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ABSTRACT In the search for effective immunologic interventions to prevent and treat
HIV-1 infection, standardized reference reagents are a cost-effective way to maintain ro-
bustness and reproducibility among immunological assays. To support planned and on-
going studies where clade C predominates, here we describe three virus panels, chosen
from 200 well-characterized clade C envelope (Env)-pseudotyped viruses from early in-
fection. All 200 Envs were expressed as a single round of replication pseudoviruses and
were tested to quantify neutralization titers by 16 broadly neutralizing antibodies (bnAbs)
and sera from 30 subjects with chronic clade C infections. We selected large panels
of 50 and 100 Envs either to characterize cross-reactive breadth for sera identified as
having potent neutralization activity based on initial screening or to evaluate neu-
tralization magnitude-breadth distributions of newly isolated antibodies. We identi-
fied these panels by downselection after hierarchical clustering of bnAb neutraliza-
tion titers. The resulting panels represent the diversity of neutralization profiles
throughout the range of virus sensitivities identified in the original panel of 200 vi-
ruses. A small 12-Env panel was chosen to screen sera from vaccine trials or natural-
infection studies for neutralization responses. We considered panels selected by pre-
viously described methods but favored a computationally informed method that
enabled selection of viruses representing diverse neutralization sensitivity patterns,
given that we do not a priori know what the neutralization-response profile of vac-
cine sera will be relative to that of sera from infected individuals. The resulting 12-
Env panel complements existing panels. Use of standardized panels enables direct
comparisons of data from different trials and study sites testing HIV-1 clade
C-specific products.

IMPORTANCE HIV-1 group M includes nine clades and many recombinants. Clade C
is the most common lineage, responsible for roughly half of current HIV-1 infections,
and is a focus for vaccine design and testing. Standard reference reagents, particu-
larly virus panels to study neutralization by antibodies, are crucial for developing
cost-effective and yet rigorous and reproducible assays against diverse examples of
this variable virus. We developed clade C-specific panels for use as standardized re-
agents to monitor complex polyclonal sera for neutralization activity and to charac-
terize the potency and breadth of cross-reactive neutralization by monoclonal anti-
bodies, whether engineered or isolated from infected individuals. We chose from
200 southern African, clade C envelope-pseudotyped viruses with neutralization ti-

Received 15 June 2017 Accepted 19 July
2017

Accepted manuscript posted online 26 July
2017

Citation Hraber P, Rademeyer C, Williamson C,
Seaman MS, Gottardo R, Tang H, Greene K, Gao
H, LaBranche C, Mascola JR, Morris L, Montefiori
DC, Korber B. 2017. Panels of HIV-1 subtype C
Env reference strains for standardized
neutralization assessments. J Virol 91:e00991-
17. https://doi.org/10.1128/JVI.00991-17.

Editor Frank Kirchhoff, Ulm University Medical
Center

Copyright © 2017 Hraber et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Peter Hraber,
pth@lanl.gov, or Bette Korber, btk@lanl.gov.

VACCINES AND ANTIVIRAL AGENTS

crossm

October 2017 Volume 91 Issue 19 e00991-17 jvi.asm.org 1Journal of Virology

http://orcid.org/0000-0002-2920-4897
https://doi.org/10.1128/JVI.00991-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:pth@lanl.gov
mailto:btk@lanl.gov
http://crossmark.crossref.org/dialog/?doi=10.1128/JVI.00991-17&domain=pdf&date_stamp=2017-7-26
http://jvi.asm.org


ters against 16 broadly neutralizing antibodies and 30 sera from chronic clade C in-
fections. We selected panels to represent the diversity of bnAb neutralization pro-
files and Env neutralization sensitivities. Use of standard virus panels can facilitate
comparison of results across studies and sites.

KEYWORDS assay standardization, clinical trials, human immunodeficiency virus,
immunoserology, neutralizing antibodies, vaccines

The quest to induce and understand protective immune responses to HIV-1 elicited
by vaccination remains a high priority. Passive administration of broadly neutraliz-

ing antibodies (bnAbs) is also being evaluated for its ability both to prevent and to treat
HIV-1 infection. Use of standardized reference reagents facilitates comparisons of
results from different cohorts or trials (1). The demand for reagents that reflect global
diversity of HIV-1 is offset by the overwhelming regional burden of specific forms of the
virus. This regional burden is acutely clear for clade C viruses in southern Africa.

