Surgical treatment of femoroacetabular impingement following slipped capital femoral epiphysis: A systematic review

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Published Version	doi:10.1302/2046-3758.68.BJR-2017-0018.R1
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:34491845
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Surgical treatment of femoroacetabular impingement following slipped capital femoral epiphysis

A SYSTEMATIC REVIEW

McMaster University, Hamilton, Ontario, Canada

Objectives
The purpose of this study was to evaluate the existing literature from 2005 to 2016 reporting on the efficacy of surgical management of patients with femoroacetabular impingement (FAI) secondary to slipped capital femoral epiphysis (SCFE).

Methods
The electronic databases MEDLINE, EMBASE, and PubMed were searched and screened in duplicate. Data such as patient demographics, surgical technique, surgical outcomes and complications were retrieved from eligible studies.

Results
Fifteen eligible level IV studies were included in this review comprising 261 patients (266 hips). Treatment groups included arthroscopic osteochondroplasty, surgical hip dislocation, and traditional open osteotomy. The mean alpha angle corrections were 32.14° (standard deviation (sd) 7.02°), 41.45° (sd 10.5°) and 6.0° (sd 5.21°), for arthroscopy, surgical hip dislocation, and open osteotomy groups, respectively (p < 0.05). Each group demonstrated satisfactory clinical outcomes across their respective scoring systems. Major complication rates were 1.6%, 10.7%, and 6.7%, for arthroscopy, surgical dislocation and osteotomy treatments, respectively.

Conclusion
In the context of SCFE-related FAI, surgical hip dislocation demonstrated improved correction of the alpha angle, albeit at higher complication and revision rates than both arthroscopic and open osteotomy treatments. Further investigation, including high-quality trials with standardised radiological and clinical outcome measures for young patients, is warranted to clarify treatment approaches and safety.

Cite this article: Bone Joint Res 2017;6:472–480.

Keywords: Slipped capital femoral epiphysis, Slipped upper femoral epiphysis, Post slipped capital femoral epiphysis, Femoroacetabular impingement, Labrum

Article focus
The purpose of this study was to evaluate the existing literature for the efficacy of surgical management of patients with femoroacetabular impingement (FAI) secondary to slipped capital femoral epiphysis (SCFE) over a ten-year period (2005 to 2016).

Key messages
In the context of SCFE-related FAI, surgical hip dislocation demonstrated improved correction of the alpha angle albeit at higher complication and revision rates than both arthroscopic and open osteotomy treatments.

Strengths and limitations
One of the first systematic reviews of the English literature to evaluate different
surgical treatments for SCFE-related FAI, and is strengthened by a strong rigorous methodology, and thorough data abstraction/analysis.

- Has inherent methodological limitations such as selection, spectrum and inherent language bias.
- Whether statistical differences correlate with minimal clinical important differences remains to be known.

Introduction

SCFE, a common childhood hip disorder, involves a reduction in the head-neck offset caused by distorsion of the proximal femur that accompanies posterior-inferior epiphyseal displacement. To date, surgical treatment with *in situ* pinning remains the benchmark management option. However, the residual deformity (i.e. femoral retrotorsion) may lead to a unique metaphyseal “cam” impingement which, though distinctly different from the “cam” of typical FAI, may manifest as changes in passive and active hip range of movement. Studies have documented that patients treated with *in situ* pinning following SCFE can develop symptomatic FAI during adolescence. FAI may lead to intra-articular pathology at the chondrolabral junction, labrum and femoral head with the potential to develop secondary osteoarthritic changes. Thus, several authors have proposed early surgical intervention in order to avert these long-term comorbidities.

Currently, the pragmatic approaches to surgical treatment of post-SCFE-related FAI are based on the severity of displacement according to the Southwick classification (slip angle). As such, arthroscopic osteochondroplasty is recommended for mild deformities (slip angle < 30°). Open techniques, be it surgical dislocation of the hip (SDH) with femoral head osteochondroplasty or flexion intertrochanteric osteotomy, are typically reserved for moderate deformities (slip angle 30° to 60°) and severe deformities (slip angle > 60°), respectively. Some studies have shown poor correlation with slip angle severity and risk of developing FAI, with a direct relationship between intra-articular damage and severity of deformity after SCFE remaining unproven.

The purpose of this systematic review was to analyse the available literature on the arthroscopic and open surgical treatment options of FAI secondary to SCFE and to evaluate clinical and radiographic outcomes, complications, and revision rates.

