The nodal curve that arises from the decagon form,
determined in §5, is shown in Figure 2.)

-1 -0.5 0.5 1

-4

-2

2

4

Figure 2. A nodal curve in the boundary ofM2.

Writing (A, B) = (− cosπα, cos πβ) with 0 < α, β < 1, we find

sin(πα)

sin(πβ)
=

λ

b
(1.1)

by a residue calculation (§4). On the other hand, by Theorem 1.4 the divisor
D∞ = P − Q is torsion in Jac(Y ), where (dx/y) = P + Q consists of the two
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points in Y lying over x =∞. But it is straightforward to show if D∞ is torsion
in Jac(Y ), then α and β are rational (§2). Thus (1.1) must agree with one of
the 15 quadratic irrational sine ratios occurring in Theorem 2.1.

This fact radically constrains the possibilities for (X, ω), leading to 22 cases
listed in §6. Only the decagon form (which comes from sin(π/5)/ sin(2π/5) =
(−1 +

√
5)/2) passes a further rationality test, completing the proof.

Curves on Hilbert modular surfaces. We conclude by formulating a purely
algebraic corollary of Theorem 1.1.

Let D > 0 be the discriminant of an order OD in a real quadratic field. For
each n > 0, let ΩED[n] ⊂M2 denote the set of forms (X, ω) such that

• Jac(X) admits real multiplication by OD, with ω as an eigenform, and

• The divisor [P −Q] has order n in Jac(X), where P and Q are the zeros
of ω.

We denote the projection of ΩED[n] toM2 by WD[n]. The locus WD[1] is called
the Weierstrass curve in [Mc3].

Theorem 1.6 The variety WD[1] is 1-dimensional for all D, as is the locus
W5[5]. Otherwise WD[n] is zero-dimensional.

This result follows from:

Theorem 1.7 The primitive Teichmüller curves generated by forms of genus
two coincide with the 1-dimensional irreducible components of

⋃
WD[n].

Proof. Let ΩRD ⊂ ΩM2 denote the set of eigenforms (X, ω) for real multipli-
cation by OD such that the relative periods of ω lie in the rational span of its
absolute periods, i.e. ∫ Q

P

ω ∈ Per(ω)⊗Q

where P and Q are the zeros of ω. The locus ΩRD is a countable union of
GL+

2 (R)-orbits, so its projection RD ⊂ M2 is a countable union of complex
geodesics.

By the Abel-Jacobi Theorem, if n(P −Q) is a principal divisor then n
∫ Q

P ξ
is a period of ξ for every ξ ∈ Ω(X). Thus WD[n] ⊂ RD, so dimWD[n] ≤ 1.

Now let f : V → M2 be a primitive Teichmüller curve. Then f(V ) is
contained in the locus of real multiplication by [Mc1], and f(V ) ⊂ WD[n] by
Theorem 1.4. Conversely, if V ⊂WD[n] is an irreducible curve, then V is also an
algebraic component of R. Hence V is a Teichmüller curve, which is primitive
because D is not a square.

Proof of Theorem 1.6. As we will see in §5, the curve generated by the
decagon form lies in W5[5]. Moreover, the forms in ΩWD[n] have simple zeros
iff n > 1. Thus the theorem is immediate from [Mc3] when n = 1, and from
Theorem 1.1 when n > 1.
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It would be interesting to have a similar algebraic description of the primitive
Teichmüller curves in higher genus.

Notes and references. Theorem 1.1 was conjectured in [Mc3], and established
for all Teichmüller curves with discriminant D ≤ 400 in [Mc4]. For additional
results related to Teichmüller curves in genus two, see [V], [GJ], [EMS], [HS],
[HL], and [Ca]. I would like to thank J. Harris and M. Möller for useful discus-
sions.

2 Ratios of sines

In this section we will show:

Theorem 2.1 For each d > 0, there are only finitely many pairs of rational
numbers 0 < α < β ≤ 1/2 such that

sin(πα)/ sin(πβ)

is an algebraic number of degree d over Q.

Lemma 2.2 Let ft(x) = sin(tx)/(t sin(x)) with t > 1. If x1, tx1 and x2 all lie
in the interval [0, π/2], and ft(x1) = ft(x2), then x1 = x2.

Proof. Since 2/π ≤ sin(x)/x ≤ 1 for all x ∈ [0, π/2], we have ft(x1) ≥ 2/π ≥
1/2, which implies

(2/π)x2 ≤ sin(x2) ≤
sin(x2)

| sin(tx2)|
=

1

|tft(x2)|
=

1

tft(x1)
≤ 2/t.

Thus x1 and x2 both belong to the interval [0, π/t]. But it is easy to see that
ft(x) is strictly decreasing on this interval (with ft(0) = 1 and ft(π/t) = 0), so
the condition ft(x1) = ft(x2) implies x1 = x2.