Clade C is far more common than any other HIV-1 lineage. For the period 2004 to
2007, nearly half (48%) of all HIV-1 infections were clade C, representing an estimated
15.8 million people (2). It is the dominant clade in southern Africa and India, and
circulating recombinants that include C clade Env regions are very common in China
(3). Although those prevalence estimates were current a decade ago, as of March 2017,
sequences collected in the HIV database (http://hiv.lanl.gov/components/sequence/
HIV/geo/geo.comp) indicated that C clade predominated in South Africa (98% of 32,826
sequences were C clade) and India (95% of 13,475 sequences were C clade) and that C
clade or BC recombinants were present in roughly half of 30,188 sequences from China.
Furthermore, multiple lines of evidence suggest that clade C is more transmissible (4–6)
and may have greater replicative fitness (7, 8) than other subtypes, so its prevalence is
unlikely to have decreased in the past 10 years. The next most abundant nonrecom-
binant forms are clade A (12%) and clade B (11%), present in 3.9 and 3.7 million
individuals, respectively. Recombination is also very common, with circulating recom-
binant forms (CRFs) and unique, noncirculating recombinants (URFs) together consti-
tuting 20% (6.7 million) of the infections (2).

Here we describe development of standard clade C virus panels for two anticipated
uses. Sets of 50 and 100 Envs are intended to enable detailed characterization of
magnitude-breadth distributions for neutralizing antibodies and sera. A smaller, more
manageable set of 12 Envs is intended for use in screening newly isolated antibodies
or sera from vaccinees. The 12-Env C clade panel was selected to include informative
examples of neutralization specificities that arise during the course of natural C clade
infections. Envs for these neutralization panels were chosen from a set of 200 well-
characterized clade C Envs which we recently described elsewhere (9). The Envs
represent the HIV-1 genetic and antigenic diversity of members of clade C in southern
Africa and do not include other geographic regions, such as India (9). A primary goal
was to enable detection of neutralization responses in the new HVTN 702 vaccine
efficacy trial that has recently begun in South Africa (10), wherein immune responses
to a clade C vaccine will be monitored for their capacity to prevent infection in a clade
C epidemic (11).

In related work, we recently described development of a 12-virus global panel that
captures average neutralization responses corresponding to the M (main) group diver-
sity, including common subtypes and CRFs (12). Both the global panel and the virus
panels that we developed in the present study are intended to provide standardized
reagents to investigators working to characterize adaptive immune responses to HIV.
The panels developed here differ from the global reference panel in that the Envs are
all from clade C, whereas the 12-virus global panel contains more genetic diversity as
a consequence of inclusion of clades A, B, C, and G plus the recombinants CRF01 and
CRF07. Also, a main selection criterion for the global panel was the ability to infer
typical (median) serum potency. To that end, we identified nine viruses that satisfied
the criterion optimally and then added three viruses deliberately chosen to include
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patterns of neutralization response diversity that were not otherwise included (12). In
contrast, here we describe a clade C panel of 12 Envs intended to detect relatively weak
or potentially clade-specific tier 2 neutralization responses. Vaccine sera that yielded
any detectable response(s) could be identified for further evaluation. Ultimately, both
the clade C and M group panels are intended for use in vaccine trials and in other
settings.