Materials and Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used in designing this study.

Search Strategy. Two reviewers (OKO, AD) searched three online databases (MEDLINE, EMBASE and PubMed) for literature related to the surgical management of FAI secondary to SCFE deformity. The database search was conducted on 08 August 2016, and retrieved articles from the date of database inception to 08 August 2016. The following key terms were used in the search: “slipped capital femoral epiphysis”, “slipped upper femoral epiphysis”, “post SCFE”, “femoroacetabular impingement” and “labrum”. A table detailing the search strategy is presented in Supplementary Table I.

Study screening. The research question and individual study eligibility criteria were established before the search took place. The inclusion criteria were: all levels of evidence, studies focused on FAI following SCFE treatment in any age or gender, studies published in English, studies on humans and studies reporting, at minimum, one clinical or radiographic outcome. Exclusion criteria were: any non-surgical treatment studies, technique articles without outcomes, cadaver studies, review articles, editorial comments or letters to the editor and instructional course lectures. Studies older than ten years were also excluded.

Two reviewers (FF, JK) independently screened the titles, abstracts, and full texts of the retrieved studies in duplicate, and any discrepancies at the title and abstract stage were resolved by automatic inclusion to ensure thoroughness. Any discrepancies at the full-text stage were resolved by consensus between the two reviewers. If a consensus could not be reached, a third, more senior, reviewer (KOO) resolved the discrepancy. The references of included studies were screened to capture any articles that may have eluded the initial search strategy.

Quality assessment of included studies. A quality assessment of all the included studies was completed using the methodological index for non-randomised studies (MINORS) criteria. MINORS represents a validated scoring tool for non-randomised studies (e.g. case reports, case series, cohort studies). Each of the 12 items in the MINORS criteria is given a score of zero, one, or two, giving a maximum score of 16 for non-comparative studies and a maximum score of 24 for comparative studies.

Data abstraction. Two reviewers (FF, JK) independently abstracted pertinent study data from the final pool of eligible articles and recorded these data in a Microsoft Excel spreadsheet (Version 2007; Microsoft, Redmond, Washington) Study demographics were abstracted and included author, year of publication, sample size, study design, level of evidence and patient characteristics (gender, age). In addition to demographic information, surgical technique, surgical outcomes and complications were documented. Patients in the primary studies were divided into three main groups according to type of surgical management: those treated with hip arthroscopy and osteochondroplasty, those treated with surgical hip dislocation and osteochondroplasty, and those treated with open osteotomy (e.g. Southwick, valgus/varus-producing subtrochanteric osteotomies)

Clinical outcomes were abstracted and included hip outcome scores, complication rates and revision surgery rates. For the radiological outcomes, the pre-operative
and post-operative alpha angle measurement on frog-leg lateral plain radiograph or MRI was administered and fully reported by most studies. Hence, it was used to compare the degree of surgical correction between study groups. Other radiographic parameters were inconsistently used among the studies, making them difficult to use as a comparable tool.

Statistical analysis. A weighted kappa (k) was calculated for each stage of article screening to evaluate inter-reviewer agreement. The agreement was categorised before the search took place as follows: a k score > 0.61 indicated substantial agreement, 0.21 to 0.60 moderate agreement, and those < 0.20 indicated slight agreement. Descriptive statistics, such as means, ranges and measures of variance (e.g. standard deviation (sd), 95% confidence intervals (CI)) were reported when available. Student t-tests were used to test for differences in post-operative outcomes between groups. The agreement between the two reviewers for assessment of study quality was calculated using an intraclass correlation coefficient, which evaluates the consistency of multiple observers measuring the same groups of data. Because of heterogeneity among studies, both in terms of patient populations and outcome measures, no meta-analysis was performed.

Results

Interviewer agreement in study identification. There was substantial agreement between reviewers at title (k = 0.68; 95% CI 0.66 to 0.69), abstract (k = 0.863; 95% CI 0.795 to 0.930), and full-text screening stages (k = 0.84; 95% CI 0.81 to 0.87).