Proof of Theorem 2.1. Fix a degree d > 0, and let A = π(a/p) and B =
π(b/q) be rational multiples of π in lowest terms, such that 0 < A < B < π/2
and sin(A)/ sin(B) has degree d over Q. To show there are only finitely many
possibilities for the pair (a/p, b/q), we will show that n = lcm(p, q) is bounded
by a constant Nd depending only on d.

Consider the field extension L/K, where K = Q(sin(A)) and L = K(sin(B)).
Then deg(K/Q) and deg(L/Q) are comparable to φ(p) and φ(n) respectively,
where φ is Euler’s phi-function. We also have deg(L/K) ≤ d, so φ(n)/φ(p) =
O(d), which implies (n/p) ≤ Cd for some constant Cd.

Next, recall that the Galois conjugates of sin(A)/ sin(B) are given by

µ(k) = sin(kA)/ sin(kB),

where k ranges in
(Z/2n)∗ ∼= Gal(Q(eπi/n)/Q).
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α β sin(πα)/ sin(πβ) Trace Norm

1/12 5/12 2 −

√

3 4 1

1/10 1/2 (−1 +
√

5)/4 −1/2 −1/4

1/12 1/4 (−1 +
√

3)/2 −1 −1/2

1/10 3/10 (3 −

√

5)/2 3 1

1/8 3/8 −1 +
√

2 −2 −1

1/6 1/3
√

3/3 0 −1/3

1/6 3/10 (−1 +
√

5)/2 −1 −1

1/10 1/6 (−1 +
√

5)/2 −1 −1

1/5 2/5 (−1 +
√

5)/2 −1 −1

1/6 1/4
√

2/2 0 −1/2

1/4 1/2
√

2/2 0 −1/2

1/4 5/12 −1 +
√

3 −2 −2

3/10 1/2 (1 +
√

5)/4 1/2 −1/4

1/4 1/3
√

6/3 0 −2/3

1/3 1/2
√

3/2 0 −3/4

Table 3. The fifteen quadratic irrational sine ratios.
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Thus by replacing µ(1) with µ(k) with ka = 1 mod p, we can assume a = 1.
Let t be the least integer greater than 1 such that gcd(t, 2n) = 1 and µ(t) =

µ(1). We then have
sin(tA)

sin(A)
=

sin(tB)

sin(B)
· (2.1)

We also have the bound t ≤ (5 log(2n))d, since there is an integer 1 < k <
5 log(2n) relatively prime to n [Mc3, Thm. 9.1], and µ(ki) = µ(1) for some
i ≤ d. This shows

0 < tA = πta/p ≤ πCd(5 log(2n))d/n,

and therefore tA < π/2 whenever n exceeds a suitable constant Nd depending
only on d.

But if tA < π/2, then we can apply the preceding Lemma to (2.1) to conclude
that A = B, a contradiction. Consequently n ≤ Nd, and therefore the number
of sine ratios of degree d over Q is finite.

Quadratic sine ratios. The only rational sine ratio occurring as above is
sin(π/6)/ sin(π/2) = 1/2. Similarly, a straightforward computation using the
bounds of the preceding proof establishes:

Theorem 2.3 The ratio sin(πα)/ sin(πβ) is a quadratic irrational for exactly
15 pairs of rational numbers 0 < α < β ≤ 1/2.

These pairs are listed in Table 3.
For related results, see [Man].

3 Torsion divisors

In this section we review the classical relationship between Pell’s equation over
C[x] and torsion divisors on hyperelliptic curves.

Hyperelliptic curves. Let C0 be the hyperelliptic curve defined by the equa-
tion

y2 = p(x),

where p(x) ∈ C[x] has degree 2g − 2 and g ≥ 0. The curve C0 ⊂ C2 extends
to a unique complete curve C of arithmetic genus g, with two points P, Q ∈ C
lying over x =∞. The completion is smooth if all the zeros of p(x) are simple;
otherwise, it has singularities lying over the multiple zeros of p.

Note that the hyperelliptic involution (x, y) 7→ (x,−y) interchanges P and
Q. We refer to D∞ = P−Q ∈ Div(C) as the divisor at infinity; it is well-defined
up to sign.

The divisor nD∞ is principal if the following equivalent conditions hold:

1. There is a regular function f : C0 → C∗ with a pole of order n at P , and
a zero of order n at Q.
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2. The class n[D] ∈ Pic(C) is trivial.

3. The curve C is irreducible, and h0(C,OC(nD)) > 0.

In case (1) we write nD∞ = (f). The divisor D∞ is torsion if nD∞ is principal
for some n > 0.