RESULTS
Antibody neutralization. Neutralization titers are typically determined as point

values (e.g., 50% inhibitory concentration [IC50] and IC80 values) to summarize distri-
butions from a series of reagent concentrations. The antibody concentration ranges
tested in neutralization assays often produce censored neutralization IC50 titers, where
the range of concentrations does not yield 50% neutralization. Censored outcomes are
represented as “�x,“ where x is the greatest concentration used, or “�y,” where y is the
lowest concentration used. These cutoffs can differ across assays, generally due to
practical constraints of limited serum or antibody availability. Such censoring is an issue
for quantitative analysis, because standard practice would use a constant placeholder
value for censored outcomes; e.g., an IC50 value above 50 (“�50”) is replaced with a
value of 100. Censoring thresholds of 10, 20, 25, and 50 �g/ml were used for different
bnAbs (Fig. 1), and it was sometimes necessary to use different thresholds for even a
single bnAb, such as 3BNC117. Most of the IC50 titers corresponding to 3BNC117 were
not censored (n � 158 Envs). However, the 3BNC117 values were reported as �20
�g/ml for 38 Envs, and the values were �50 �g/ml for 4 Envs. To standardize the
comparisons and to compare different bnAbs against the 200-virus panel, we used a
consistent censoring cutoff of 10 �g/ml across all assays, and IC50s below 0.01 �g/ml
were censored at 0.01.

Magnitude-breadth panels. The Envs downselected for magnitude-breadth char-
acterization sampled the spectrum of bnAb reactivity patterns from the full set of 200
Envs (Fig. 2). Heat maps show IC50 titers for the full neutralization panel (Fig. 2a) and
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FIG 2 Heat maps of IC50 neutralization titers from assaying 200 clade C envelopes against 16 bnAbs. (a) Hierarchically clustered heat map of IC50 titers of
200 Envs against 16 bnAbs. The Env dendrogram is shown; the bnAb dendrogram is not shown. Leaf colors indicate 100 viruses included (red) or excluded
(blue) by downselection. The histogram (black line) above the heat map summarizes the distribution of assay results, with histogram breakpoints at 10,
4.64, 2.15, 1.00, 0.464, 0.215, 0.10, 0.0464, 0.0215, and 0.01 �g/ml. Low IC50s were censored at 0.01 �g/ml to standardize censoring thresholds across bnAbs.
(b) 100-Env panel, downselected from alternating rows, i.e., red branches on the dendrogram. (c) 50-Env panel downselected by alternating over 100 Envs.
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for downselected panels of 100 Envs (Fig. 2b) and 50 Envs (Fig. 2c). Histograms show
similar IC50 distributions (combined for all 16 bnAbs) at the top of each panel.

For each of the bnAbs, Fig. 3 compares neutralization magnitude-breadth distribu-
tions of the full panel of 200 clade C Envs with the distributions of the downselected
panels. In most cases, the magnitude-breadth distributions show a high degree of
overlap, which means that the downselected panels are a good representation of the
properties of the full set. A slight shift toward greater neutralization sensitivity is
apparent for some bnAbs, where distributions of selected Envs are biased toward IC50

values slightly lower than those seen with the excluded Envs. This small bias resulted
from favoring more-sensitive viruses in choosing alternate rows in the heat map, i.e., by
starting with the most sensitive virus rather than skipping it for the next most sensitive.

The concordance of the breadth-potency curves was very high and consistent across
bnAbs for the sets of 100 and 50 Envs (see Table S1 in the supplemental material).
Downsampling further to obtain a 12-Env panel increased the bias in favor of some
bnAbs and against others and gave only a rough approximation of the full set of 200
Envs (see Fig. S1 in the supplemental material). Also, downsampling to 12 Envs greatly
increased the area between the magnitude-breadth curves versus the area seen with
the full set (Fig. S2), thus accounting for part of our rationale not to use downsampling
to select a 12-Env panel. We instead considered other approaches.

Serum screening panel (12 Envs). Figure 4a summarizes Env sensitivity to neu-
tralization by plasma, calculated as geometric mean ID50 among 30 chronic plasma
samples, together with the number of bnAbs that neutralized each Env. This coarse
measure of sensitivity across all bnAbs was significantly associated with sensitivity to
plasma (Kendall’s �, � � 0.338, P � 3.34 � 10�11). We used this association to select
Envs from principal-coordinate analysis (PCA) of bnAb neutralization data via compu-
tational guidance.