Study characteristics. Our initial literature search yielded 353 studies of which 38 were reviewed in more detail; 15 were deemed eligible at this point with 23 being excluded for this review (Fig. 1). These studies included a total of 261 patients with 266 hips. The treatment groups were as follows: arthroscopy, 85 patients (88 hips); surgical hip dislocation, 131 patients (133 hips); and osteotomy, 45 patients (45 hips). Of the patients treated across the studies, 57.5% were male. The mean ages of patients were 14.1 years (sd 2.96), 15.6 years (sd 2.19), and 13.5 years (sd 0.70) for arthroscopy treatment, surgical hip dislocation and osteotomy, respectively. The mean follow-up for arthroscopy treatment was 20.0 months (sd 7.59), for surgical hip dislocation was 39.45 months (sd 17.9), and for osteotomy was 51.5 months (sd 12.0) (Table I).

Study quality. All the included studies were level IV case series or retrospective reviews. There was high agreement among quality assessment scores of included studies using MINORS criteria, with intraclass correlation...
The clinical outcomes reported in the included studies are presented in Table III. Due to the heterogeneity of these outcome measures, direct comparisons among the three procedures were limited. However, the three types of surgical treatment demonstrated statistically significant improvements in their respective scoring systems (p values ranging from < 0.0001 to 0.05) except in patients with peri-operative15,29 or post-operative findings of articular cartilage defect, avascular necrosis or chondrolysis (Table IV).30,32

Modified Harris Hip Scores (mHHS) were most commonly reported in arthroscopy (n = 3 studies; 32 hips) and surgical dislocation studies (n = 2 studies; 44 hips). Mean pre-operative mHHS were 45.67 in arthroscopy and 60.95 in surgical hip dislocation treatment. Post-operatively, these scores improved to 84.37 in arthroscopy and 86.65 in surgical dislocation (range of instrument, 0 to 100). Notably, hip arthroscopy was associated with a greater, but statically insignificant, improvement in mHHS of 38.7 versus 25.7 in surgical