Theorem 3.1 The divisor nD, n > 0 is principal if and only if there are poly-
nomials a, b ∈ C[x], with deg(a) = n, satisfying Pell’s equation

a(x)2 − p(x)b(x)2 = 1. (3.1)

Proof. Assume a, b ∈ C[x] satisfy (3.1). Then the polynomial f(x, y) = a(x) +
yb(x) ∈ C[x, y]/(y2 − p(x)) satisfies

f(x, y) · f(x,−y) = (a + yb)(a− yb) = 1,

so it defines a regular map f : C0 → C∗. Since a(x) and yb(x) both have poles
of order n at P and Q, f(x, y) has a pole of order n at one of these points, and
hence a zero of order n at the other; therefore nD is a principal divisor.

Conversely, suppose nD is the divisor of a regular map f : C → P1. Then
the product f(x, y)f(x,−y) = c is a nonzero constant, since it has no zeros
or poles. Replacing f with f/

√
c, we can assume c = 1. Then the rational

functions

a(x, y) =
f(x, y) + f(x,−y)

2
, b(x, y) =

f(x, y)− f(x,−y)

2y
(3.2)

are invariant under the hyperelliptic involution, and have no poles on C0; so
they are actually polynomials in x, satisfying (3.1).

Remark. The solution to (f) = nD∞ is a unit in the coordinate ring

O(C0) = C[x, y]/(y2 − p(x)),

and a2 − pb2 is its norm over C[x].

Genus zero. Recall (e.g. from [Ri]) that the Chebyshev polynomials Tn(x)
and Un(x) of the first and second kinds are characterized by:

Tn(cos θ) = cos(nθ), Un−1(cos θ) = sin(nθ)/ sin(θ).

Theorem 3.2 Let C be the conic y2 = x2−1. Then nD∞ is principal for every
n > 0, and the corresponding solutions to Pell’s equation are given by

Tn(x)2 − (x2 − 1)Un−1(x)2 = 1.

8



Proof. Under the isomorphism P1 ∼= C given by

t 7→ (x(t), y(t)) =

(
t + t−1

2
,
t− t−1

2

)
,

the points t = 0 and t =∞ lie over x =∞; thus f(t) = tn satisfies (f) = nD∞.
Setting t = eiθ, we have (x, y) = (cos θ, i sin θ), and thus equation (3.2) implies
that (a, b) = (±Tn,±Un−1). Indeed, Pell’s equation amounts simply to the
identity

Tn(x)2 − (x2 − 1)Un−1(x)2 = cos2(nθ) + sin2(nθ) = 1.

Corollary 3.3 The divisor D∞ is torsion on the curve

y2 = (x2 − 1)q(x)2

if and only if q(x) has simple zeros, all contained in (−1, 1) ∩ cosπQ.

Proof. By the preceding theorem, we can solve Pell’s equation

a(x)2 − (x2 − 1)q(x)2b(x)2 = 1

if and only if q(x) divides Un−1(x) for some n. Since the zeros of Un−1(x)
coincide with the set (−1, 1) ∩ cos(π/n)Z, and each has multiplicity one, the
result follows.

Limits. We conclude by noting that torsion divisors behave well under limits,
so long as the limiting curve is irreducible.

Theorem 3.4 Let Ck and C be irreducible hyperelliptic curves of arithmetic
genus g, defined by a convergent sequence of polynomials

y2 − pk(x) → y2 − p(x) ∈ C[x, y].

Suppose the divisor at infinity is torsion of order ≤ n for each Ck. Then the
same is true for C.

Proof. By assumption there exist polynomial solutions to Pell’s equation
ak(x)2 − pk(x)bk(x)2 = 1 of uniformly bounded degree. If the coefficients of
(ak, bk) are bounded, a convergent subsequence yields a solution to the equa-
tion a(x)2−p(x)b(x)2 = 1, so the divisor at infinity is torsion for C. Otherwise,
a limit of suitable rescalings of the polynomials (ak, bk) yields a nontrivial solu-
tion to the equation a(x)2−p(x)b(x)2 = 0; this implies p(x) is a square, contrary
to irreducibility of C.

Remark. The sequence y2 = x2 − 1/k2 → y2 − x2 gives a simple example
showing Theorem 3.4 fails without irreducibility.

Notes and references. The theory of torsion divisors on hyperelliptic curves
was studied by Abel in [Ab]; for more recent developments, see [HMP] [BC],
[BGL], and [Yu].
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4 Teichmüller curves in genus two

In this section we recall the theory of Teichmüller curves in genus two, and the
prototypical forms that generate them. We then establish:

Theorem 4.1 If the prototypical form (X, ω) of type (a, b, c, e) and width 0 <
t < 1 generates a primitive Teichmüller curve

f : V →M2,

then there are rational numbers 0 < α < β < 1/2 satisfying

sin(πα)

sin(πβ)
=

λ

b
and t = β + α

b

λ
, (4.1)

where λ = (e +
√

e2 + 4bc)/2.