Informed by the results from testing each Env against multiple bnAbs, we sought to
represent the diversity of different bnAb specificities, to reduce the risk of missing
neutralization signal by overrepresenting the most common bnAb specificities. For this
reason, we selected 12 Envs to represent a range of neutralization sensitivities to
polyclonal plasma and monoclonal antibodies. Figure 4b shows the cumulative distri-
bution of Env sensitivities to plasma. Env colors indicate the number of bnAbs with an
IC50 value below 10 �g/ml from Fig. 4a. Where plasma and bnAb sensitivities are closely
associated, the progression of Envs appears in an order consistent with the progression
of rows in Fig. 4a. An overall trend is apparent for an association between serum and
bnAb sensitivity, though small inconsistencies across Envs reflect wide variations in
neutralization titers against sera and in the number of bnAbs to which each Env is
sensitive.

Figure 4c compares plasma ID50 distributions between the Envs in the candidate
panel and the remaining Envs. The candidate panel was intentionally chosen to avoid
extremely high or low geometric mean ID50 titers among chronic plasma samples, both
to reduce false negatives and to exclude tier 1 neutralization responses, which are
readily obtained in induced form and do not correlate with immune protection (13, 14).
We found no evidence that the geometric mean ID50s of the Envs in the selected panel
(n � 12) and the remaining Envs (n � 183) were sampled from different distributions
(two-sided, two-sample Kolmogorov Smirnov test, P � 0.53). The candidate panel Envs
were neutralized by different numbers (Fig. 4) and subsets (Fig. 5) of bnAbs, rather than
the Envs being sensitive to all the bnAbs studied, and we confirmed that multiple Envs
that were well targeted by each major monoclonal antibody epitope specificity tested
were included.

To simplify the diverse outcomes of Env sensitivity to neutralization by different
antibodies and to facilitate the selection of 12 Envs that covered a range of distinctive
neutralization profiles with respect to the 16 bnAbs tested, we used PCA, which flattens
the neutralization data into orthogonal (minimally correlated) sets of linear combina-
tions of bnAbs (Fig. S3). The first two principal components together explained about
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half (47.6%) of the variance in the bnAb IC50 data. Adding the third principal compo-
nent accounted for 64.6% of the total variance. As detailed in the supplemental
material, the first three principal components were strongly associated with combina-
tions of CD4 binding-site (CD4bs), V2 glycan, and V3 glycan bnAb specificities.
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On the basis of comparisons of the alternative clustering methods, we favored the
use of Ward’s method (15) with squared Euclidean distances (ward.D2) for clustering.
Ward’s method was best able to cluster distinctive patches of serum and virus speci-
ficities within the broader gradient of plasma neutralization sensitivities. The resulting
clustered heat map of serum neutralization ID50 titers (Fig. 6) is annotated to identify
the candidate panel of 12 Envs. The panels identified automatically (lasso and
k-medoids), as described in the supplemental material, are also shown for comparison.
All three sets of Envs represent a range of average neutralization sensitivities, as reflected
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FIG 6 Hierarchically clustered dendrogram of 200 tier 2 envelopes with heat map of neutralization ID50s. The dendrogram was computed
from squared Euclidean distance values using Ward’s clustering method. Leaves (rows) were weighted by geometric mean neutralization
titer for dendrogram layout. Colors indicate viruses selected for the candidate 12-Env panel (black). Panels defined by the automatic
methods for lasso (red) and by k-medoids (blue) with k � 12 are also indicated. Other virus names are indicated in gray.

HIV-1 Clade C Neutralization Panels Journal of Virology

October 2017 Volume 91 Issue 19 e00991-17 jvi.asm.org 9

http://jvi.asm.org


by their dispersal from the top to the bottom of the heat map, which corresponded to
more-resistant and more-sensitive Envs, respectively. The candidate panel, chosen with
computational guidance, covers a more limited range of sensitivities than the auto-
matically chosen Envs. This was done intentionally to avoid both highly sensitive and
very resistant viruses during the iterative procedure described above.

Other clustering methods can yield quite different outcomes, and the correlation
coefficient between cophenetic distances (16) summarizes similarity among clusters
obtained using alternative algorithms (Fig. S4).