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Level of evidence</th>
<th>Type of surgical intervention (cases)</th>
<th>Patients (n)</th>
<th>Hips (n)</th>
<th>M/F</th>
<th>Mean age (yrs), n (range)</th>
<th>Mean follow-up (mths), n (range)</th>
<th>MINOR Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al21</td>
<td>Retrospective case series</td>
<td>IV</td>
<td>Hip arthroscopy and osteochondroplasty + osteoplasty</td>
<td>31</td>
<td>34</td>
<td>19/18</td>
<td>13.1 (10 to 19)</td>
<td>22 (12 to 56)</td>
<td>11</td>
</tr>
<tr>
<td>Tscholl et al24</td>
<td>Propective study</td>
<td>II</td>
<td>Hip arthroscopy and osteochondroplasty</td>
<td>14</td>
<td>14</td>
<td>8/6</td>
<td>12.6 (NR)</td>
<td>17 (11 to 41)</td>
<td>10</td>
</tr>
<tr>
<td>Basheer et al23</td>
<td>Prospectve study</td>
<td>II</td>
<td>Hip arthroscopy and osteochondroplasty</td>
<td>18</td>
<td>18</td>
<td>9/9</td>
<td>19 (13 to 42)</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Wylie et al26</td>
<td>Case series</td>
<td>IV</td>
<td>Hip arthroscopy and osteochondroplasty</td>
<td>9</td>
<td>9</td>
<td>6/3</td>
<td>17.5 (13.5 to 26.9)</td>
<td>28.6 (12.6 to 55.6)</td>
<td>9</td>
</tr>
<tr>
<td>Lee et al26</td>
<td>Case series</td>
<td>IV</td>
<td>Hip arthroscopy and osteochondroplasty</td>
<td>5</td>
<td>5</td>
<td>3/2</td>
<td>10.8 (10 to 14)</td>
<td>6 (3 to 9)</td>
<td>7</td>
</tr>
<tr>
<td>Akkari et al27</td>
<td>Prospective observational</td>
<td>IV</td>
<td>Hip arthroscopy and osteochondroplasty</td>
<td>5</td>
<td>5</td>
<td>3/2</td>
<td>13.2 (11.11 to 14.8)</td>
<td>26 (12 to 39)</td>
<td>13</td>
</tr>
<tr>
<td>Leunig et al14</td>
<td>Case series</td>
<td>IV</td>
<td>Hip arthroscopy and osteochondroplasty</td>
<td>3</td>
<td>3</td>
<td>3/0</td>
<td>12.7 (11 to 15)</td>
<td>16.7 (6 to 23)</td>
<td>8</td>
</tr>
<tr>
<td>Surgical hip dislocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziebarth et al28</td>
<td>Case series</td>
<td>IV</td>
<td>Surgical hip dislocation, osteochondroplasty</td>
<td>40</td>
<td>40</td>
<td>17/23</td>
<td>12.8 (9 to 18)</td>
<td>55 (12 to 101)</td>
<td>11</td>
</tr>
<tr>
<td>Spencer et al29</td>
<td>Retrospective case series</td>
<td>IV</td>
<td>Surgical hip dislocation + osteochondroplasty (6); osteoplasty + intertrochanteric osteotomy (6)</td>
<td>12</td>
<td>12</td>
<td>5/7</td>
<td>18.5 (12 to 38)</td>
<td>14 (12 to 25)</td>
<td>10</td>
</tr>
<tr>
<td>Abdelazeem et al10</td>
<td>Prospective case series</td>
<td>IV</td>
<td>Surgical hip dislocation + osteochondroplasty (25); osteoplasty + osteotomy (6)</td>
<td>31</td>
<td>32</td>
<td>26/5</td>
<td>14 (11 to 17)</td>
<td>24.1 (7 to 14)</td>
<td>12</td>
</tr>
<tr>
<td>Rebello et al31</td>
<td>Retrospective case series</td>
<td>IV</td>
<td>Surgical hip dislocation + osteoplasty (7); femoral neck osteotomy (4); osteoplasty + intertrochanteric osteotomy (8); ORIF (5); Intertrochanteric osteotomy (5)</td>
<td>29</td>
<td>29</td>
<td>9/20</td>
<td>15.7 (8 to 23)</td>
<td>41.6 (12 to 73)</td>
<td>8</td>
</tr>
<tr>
<td>Anderson et al32</td>
<td>Retrospective case series</td>
<td>IV</td>
<td>Surgical hip dislocation subcapital osteotomy</td>
<td>11</td>
<td>12</td>
<td>7/4</td>
<td>15 (12 to 19)</td>
<td>61 (6 to 104)</td>
<td>11</td>
</tr>
<tr>
<td>Bali et al33</td>
<td>Case series</td>
<td>IV</td>
<td>Surgical hip dislocation subcapital osteotomy</td>
<td>8</td>
<td>8</td>
<td>6/2</td>
<td>17.8 (13 to 29)</td>
<td>41 (20 to 84)</td>
<td>10</td>
</tr>
<tr>
<td>Osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tjoumakari et al34</td>
<td>Therapeutic case series</td>
<td>IV</td>
<td>Transverse subtrochanteric osteotomy</td>
<td>13</td>
<td>13</td>
<td>5/8</td>
<td>14 (11 to 17)</td>
<td>43 (32 to 92)</td>
<td>11</td>
</tr>
<tr>
<td>Saisu et al35</td>
<td>Therapeutic</td>
<td>IV</td>
<td>Open intertrochanteric flexion osteotomy</td>
<td>32</td>
<td>32</td>
<td>24/8</td>
<td>13 (12 to 17)</td>
<td>60 (24 to 108)</td>
<td>12</td>
</tr>
</tbody>
</table>

*maximum MINOR score was 16
MINOR, Methodological index for non-randomised studies; NR not reported

The included studies had a mean MINORS score of 10.05 (8 to 13), which indicates a fair quality of evidence (Table I), although all studies are considered inherently low-quality evidence as they were retrospective, and did not have a control group for comparison.

Patient outcomes. Different radiological measurements such as alpha angle, slip angle, femoral head neck-offset ratio, and centre-edge angle were used in the eligible studies. Alpha angle measurement on the frog-leg lateral plain radiograph was sufficiently administered both pre-operatively and post-operatively in ten of the 15 studies. It was measured on frog-leg lateral radiograph in all of the studies except one that measured it on MRI using radial reformatted MR images.24 This was used to compare the degree of surgical correction between study groups. The mean alpha angle corrections were 32.14° (SD 7.02°), 41.45° (SD 10.5°) and 6.0° (SD 5.21°) for arthroscopy, surgical hip dislocation and osteotomy, respectively (p < 0.05) (Table II).
dislocation (p = 0.56). No study in the osteotomy group reported outcomes using this instrument.

In addition, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score was reported in three studies that allowed for the comparative assessment of post-operative improvement only in surgical dislocation. This outcome score showed a marginal improvement of 0.79 post-operatively (n = 3 studies; 73 hips).