In the course of the proof, we will obtain an explicit formula for certain nodal
curves Y ∈ ∂M2 that arise from the cusps of V .

Teichmüller curves. Let Mg denote the moduli space of Riemann surfaces
of genus g, and let

ΩMg →Mg

denote the bundle of pairs (X, ω) such that ω is a nonzero holomorphic 1-form
on X ∈ Mg. The space ΩMg carries a natural action of GL+

2 (R), whose orbits
project to complex geodesics in Mg (see e.g. [Mc1]). The stabilizer of a given
form will be denoted by SL(X, ω); it is a discrete subgroup of SL2(R).

If SL(X, ω) is a lattice in SL2(R), then the projection of its orbit gives a
holomorphic Teichmüller curve

f : V = H/ SL(X, ω)→Mg.

The image of f(V ) ⊂Mg is an algebraic curve, isometrically immersed for the
Teichmüller metric. We say f : V →Mg is primitive if the form (X, ω) is not
the pullback of a holomorphic form on a curve of lower genus.

Stable curves. LetMg denote the compactification of moduli space by stable
curves. By passing to the normalization

π : Ỹ → Y,

any stable curve Y ∈ Mg can be regarded as a smooth curve Ỹ with certain
pairs of points (yi, y

′

i) identified to form nodes.

Let Ω(Y ) denote the space of holomorphic 1-forms on Ỹ −
⋃
{yi, y

′

i} with
at worst simple poles, of opposite residues, at each pair of points (yi, y

′

i). Then
ΩMg →Mg extends to the bundle

ΩMg →Mg
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of stable Abelian differentials, consisting of pairs (Y, ξ) with ξ ∈ Ω(Y ). This
bundle can be regarded as the relative dualizing sheaf for the universal curve
Cg →Mg [HM, Ch. 3].

Prototypical forms. We now specialize to the case g = 2. Following [Mc4,
§3], we say a set of integers p = (a, b, c, e) is a splitting prototype of discriminant
D > 0 if:

D = e2 + 4bc, 0 ≤ a < gcd(b, c), c + e < b,

0 < b, 0 < c, and gcd(a, b, c, e) = 1.

Let λ = (e +
√

D)/2 and let I = [0, tλ], where t ∈ (0, 1]. Let (Ei, ωi) =
(C/Λi, dz), i = 1, 2 be the forms of genus one with period lattices Λ1 = Z(λ, 0)⊕
Z(0, λ) and Λ2 = Z(b, 0)⊕ Z(a, c).

The prototypical form of type p and width t is given by the connected sum

(X, ω) = (E1, ω1)#
I
(E2, ω2).

The connected sum is obtained by slitting each torus open along the projection
of the arc I, and then gluing corresponding edges. The form (X, ω) can also be
expressed geometrically as the quotient (P, dz)/∼ of the polygon P ⊂ C shown
in Figure 4.

λ

(b,0)

(a,c)

t λ

λ

Figure 4. The prototypical form of type (a, b, c, e) and width t.

By [Mc4, §1 and Cor. 3.7] we have:

Theorem 4.2 Every Teichmüller curve generated by a form in ΩM2 is also
generated by a prototypical form. The resulting curve is primitive if and only if
the discriminant D = e2 + 4bc is not a square.

Stable sums. The operation of connected sum extends continuously way to
the case where the tori Ei

∼= C/Λi degenerate to cylinders Ci
∼= C/Zai

∼= C∗. In
this case the connected sum gives a stable curve in the stratum M0,4 ⊂ ∂M2,
with the ends (yi, y

′

i) of each cylinder Ci identified to form nodes.
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Theorem 4.3 Let I = [0, v], and assume 0 < v < r < s. Then the connected
sum

(Y, ω) = (C/Zr, dz)#
I
(C/Zs, dz) (4.2)

is proportional to the stable Abelian differential dx/y on a nodal curve of the
form

y2 = (x2 − 1)(x + cos(πα))2(x− cos(πβ))2, (4.3)

where α ∈ (0, 1/2), β ∈ (0, 1), sin(πα)/ sin(πβ) = r/s and v = αs + βr.

18

r

B

A

s

−1
v

Figure 5. Connected sum of cylinders.

Proof. Start by expressing Y as a degree two branched covering π : Y → P1

of the projective line, with hyperelliptic involution η. Then the form (Y, ω2)/η
gives a meromorphic quadratic differential (P1, q) on the quotient P1. Since the
periods r, s and v of ω are real, (P1, q) can be constructed from a rectangular
polygon (P, (dz/2)2) in C. More precisely, if we define P by gluing the infinite
rectangles [0, s] × [0,∞) and [0, r] × [0,−∞) together along the segment [0, v],
then the double of (P, dz2/4) along its edges can be identified with (P1, q).