Ordering ID50s by geometric mean titer reveals the continuum of neutralization
responses (Fig. S5) that are characteristic of the polyclonal mixture of antibody poten-
cies and/or specificities found in plasma samples (17). This continuum further empha-
sizes the benefit of using bnAb sensitivities, rather than plasma responses, for compu-
tationally guided panel selection, given that we do not know whether a range of
antibody sensitivities or of various antibody potencies dominates the neutralization
response of any plasma sample.

Fig. S6 summarizes serum neutralization responses among the 12-Env panels iden-
tified by 3 automated methods (downselection, lasso, and k-medoids) versus compu-
tationally guided selection. Because computationally guided selection avoided individ-
ual Envs that were sensitive to all bnAb specificities, the candidate panel does not
merely reflect the continuum of neutralization responses, as do the panels identified by
automated methods. Sensitive and informative detection of tier 2 neutralization re-
sponses, not modeling the full distribution of Env plasma sensitivities, is the main
purpose intended for the candidate 12-Env panel.

Information about the 12 candidate Envs, including the geographic region and year
sampled, is summarized in Table 1. Other information is tabulated to summarize
genetic attributes of these sequences, including the glycosylation state (presence or
absence of a potential N-linked glycosylation motif) at sites relevant to antibody
binding susceptibility, hypervariable loop lengths and net charges, and the infection
stage from which the virus was sampled.

Table 2 summarizes the IC50 neutralization titers by 16 bnAbs. In the candidate
panel, ZM233M and Ce703010010_C4 were resistant only to PGT128. Another Env,
Ko243, was sensitive to all bnAbs shown. The selection of Envs sensitive to specific
bnAb families is evident in the last three rows (Table 2).

Data Set S1 in the supplemental material lists the properties summarized in Table 1
and Table 2 for all 200 Envs.

Comparison with earlier panels. Earlier work published in 2006 described a panel
of 12 clade C Envs from South Africa and Zambia, selected from among 18 viruses
which were all acquired by heterosexual transmission and represented acute or early
infections (18). Their median collection date was June 2001 (range, June 1998 through
June 2005; there is always an inevitable lag between sample collection and publica-
tion). The median collection date among viruses in the current clade C panel was 2007
(range, October 2002 through 2010; the month of sample collection was not reported
for these data). The average pairwise distance (APD) on trees from aligned env
nucleotide sequences is 9.2% greater for this panel (0.250) than for the 2006 clade C
panel (0.229), and both values are lower than that determined for the global multiclade
panel (0.330), as expected. Phylogenetic distances are significantly greater for the
current panel than for the 2006 panel (n � 66 in both; two-sided Wilcoxon test, P �

0.00018) and reflect the more challenging conditions of the current epidemic and test
conditions for vaccine efficacy trials. These trees (not shown) were computed using
PhyML version 3 (19, 20) with the GTR��4�I substitution model and were rooted on
HXB2, though the distances to HXB2 were excluded from panel APD calculations. Both
panels were designed to represent acute and early infection following heterosexual
transmission. Because increasing southern African clade C diversity is associated with
reduced cross-reactive neutralization between sera and circulating HIV strains (9), a
more divergent, more contemporary clade C panel better reflects the modern state of
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the epidemic. Such samples are difficult to obtain, and it takes years to acquire and
evaluate them experimentally, so an even more recent sampling to assess vaccine trials
that are under way is infeasible.

We also compared bnAb neutralization titers from viruses in each panel and
summarized neutralization data for the 2006 clade C panel (Fig. 5a) and the global
panel (Fig. 5b) from the CATNAP database (21). For the previously published panels, we
extracted data available from CATNAP as of May 2017 (http://hiv.lanl.gov/catnap). Data
from Envs with multiple published results are summarized as the geometric mean IC50

among unique values. That is, if an assay had been published three times with the same
value and once with another value, only the two distinct neutralization values were
averaged. This was done to avoid biased estimates resulting from the use of data from
papers that reproduce results from earlier papers without repeating the experiment.
One Env (ZM233M) was included in both clade C panels, identified in the figure by an
asterisk. The candidate 2017 clade C panel (Fig. 5c) that we described above is no less
sensitive to known bnAbs and is intended as an update to the 2006 clade C panel, for
sensitive and informative plasma screening.