Pre- and post-operative internal rotation (IR) in 90° of hip flexion was compared among eligible studies in arthroscopy (n = 4 studies; 60 hips), surgical dislocation (n = 3 studies; 56 hips) and osteotomy (n = 1 study; 13 hips) treatments. While there were improvements in these measurements across all of the study groups (arthroscopy IR, 21°; surgical hip dislocation IR, 39°; osteotomy IR, 28°), surgical dislocation treatment showed a statistically insignificant (p = 0.18) improvement over arthroscopic and osteotomy treatments. Two studies reported a persistently positive impingement test (flexion, adduction, internal rotation) in about 25% of their patients post-operatively following arthroscopy treatment and osteotomy treatment.

Table II. Mean (and range where available) correction of alpha angles in eligible studies

<table>
<thead>
<tr>
<th>Type of treatment</th>
<th>Study</th>
<th>Pre-operative alpha angle</th>
<th>Post-operative alpha angle</th>
<th>Mean degree of correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopy</td>
<td>Chen et al</td>
<td>88.2° (70° to 118°)</td>
<td>54.92° (33° to 67°)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tscholl, et al</td>
<td>57.0° (51° to 74°)</td>
<td>37.0° (32° to 47°)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basheer et al</td>
<td>91.6° (58° to 140°)</td>
<td>51.73°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wylie et al</td>
<td>75.0° (60° to 97°)</td>
<td>46.0° (33° to 58°)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lee et al</td>
<td>76.8° (70° to 85°)</td>
<td>43.4° (40° to 52°)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Akkari et al</td>
<td>86.0°</td>
<td>48.7°</td>
<td></td>
</tr>
<tr>
<td>Surgical hip dislocation</td>
<td>Abdelazeem et al</td>
<td>99.97° (87° to 109°)</td>
<td>47.0° (25° to 60°)</td>
<td>32.14°</td>
</tr>
<tr>
<td></td>
<td>Anderson et al</td>
<td>85.0° (79.1° to 90.1°)</td>
<td>56.0° (range, 41.9° to 49.8°)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bali et al</td>
<td>64.4° (50° to 78°)</td>
<td>32.0° (range, 25° to 39°)</td>
<td></td>
</tr>
<tr>
<td>Osteotomy</td>
<td>Saisu et al</td>
<td>82.0° (52° to 119°)</td>
<td>76.0° (43° to 107°)</td>
<td>41.45°</td>
</tr>
</tbody>
</table>

Table III. Mean (and range where available) follow-up and Modified Harris Hip scores (mHHs), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and range of movement (ROM) in eligible studies

<table>
<thead>
<tr>
<th>Type of treatment</th>
<th>Study</th>
<th>Mean follow-up (mths)</th>
<th>Score</th>
<th>Mean improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopy</td>
<td>Basheer et al</td>
<td>29 (23 to 56)</td>
<td>mHHS pre-operative score</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wylie et al</td>
<td>28.6 (12.6 to 55.6)</td>
<td>91.4 (61.6 to 100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Akkari et al</td>
<td>26</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tscholl, et al</td>
<td>57.0° (51° to 74°)</td>
<td>45.67</td>
<td>84.37</td>
</tr>
<tr>
<td>Surgical hip dislocation</td>
<td>Abdelazeem et al</td>
<td>24.1 (12 to 40)</td>
<td>69.7 (61 to 74)</td>
<td>96.3 (65 to 100)</td>
</tr>
<tr>
<td></td>
<td>Anderson et al</td>
<td>61 (6 to 104)</td>
<td>54.0 (47.9 to 60.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bali et al</td>
<td>41.6 (12 to 73)</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>35.07</td>
<td>43.08</td>
</tr>
<tr>
<td>Arthroscopy</td>
<td>Spencer et al</td>
<td>No data</td>
<td>14</td>
<td>17.7</td>
</tr>
<tr>
<td>Surgical hip dislocation</td>
<td>Abdelazeem et al</td>
<td>24.1 (12 to 40)</td>
<td>64.03 (54 to 72)</td>
<td>97.0 (74 to 100)</td>
</tr>
<tr>
<td></td>
<td>Rebello et al</td>
<td>41.6 (12 to 73)</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>43.08</td>
<td>43.87</td>
<td>0.79</td>
</tr>
<tr>
<td>Arthroscopy</td>
<td>Leunig, et al</td>
<td>29 (6 to 23)</td>
<td>-6° (-20° to 0°)</td>
<td>10 (10° to 20°)</td>
</tr>
<tr>
<td></td>
<td>Basheer et al</td>
<td>24 (interquartile range 24 to 35)</td>
<td>-22° (~45° to 10°)</td>
<td>10 (~20° to 20°)</td>
</tr>
<tr>
<td></td>
<td>Chen et al</td>
<td>6 (3 to 12)</td>
<td>-16° (~30° to 5°)</td>
<td>11° (0° to 20°)</td>
</tr>
<tr>
<td></td>
<td>Lee et al</td>
<td>Mean</td>
<td>11°</td>
<td>10</td>
</tr>
<tr>
<td>Surgical hip dislocation</td>
<td>Anderson et al</td>
<td>61 (6 to 104)</td>
<td>-35° (~47.7° to -22.3°)</td>
<td>13° (7.2° to 17.8°)</td>
</tr>
<tr>
<td></td>
<td>Spencer et al</td>
<td>14°</td>
<td>-16°</td>
<td>12°</td>
</tr>
<tr>
<td></td>
<td>Abdelazeem et al</td>
<td>24.1° (12° to 40°)</td>
<td>0°</td>
<td>40° (10° to 50°)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>-17°</td>
<td>17°</td>
<td>22°</td>
</tr>
<tr>
<td>Osteotomy</td>
<td>Saisu et al</td>
<td>43°</td>
<td>-10°</td>
<td>18°</td>
</tr>
</tbody>
</table>