We can normalize so that the interior of P corresponds to the upper half
plane H ⊂ P1, its boundary to the extended real axis, and its vertices to the
ordered set (∞,−1, A, B, 1) ⊂ R . The image of I on P1 is then a loop based at
∞, crossing the real axis between A and B.

Since −1 < A < B < 1, there are unique constants 0 < α, β < 1 such that
(− cosπα, cos πβ) = (A, B). Since π : Y → P1 is branched over x = ±1 and
has nodes over x = A, B, Y is isomorphic to the hyperelliptic curve (4.3), with
π(x, y) = x. Therefore ω = Cdx/y, for some C 6= 0, since these two forms have
the same zeros and poles. Consequently we have

q = ω2 =
C2 dx2

(x2 − 1)(x−A)2(x−B)2
,

which implies

ResB(q)

ResA(q)
=

(r

s

)2

=
1−A2

1−B2
=

(
sin(πα)

sin(πβ)

)2

.
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Thus sin(πα)/ sin(πβ) = r/s, because both sides are positive.
Using the fact that ResA(q) = s2/(2πi)2 and ResB(q) = r2/(2πi)2, it is then

straightforward to compute

v =

∫

I

ω =

∫ +i∞

−i∞

√
q = αs + βr,

where the integral is taken along a path that crosses R between A and B. The
choice of square-root is dictated by the condition v > 0.

Finally note that the inequalities r < s and A < B imply

0 ≤ sin(πα) < sin(πβ) and − cos(πα) < cos(πβ);

since sin2(θ) + cos2(θ) = 1, we must have − cos(πα) < 0 and therefore α < 1/2.

Theorem 4.4 Let (X, ω) be the prototypical form of type (a, b, c, e) and width
t, and let As = ( 1 0

0 s ) ∈ GL+

2 (R). Then as s→∞ we have

As · (X, ω) → (C/Zλ, dz)#
I
(C/Zb, dz) (4.4)

in ΩM2, where I = [0, tλ].

Proof. The rank two lattices

Λs
1 = Z(λ, 0) ⊕ Z(0, sλ), Λs

2 = Z(b, 0)⊕ Z(sa, sc)

giving the summands of

As · (X, ω) = (C/Λs
1, dz)#

I
(C/Λs

2, dz)

converge geometrically to the rank one discrete groups Z(λ, 0) and Z(b, 0).

Proof of Theorem 4.1. Assume SL(X, ω) is a lattice for the prototypical
form of type (a, b, c, e) and width 0 < t < 1. Then by the Theorems 4.3 and 4.4
the closure of GL+

2 (R) · (X, ω) in ΩM2 contains the stable Abelian differential
(Y, dx/y), where Y is the hyperelliptic curve

y2 = (x2 − 1)(x + cos(πα))2(x− cos(πβ))2 (4.5)

and 0 < α < β < 1/2 satisfy (4.1).
The zeros P, Q of dx/y lie over x = ∞, so their difference P − Q is the

divisor at infinity for (4.5). Moreover, by Theorem 1.4, D∞ is a limit of torsion
divisors of constant order on nearby curves in f(V ). By Theorem 3.4, D∞ is
itself torsion, and hence α and β are rational by Corollary 3.3.

13



5 The regular decagon

In this section we illustrate the results of the preceding section using the Te-
ichmüller curve generated by the decagon form.

Algebraic description. Let (X, ω) denote the decagon form, given by ω =
dx/y on the hyperelliptic curve

y2 = x(x5 − 1).

By symmetry considerations, this form can be also obtained from a regular
decagon (Q, dz) in C by identifying opposite sides.

Theorem 5.1 The decagon form generates the Teichmüller

f : V →M2

given by f(t) = [Xt], where Xt is the hyperelliptic curve y2 = qt(x),

qt(x) = x
(
−1− 2 t5 − t10 + 25 t4 x− 50 t3 x2 + 35 t2 x3 − 10 t x4 + x5

)
,

and t ranges in the space V = (P1 − {t : t10 = 1})/D10.

Here D10 is the dihedral group generated by t 7→ 1/t and t 7→ exp(2πi/5)t.
The curves Xt and Xgt are isomorphic for all g ∈ D10, so f is well-defined on
V . We will also see that the 1-forms lying over Xt in the orbit GL+

2 (R) · (X, ω)
are proportional to dx/y.

The proof will be deferred to the end of the section.