By design, several Envs in this new clade C panel shared patterns of reactivity to
members of distinct bnAb classes. For example, B005582 is particularly sensitive to
V3-glycan (V3g) bnAbs, Ce2103 to V1/V2-glycan (V2g) bnAbs, and 2969249 to CD4bs
bnAbs (Fig. 5c). Detecting neutralization in plasma samples that have responses to one
or more of these viruses would provide clues about antibody specificities therein and
would provide information for follow-up experiments that map specificities or isolate
monoclonal antibodies.

DISCUSSION

To enhance scientific rigor, improve reproducibility, and unify efforts against HIV diver-
sity, the use of standardized reference reagents for immunological assays is highly bene-
ficial. Standardized reagents enable comparisons between different studies. We have
described selection of standardized virus panels from HIV-1 clade C for several anticipated
types of investigation, which include screening large numbers of sera from vaccinees for
immune-induced neutralization responses and characterizing the magnitude and breadth
of neutralization responses by newly isolated monoclonal antibodies.

Guided by the anticipated uses for these panels, we have described practical
selection criteria, which utilize available information to obtain appropriately represen-
tative Env panels. We have described the use of hierarchical clustering and a simple but
elegant downselection method to identify subsets of 100 and 50 clade C Envs from a
panel of 200 well-characterized viruses. The panels performed better than randomly
selected panels at characterizing magnitude-breadth distributions in aggregate across
16 bnAbs. For particular bnAbs, rather than the overall aggregate, moderate to almost
no deviation appeared between the magnitude-breadth distributions revealed by our
downselected panels and the full set of 200 Envs. This suggests that the smaller virus
panels can be used in place of the full set to characterize bnAb magnitude-breadth
distributions. Consequently, the use of smaller virus panels accelerates the rate at which
bnAbs can be characterized. To avoid bias in favor of some bnAbs and against others,
use of even smaller, 12-Env panels in magnitude-breadth studies is not recommended.

We used PCA of 16 bnAb IC50 neutralization titers to project 200 Env-pseudotyped
viruses onto simplified coordinate systems for computationally guided Env selection.
Using this representation, we identified a panel of 12 viruses that covered diverse bnAb
sensitivity profiles on reduced dimensions. During panel selection, iterative refinement
ensured that the 12 had a representative range of sensitivity to 30 chronic plasma
samples.

We also tried automated methods (downselection, lasso, k-medoids) but favored the
panel identified with computational guidance, because it does not merely reiterate
the plasma neutralization continuum. The diversified detection strategy embodied by
the candidate panel may therefore utilize limited sample materials more effectively
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than the automatically chosen Env sets, each of which contains closely related, and
therefore redundant, neutralization profiles.

Clade-specific panels may be better able to detect relevant neutralization responses
than nonspecific panels. In a previous study that tested South African plasma samples
from individuals with C clade infections from the CAPRISA cohort, a panel of tier 2 clade
C viruses showed greater sensitivity to neutralization than tier 2 virus panels from
clades A and B (22). Similar findings have been reported in other studies (18, 23). We
will not know how the two panels will compare with vaccinee sera until there is a
vaccine that generates some measurable activity against tier 2 viruses. The earliest
success at generating tier 2 virus neutralization could reflect partially matured bnAbs,
and it is not known how these immature bnAbs might be differentially detected with
clade-specific versus global virus panels.

On the other hand, we do not necessarily expect the candidate panel to perform
“better” than the 2006 panel with HIV-1 sera. In fact, some of our previous data suggest
the panels could perform similarly (12). The underlying scientific issue concerns poten-
tial differences in panel performance with vaccine-elicited antibodies, which cannot be
assessed at the moment, because no vaccine yet tested elicits sufficient tier 2 virus
neutralization responses. With this in mind, our goal was to design a panel of clade C
viruses that are more contemporary and are selected on the basis of more-robust
analysis methods to ensure the best possible representation of the current epidemic in
southern Africa. The 2006 panel did not use neutralization phenotype data to guide its
selection but instead included what was known and available at the time regarding Env
genetic variation and reported neutralization assay results for the selected panel. We
incorporated neutralization phenotypes throughout panel selection and selected
from a very large, clade-specific neutralization panel. We expect the useful phenotypic
characteristics of this new panel to emerge in subsequent work.