IR, internal rotation in 90° of hip flexion
dislocation studies (131 patients) and in two osteotomy treatment studies (45 patients) (Table IV). The minor (and major) complication rates were 11.3% (1.6%), 6.9% (10.7%), and 11.1% (6.7%) for arthroscopy, surgical dislocation, and osteotomy treatments, respectively. Revision rates were 8.1%, 11.5% and 2.2% for arthroscopy, surgical dislocation, and osteotomy, respectively (Table IV).

Discussion

Key findings. The key findings of this review were that all approaches to treat post-SCFE deformity resulted in a significant correction in alpha angle, internal rotation and in patient-reported outcomes, however, surgical dislocation had higher rates of complications and revisions.

The surgical approach to patients with symptomatic FAI secondary to SCFE deformity remains controversial, with some advocating immediate osteoplasty at the time of SCFE pinning. Treatment decisions, though typically based on the severity of the slip angle, may not be as reliable as those based on alpha angle measurements. Two studies in this review demonstrated that clinical signs of FAI correlated with alpha angle more than with slip angle in SCFE-related impingement. Although originally measured on MRI, a previous study showed little benefit over plain radiographs in improving inter-observer agreement in cam-type FAI morphology. Nevertheless, it remains an important measure of cam-type FAI as adequate correction has been correlated with positive outcome following FAI surgery.

Clinical outcome scores showed improvements in all treatment types, with statistically insignificant higher scores in mHHS in arthroscopy compared with other procedures (Table III). Previous systematic reviews of both procedures in the treatment of FAI revealed superior results for arthroscopic treatment on the 12-Item Short Form Survey (SF-12) physical component in comparison with surgical dislocation treatment. This systematic review showed a greater improvement in hip internal rotation in surgical dislocation treatment. IR is usually decreased from FAI and may serve as a clinical measurement of impingement severity. As such, determining how much of the reduced IR is due to the retrotorsion of the femur rather than residual post-operative deformity is essential to validate the clinical significance of this physical exam feature.

Revision osteoplasty rates due to osseous resection are comparable in surgical dislocation (1.5%) and arthroscopic (1.6%) treatments. A cadaveric study by Sussmann et al showed the efficacy of arthroscopic decompressions of the head-neck junction for isolated cam-type impingement, with an accuracy and precision similar to those of an open surgical technique. Thus, depending on the severity of the deformity, some cam-type impingement may be better treated by surgical dislocation.