Stable limits. The Teichmüller curve f : V → M2 is also generated by the
prototypical form of type (a, b, c, e) = (0, 1, 1,−1) and t = (2 + γ)/5, where
γ = (1 +

√
5)/2 is the golden mean [Mc4, Lemma 8.2]. For this prototype, we

have λ = (e +
√

e2 + 4bc)/2 = γ−1.
To verify Theorem 4.1, note that as t→ 1, the 1-form (Xt, dx/y) converges

to the stable Abelian differential (X1, dx/y) on the nodal curve

y2 = q1(x) = x(x − 4)(1− 3x + x2)2.

This curve is isomorphic to

y2 = (x2 − 1)(4x2 + 2x− 1)2 = (x2 − 1)(x−A)2(x−B)2,

where {A, B} = {− cos(π/5), cos(2π/5)} = {(−1 ±
√

5)/4}. Thus the corre-
sponding ratio of sines satisfies

sin(π/5)

sin(2π/5)
=
−1 +

√
5

2
=

λ

b
,

and the width is given by

t =
2 + γ

5
=

2

5
+

1

5

b

λ
,

14
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Figure 6. The divisor D0 has order 5.

both as predicted by (4.1). The graph of y2 = (1− x2)(4x2 + 2x− 1) is shown
in Figure 2 of the Introduction.

Torsion divisors. Note that the zeros P, Q ∈ Xt of ωt = dx/y lie over x =∞,
so their difference P − Q is the divisor at infinity. According to Theorem 1.4,
this divisor is torsion whenever Xt is irreducible. In fact, one can see explicitly
that:

Theorem 5.2 For any t such that t5 + 1 6= 0, 5D∞ is a principal divisor on
the curve y2 = qt(x).

Proof. It is convenient to replace qt with its reciprocal polynomial

rt(x) = x6qt(x
−1)

= 1− 10 t x + 35 t2 x2 − 50 t3 x3 + 25 t4 x4 − x5 − 2 t5 x5 − t10 x5,

so that D∞ becomes the divisor D0 lying over x = 0. We then find the remark-
able factorization

rt(x) = (5t2x2 − 5tx + 1)2 − (t5 + 1)2x5.

This means that the conic

y = ft(x) = 5t2x2 − 5tx + 1

intersects the curve y2 = rt(x) to order 5 over x = 0 (see Figure 6 for the case
t = −1/4). Consequently, Ft(x, y) = (y − ft(x))/(y + ft(x)) gives a rational
function with divisor (Ft) = 5D0.
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Remark. The corresponding solution to Pell’s equation at(x)2−bt(x)2qt(x) = 1
satisfies

bt(x) =
2(5 t2 − 5 t x + x2)

(1 + t5)2
·

Regular polygons. We now proceed to the proof of Theorem 5.1.
Let Y be the hyperelliptic curve y2 = xn − 1, and let ξ = dx/y. The form

(Y, ξ) can also be described geometrically as the quotient (Q, dz)/∼, where
Q ⊂ C is a pair of regular n-gons joined along an edge, and its other edges are
identified in opposite pairs (Figure 7).

Figure 7. A polygonal model for the form dx/y on the curve y2 = x5 − 1.

It is known that SL(Y, ξ) is a lattice for all n ≥ 3; in fact SL(Y, ξ) is a triangle
group of signature (2, n,∞) when n is odd, and signature (n/2,∞,∞) when n
is even [V].

Moreover, by [Lo] the Teichmüller curve

F : V ∼= H/ SL(Y, ξ)→Mg (5.1)

can be described algebraically as follows. For t ∈ P1, let Yt be the hyperelliptic
curve given by

y2 = pt(x) =

n∏

i=0

(x− ζi − tζ−i), (5.2)

where ζ = e2πi/n. Let G ⊂ Aut(P1) denote the dihedral group generated by
t 7→ 1/t and t 7→ ζ2t. Then the isomorphism class of Yt depends only on the
value of t ∈ P1/G, and the map (5.1) is given on the quotient space

V = (P1 − {t : tn = 1})/G

simply by F (t) = [Yt] ∈ Mg. (See [Me] for a related construction.) The forms
(Yt, ξt) = (Yt, dx/y) all lie in the orbit GL+

2 (R) · (Y, ξ), so they also generated
the Teichmüller curve F : V →Mg.

Now suppose n = 2k is even. Then only even powers of x occur in pt(x),
and therefore ρ(x, y) = (−x,−y) is an automorphism of Yt. Using the change
of variables (x, y)← (x2, xy), the quotient Xt = Yt/〈ρ〉 can be expressed as the
hyperelliptic curve

y2 = qt(x), where qt(x
2) = x2pt(x). (5.3)
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The form 2dx/y is also ρ-invariant, so it descends to the form ωt = dx/y on Xt.
Since deg qt(u) = 1 + k, ωt has a single zero (lying over x =∞) when k is even,
and a pair of distinct zeros when k is odd.