Our panel of 12 C clade Envs is intended as an update to the panel reported in 2006
(18). The 2006 panel was selected from a small subset through convenience sampling,
whereas the 2017 panel was rationally selected from a much larger collection of viruses.
The 2017 clade C panel contains more recently sampled Envs, deliberately includes
sensitivity profiles that are characteristic of the currently known bnAb families, and
includes greater genetic diversity than the earlier panel. This is important, because
within-clade cross-reactive neutralization tends to decrease as genetic distance in-
creases (23). Also, to help identify weak clade-specific responses without detecting the
nonspecific antibody neutralization that is typical of a tier 1 response (24), the candi-
date panel includes a range of plasma sensitivities and favors neutralization-sensitive
Envs without inclusion of known tier 1 Envs. Consequently, the 2017 clade C panel
should be more informative and may be more sensitive than the 2006 clade C panel.

While we think that the candidate screening panel might provide hints about
antibody specificities in plasma samples, it is intended for screening and not for epitope
mapping, which would be performed to characterize samples that give positive test
results for tier 2 neutralization activity. Further analysis would be needed to differen-
tiate between possible specificities in a serum, and “next-generation” fingerprinting
methods (25) could be useful for such purposes.

In contrast to the 12-virus global panel of multiclade viruses described in an earlier
publication (12), we planned these panels to be used for screening sera and bnAbs
from vaccinees where clade C infections predominate and clade C vaccines are being
tested. We did not formulate a single quantitative metric to choose the virus panels
proposed here for standardization. Instead, we considered a range of current needs for
standardized reagents and selected sets of Envs that together satisfied these needs as
we thought best. An extremely large number (6 � 1018) of alternative 12-Env panels is
possible. We have described several methods to select useful sets of sequences that are
intended to represent diversity in a large neutralization assay panel (6,000 plasma ID50

and 2,600 antibody IC50 titers). The Env panels we propose are reasonably represen-
tative of the diversity of the population from which they were chosen, by several
different criteria. They represent distinctive bnAb sensitivity patterns and generally
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reflect the diversity of neutralization responses seen among sera from infected indi-
viduals.

HIV-1 clade C, which constitutes about half of all infections worldwide at present,
represents formidable genetic diversity. As long as virus evolution continues, the ability
to induce and detect immune responses against this highly diverse pathogen will be of
sustained significance.

MATERIALS AND METHODS
The CAVIMC-CAVD HIV-1 Clade C Virus Neutralization Phenotype Study was reviewed and approved

by the research ethics committee of the Faculty of Health Sciences of the University of Cape Town
(168/2007; 513/2012). All participants provided written informed consent for study participation (9).

Neutralization titers were determined with the TZM-bl luciferase assay previously described (26, 27)
to test 200 recently described Envs against 16 bnAbs and plasma samples from 30 chronic infections (9).
Antibodies studied included five CD4 binding-site (CD4bs) bnAbs, VRC01 (28, 29), VRC07 (30), VRC07-523
(31), VRC13 (32), and 3BNC117 (33); four V3-glycan (V3g) bnAbs, PGT121 (34), PGT128 (34), 10-1074 (35),
and 10-1074V (35); five V1/V2-glycan (V2g) bnAbs, PGT145 (34), CAP256-VRC26.08 (36), CAP256-VRC26.25
(37), PG9 (38), and PGDM1400 (39); and two membrane-proximal external region (MPER) bnAbs, 10E8 (40)
and 4E10 (41). We sometimes refer to CAP256-VRC26.08 and CAP256-VRC26.25 as VRC26.08 and
VRC26.25 for brevity here.

Magnitude-breadth panels (50 and 100 Envs). Large virus panels are useful to characterize the
magnitude and breadth of neutralizing antibodies, but panel size limits the rate at which results can be
obtained. Using large neutralization panels is very expensive and may consume excessive reagent
resources. The trade-off is that excessively small panels may not contain a sufficient amount of the
information needed to make fair assessments across different bnAbs. We therefore downselected
representative sets of 50 and 100 Envs to facilitate studies of antibody magnitude and breadth.