Surgical hip dislocation was described by Ganz et al to provide a reproducibly safe 360° view of the femoral head and neck, and has long been the standard surgical modality for treating FAI. Ganz et al reported successful results of this open technique without any occurrence of avascular necrosis of the femoral head. A similar result has not been reproduced in papers included in this systematic review. A higher avascular necrosis...
(AVN) rate (4.6%) was noted with the use of open techniques (Table IV), possibly due to the smaller number of feeder vessels from the circumflex artery, when compared with arthroscopic and osteotomy treatments. Surgical outcomes in these patients were with poor long-term function. Future efforts should focus on performing high-quality trials with standardised radiological and clinical outcome measures for young patients to clarify treatment approaches, clinical and radiographic indicators, and optimise patient safety. In addition, given that not all patients with SCFE develop FAI, it would be of clinical relevance to identify the percentage of patients with SCFE that can remodel their proximal femurs, as well as identify factors that make patients more likely to develop the metaphyseal cam deformity.

Strengths and limitations. To the best of our knowledge, this is one of the first systematic reviews of the English literature to evaluate different surgical treatments for SCFE-related FAI, and is strengthened by a strong and rigorous methodology and thorough data abstraction/analysis. There are, however, limitations in this review. First, all studies were retrospective, level IV case series. This study design has inherent methodological limitations, such as selection and spectrum bias, that prevent us from answering such questions of importance as, ‘how long after the initial SCFE treatment did the second surgery for FAI occur?’ Furthermore, the lack of comparative studies limits the ability to draw definitive conclusions on the efficacy of one procedure in comparison with another based on the available data. This is an English language-only study, which carries an inherent language bias. Second, there were more patients in the surgical dislocation group than there were in the other groups, thus limiting the ability to make direct comparisons. Further, the alpha angle may correct impingement, but not overall deformity, based on Southwick slip angle. Clinical outcome scores were heterogeneous, making direct comparison of functional improvement difficult. Lastly, the hip outcome tools used may not always be applicable to the young hip patients, and whether statistical differences correlate with minimal clinical important differences remains to be seen.

In conclusion, based on the current systematic review, FAI following SCFE might be amenable to open and arthroscopic surgical management with good short-term outcomes. However, we are unable to determine conclusively the superiority of one treatment technique over another. It may be that isolated metaphyseal defects can be managed via an open or arthroscopic approach, with open techniques reserved for cases where arthroscopy cannot provide adequate resection and/or in those patients requiring corrective osteotomy. Further investigation, including high-quality trials with standardised radiological and clinical outcome measures for young patients, is warranted to clarify treatment approaches, clinical and radiographic indicators, and to optimise patient safety.

Supplementary material
A table showing search strategy, and lists of eligible and ineligible studies at review, as well as the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, are available alongside the online version of this article at www.bjr.boneandjoint.org.uk

References
479 SURGICAL TREATMENT OF FEMOROACETABULAR IMPINGEMENT FOLLOWING SLIPPED CAPITAL FEMORAL EPIPHYSIS

Funding Statement

None declared.

All authors meet the authorship requirements as stated in the Uniform Requirements for Manuscripts Submitted to Biomedical Journals.

Author Contributions

K. O. Oduwole: Lead author, Contributed to all elements of the study, Study design, Responsible for executing the search for abstracts, Data analysis and presentation, Primary manuscript writer, Responsible for all encompassing and all subsequent revisions throughout the editing process.

D. de SA: Content expert, Contributed to study design, Data analysis and presentation, Assisted with writing of the manuscript and encompassing subsequent revisions throughout the editing process.

J. Kay: Primary literature reviewer, Responsible for executing the search for abstracts, Data abstraction, analysis and presentation, Contributed to the writing of the manuscript, Responsible for all encompassing subsequent revisions throughout the editing process.

F. Findakli: Assisted with literature reviewer, Responsible for executing the search for abstracts, Data abstraction.

A. Duong: Content expert, Contributed to study design, Data analysis, Manuscript preparation and revision.

N. Simunovic: Content expert, Contributed to study design, Data analysis, Manuscript preparation and revision.

Y-M. Yen: Content expert, Contributed to study design, Data analysis, Manuscript preparation and revision.

O. R. Ayeni: Study supervisor and content expert, Contributed to all elements of the study, Study design, Development of the literature search strategy and grading process, Assisted with data analysis and presentation, Manuscript preparation and revision.

Conflicts of Interest Statement

None declared.

© 2017 Ayeni et al. This is an open-access article distributed under the terms of the Creative Commons Attributions licence (CC-BY-NC), which permits unrestricted use, distribution, and reproduction in any medium, but not for commercial gain, provided the original author and source are credited.