Note that X0 is the hyperelliptic curve y2 = q0(x) = x(xk − 1). Geomet-
rically, the form (X0, ω0) is obtained from a single regular 2k-gon (P, dz) by
identifying opposite sides. Thus the regular 2k-gon generates the Teichmüller
curve

f : V →Mh

given by f(t) = [Xt] = [y2 − qt(x)].

Proof of Theorem 5.1. For the decagon, we simply specialize to the case
n = 10 in (5.2), and use (5.3) to obtain a formula for qt(x).

6 Uniqueness

In this section we complete the proof of our main result by showing:

Theorem 6.1 The only primitive Teichmüller curve f : V →M2 generated by
a form with simple zeros comes from the regular decagon.

Sine ratios. We begin by using the list of quadratic irrational sine ratios to
show:

Theorem 6.2 Suppose the prototypical form (X, ω) of type (a, b, c, e) and width
0 < t < 1 generates a primitive Teichmüller curve. Let f = gcd(b, c, e), and
write (a, b, c, e) = (a, fB, fC, fE). Then (B, C, E) and t are equal to one of the
22 possibilities listed in Table 8.

Proof. Let λ = (e+
√

e2 + 4bc)/2 as usual, and let µ = (E+
√

E2 + 4BC)/(2B).
Then µ = λ/b. Since the Teichmüller curve generated by (X, ω) is primitive, µ
is a quadratic irrational.

According to Theorem 4.1, there exist rationals α ∈ (0, 1/2) and β ∈ (0, 1)
such that

sin(πα)/ sin(πβ) = µ and t = β + αµ−1.

Thus α and min(β, 1−β) must correspond to one of the 15 quadratic irrational
sine ratios listed in Table 3 of §2. The values of α and β determine µ and t by
the formulas above. They also determine the triple (B, C, E), since this is the
smallest positive integral vector proportional to (1,−N(µ), Tr(µ)).

It is thus straightforward to convert Table 3 into Table 8, in which the values
of (α, β) in the first two columns give rise to the values of (B, C, E) and t in the
columns that follow. The cases (α, β) = (1/12, 5/12) and (1/10, 3/10) in Table
3 are excluded, because they give c/b = −N(µ) < 0, contrary to the condition
b, c > 0 in the definition of a prototype.
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α β (B, C, E) t

1/10 1/2 (4, 1,−2) (6 +
√

5)/10

1/12 1/4 (2, 1,−2) (4 +
√

3)/12

1/12 3/4 (2, 1,−2) (10 +
√

3)/12

1/8 3/8 (1, 1,−2) (4 +
√

2)/8

1/8 5/8 (1, 1,−2) (6 +
√

2)/8

1/6 1/3 (3, 1, 0) (2 +
√

3)/6

1/6 2/3 (3, 1, 0) (4 +
√

3)/6

1/6 3/10 (1, 1,−1) (23 + 5
√

5)/60

1/6 7/10 (1, 1,−1) (47 + 5
√

5)/60

1/10 1/6 (1, 1,−1) (13 + 3
√

5)/60

1/10 5/6 (1, 1,−1) (53 + 3
√

5)/60

1/5 2/5 (1, 1,−1) (5 +
√

5)/10

1/5 3/5 (1, 1,−1) (7 +
√

5)/10

1/6 1/4 (2, 1, 0) (3 + 2
√

2)/12

1/6 3/4 (2, 1, 0) (9 + 2
√

2)/12

1/4 1/2 (2, 1, 0) (2 +
√

2)/4

1/4 5/12 (1, 2,−2) (13 + 3
√

3)/24

1/4 7/12 (1, 2,−2) (17 + 3
√

3)/24

3/10 1/2 (4, 1, 2) (2 + 3
√

5)/10

1/4 1/3 (3, 2, 0) (8 + 3
√

6)/24

1/4 2/3 (3, 2, 0) (16 + 3
√

6)/24

1/3 1/2 (4, 3, 0) (9 + 4
√

3)/18

Table 8. The 22 candidates.
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Ratios of moduli. To complete the proof, we will use the following rationality
constraint.

Theorem 6.3 If the prototypical form (X, ω) of type (a, b, c, e) and width t
generates a Teichmüller curve, then the ratio

(1 − t)(bc/g + (n + 1)λ)

tλ− ng
(6.1)

is rational, where λ = (e +
√

e2 + 4bc)/2, g = gcd(a, b) and n = ⌊tλ/g⌋.

(Here ⌊x⌋ denotes the greatest integer less than or equal to x.)

Proof. Consider the foliation F of (X, |ω|) by vertical geodesics, corresponding
to vertical lines in the polygon P ⊂ C in Figure 4. The first return map of F to
the transversal L = [0, b], forming the base of the upper parallelogram in P , is
given by f(x) = x + a mod b. Since f is periodic, all the leaves of F are closed.