We used a simple strategy to select subsets of viruses that represent the diversity of responses in the
full set. To compare Env profiles, we used the Euclidean distance between vectors of 16 bnAb 50%
inhibitory concentration (IC50) neutralization titers and then hierarchically clustered the 200 Envs. We
weighted the resulting dendrograms by geometric mean IC50 to obtain a gradient from most sensitive
Env to least sensitive Env (within the constraints of the dendrogram branching structure). We used
Ward’s method (15) for hierarchical clustering but also considered other methods. A simple downselec-
tion procedure alternated through the rows of the dendrogram-ordered neutralization heat maps by
inclusion of one Env and exclusion of the next. We repeated this procedure to downselect from the full
panel of 200 Envs and obtain smaller panels comprised of 100 or 50 Envs. We kept the same row and
column order in neutralization panels during downselection rather than recluster and reorder.

For each of 16 bnAbs, we compared the magnitude-breadth distributions of the full panel of 200
clade C Envs with those of the downselected panels. The area between curves (ABC) quantified the
difference between the two cumulative distribution functions. We used resampling to evaluate further
the ABC values from downselected panels. Random panel selection characterized the null distribution of
ABC values to reveal whether dendrogram-based downselection gave significantly lower values than
could be obtained by chance. We randomly sampled 100-Env panels from all 200 Envs (without
replacement) 104 times. From each of these, we also sampled a random 50-Env panel. We computed
resampled ABCs against the distribution from 200 Envs and compared these with values from the
downselected panels.

We repeated the downselection procedure to obtain an even smaller panel of 12 Envs.
Serum screening panel (12 Envs). For the purpose of screening sera from vaccinees, we tried

several approaches to select a small panel of viruses, intended to include Envs sensitive to a variety of
neutralizing antibodies and sera. This smaller “candidate” panel includes 12 pseudoviruses chosen to
detect neutralization responses in vaccinees and to suggest possible antibody specificities therein. Virus
selection was guided by neutralization titers from assays against bnAbs and chronic sera from each of
200 Envs. Tier phenotyping (24) of these Envs demonstrated 1.3% tier 1A (n � 2), 8.5% tier 1B (n � 17),
75% tier 2 (n � 150), and 15.5% tier 3 (n � 31) Envs. We excluded the two tier 1A Envs and three highly
sensitive tier 1B Envs (geometric mean 50% infective dose [ID50] titers above 250 reciprocal dilutions)
from panel selection because they seemed unlikely to be useful in distinguishing the protective
responses from those that are nonprotective (13, 14).

Our strategy was to select Envs using bnAb IC50s to ensure that all specificities were included and to
compare the data to ID50s from plasma samples from patients with chronic infection. We used principal-
component analysis (PCA) to simplify high-dimensional data from neutralization assays by projecting
them onto fewer dimensions. The overall effect of dimension reduction is achieved by decomposing
correlations among the data into principal components (42). This approach has recently been used for
unsupervised learning to characterize high-dimensional immunological data from HIV Env antigens (43).

In a computationally guided procedure, we iteratively selected candidate Env panels and then
reviewed their distributions in lower-dimensional projections of bnAb IC50s. Where the candidate panel
contained clusters of Envs rather than dispersed Envs, different Envs were chosen to increase the
separation between them and to increase coverage of known specificity profiles with the least overlap
possible. This approach enabled us to select 12 candidate Envs that captured the diversity of known
bnAb specificities, while ensuring low redundancy among the specificity profiles. We think it is important
to sample the diversity of natural antibody responses to heterologous virus isolates because we do not
know a priori the nature of the neutralizing antibodies that may be elicited and that may correlate with
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vaccine-mediated protection. We compared this PCA-guided strategy to automatic selection using lasso
(12, 44, 45) and a k-medoids clustering strategy (via the pam package in R, version 2.0.5), in addition to
the downselection procedure developed for larger panels.

All analysis was done using R (versions 3.3.0 through 3.4.0). We computed Env hypervariable loop
lengths and net charges as described previously (9, 23).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JVI
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