More precisely, the leaves of F disjoint from L sweep out a cylinder C1

of height h1 = (1 − t)λ and circumference c1 = λ. The leaves that do meet
L cross it b/g times, since this is the period of f . These leaves sweep out a
pair of cylinders C2 and C3, distinguished by their intersection numbers with
I = [0, tλ] ⊂ L: we have C2 · I = n and C3 · I = n + 1. Since Ci · I also
counts the number of times that Ci passes through the λ × λ square inside of
P , these cylinders have circumferences c2 = bc/g +nλ and c3 = bc/g +(n+1)λ.
Similarly one can check that their heights are given by h2 = (n + 1)g − tλ and
h3 = tλ− ng.

Now if SL(X, ω) is a lattice, then the moduli mi = hi/ci of the cylinders
Ci have rational ratios (see e.g. [V, 2.4], [Mc1, Lemma 9.7]). In particular, the
ratio m1/m3 given by (6.1) is rational.

Example. For the prototypical form (X, ω) of type (a, b, c, e) = (0, 1, 1,−1)
and width t = (2 + γ)/5 (generating the regular decagon), the moduli of the 3
cylinders of the vertical foliation satisfy [m1 : m2 : m3] = [1 : 2 : 1]. We have
n = 0, g = 1, and the quantity (6.1) is simply 1.

Proof of Theorem 6.1. Let f : V → M2 be a primitive Teichmüller curve
generated by a holomorphic 1-form (X, ω) with simple zeros. By Theorem 4.2 we
may assume (X, ω) is a prototypical form, of type (a, b, c, e) and width 0 < t < 1.
Let f = gcd(b, c, e) and write (a, b, c, e) = (a, fB, fC, fE); then (B, C, E) and t
agree with one of the 22 possibilities listed in Table 8.

By the definition of a prototype, we have gcd(a, b, c, e) = gcd(a, f) = 1.
Therefore

g = gcd(a, b) = gcd(a, fB) = gcd(a, B)

is a divisor of B. So for each value of (B, C, E, t), there are only finitely many
possibilities for g.

For concreteness, suppose the candidate prototype satisfies (B, C, E) =
(1, 1,−1) and t = (5 +

√
5)/10. Then µ = λ/b = (−1 +

√
5)/2, and g = 1.
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Substituting (b, c) = (fB, fC) and λ = µfB into (6.1), Theorem 6.3 implies
the ratio

f(3f − f2 − 5n + 8fn− 5n2 +
√

5(f2 − 2fn + 3n2 − f + 3n))

2(f2 − 5n2)

is rational, where
n = ⌊tfBµ/g⌋ = ⌊f/

√
5⌋.

Equivalently, we have

p(f, n) = f2 − 2fn + 3n2 − f + 3n = 0. (6.2)

It is straightforward to verify that the only positive integral solution to (6.2)
(with n = ⌊f/

√
5⌋) is f = 1. Indeed, for large values of f we have n ≈ f/

√
5,

and thus p(f, n) grows like f2, leaving only finitely many cases to check. (A
plot of p(f, ⌊f/

√
5⌋) is shown in Figure 9).

The case f = 1 gives (a, b, c, e) = (0, 1, 1,−1), so it corresponds to the regular
decagon.

A similar calculation shows there are no Teichmüller curves at all coming
from the remaining candidates in Table 8. For example, suppose (B, C, E) =
(2, 1,−2), t = (4 +

√
3)/12 and g = 2. Then µ = (1 +

√
3)/2, and we find

p(f, n) = 23f2 − 48fn + 216n2 − 24f + 216n = 0,

where n = ⌊(−1 + 3
√

3)f/24⌋. For f = 1, 2, 3, 4, 5, . . . we have p(f, n) =
−1, 44, 135, 272, 455, . . ., and quadratic growth insures p(f, n) > 0 for all f > 5.

The remaining cases are similar.

2 4 6 8 10
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20

30

40
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60

70

Figure 9. Plot of p(f, ⌊f/
√

5⌋).
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genus 2. J. London Math. Soc. 64(2001), 29–43.

[Ca] K. Calta. Veech surfaces and complete periodicity in genus 2. J. Amer.
Math. Soc. 17(2004), 871–908.

[EMS] A. Eskin, H. Masur, and M. Schmoll. Billiards in rectangles with barri-
ers. Duke Math. J. 118(2003), 427–463.

[GJ] E. Gutkin and C. Judge. Affine mappings of translation surfaces: ge-
ometry and arithmetic. Duke Math. J. 103(2000), 191–213.

[HM] J. Harris and I. Morrison. Moduli of Curves. Springer-Verlag, 1998.

[HMP] Y. Hellegouarch, D. L. McQuillan, and R. Paysant-Le Roux. Unités de
certains sous-anneaux des corps de fonctions algébriques. Acta Arith.
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