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Abstract

Background

Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glyce-

mic control in patients with diabetes. Previous genome-wide association studies (GWAS)

have identified 18 HbA1c-associated genetic variants. These variants proved to be classifi-

able by their likely biological action as erythrocytic (also associated with erythrocyte traits)

or glycemic (associated with other glucose-related traits). In this study, we tested the

hypotheses that, in a very large scale GWAS, we would identify more genetic variants asso-

ciated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect

the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated

loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic vari-

ants on incident diabetes prediction and on prevalent diabetes screening performance.

Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c

genetics performance that might influence race-ancestry differences in health outcomes.

Methods & findings

Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts

of European, African, East Asian, and South Asian ancestry, we identified 60 common ge-

netic variants associated with HbA1c. We classified variants as implicated in glycemic, er-

ythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic

variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in

multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants

were associated with HbA1c at genome-wide significance. GS-G was associated with

higher T2D risk (incidence OR = 1.05, 95% CI 1.04–1.06, per HbA1c-raising allele, p = 3 ×
10−29); whereas GS-E was not (OR = 1.00, 95% CI 0.99–1.01, p = 0.60). In Europeans and

Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accu-

racy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele fre-

quency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI

0.66–0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38–0.97) in homozy-

gous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI
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0.55–0.74) of African American adults with T2D to remain undiagnosed when screened with

HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the

inability to classify approximately one-third of the variants. Further studies in large multieth-

nic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the

biological action of the unclassified variants.

Conclusions

As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of

the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose

T2D in populations of African ancestry or groups where G6PD deficiency is common. Screen-

ing with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in

people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.

Author summary

Why was this study done?

• Blood glucose binds in an irreversible manner to circulating hemoglobin in red blood

cells (RBCs), generating “glycated hemoglobin,” called HbA1c. HbA1c is used to diag-

nose and monitor diabetes.

• Previous large-scale human genetic studies have demonstrated that HbA1c is influenced

by genetic variants. Some variants are thought to influence the function, structure, and

lifespan of the red blood itself (“erythrocytic variants”), while others are thought to

influence blood glucose control (“glycemic variants”). This study aimed to identify addi-

tional variants influencing HbA1c levels, and investigate the extent to which variants

affecting this measurement independently of blood glucose concentration may lead to

misdiagnosis, mistreatment, and human health disparities.

What did the researchers do and find?

• We studied genetic variants and their association with HbA1c levels in almost 160,000 peo-

ple from European, African, East Asian, and South Asian ancestry from 82 separate studies

worldwide. We found 60 genetic variants influencing HbA1c, of which 42 variants were

new. Of the 60 variants, we found 19 glycemic variants and 22 erythrocytic variants.

• In approximately 33,000 people from 5 ancestry groups followed carefully over time, we

found that the more glycemic variants a person had, the higher their risk to get diabetes

(OR = 1.05 per HbA1c-raising allele, p = 3 × 10−29). However, more erythrocytic vari-

ants did not lead to a higher risk of diabetes, meaning erythrocytic variants that lower

HbA1c levels independently from glucose concentration could lead to missed diagnosis

of diabetes.

• Next, we found that in everyone but those of African ancestry, those with more versus

those with less of the 60 HbA1c genetic variants had a fairly small difference in HbA1c

(about 0.2 units), while those of African ancestry had a larger difference (about 0.8

units, a fairly large number for this medical test).
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• This difference in African ancestry was explained by one erythrocytic variant on the X

chromosome. This variant mutates the protein made by the gene “glucose-6-phosphate

dehydrogenase” (G6PD), which can shorten RBC lifespan, and thus lower HbA1c levels,

no matter the blood glucose level.

• About 11% of people of African American ancestry carry at least one copy of this G6PD
variant, while almost no one of any other ancestry does. We estimated that if we tested

all Americans for diabetes using HbA1c, about 650,000 African Americans would be

missed because of these genetically lowered HbA1c levels.

What do these findings mean?

• We may want to investigate the benefits of screening for the G6PD genotype in specific

communities or perform additional diagnostic tests to avoid health disparities between

communities.

• It will also be important to follow up with additional studies to check whether new stan-

dardized thresholds for diagnoses should be recommended for those that have this

G6PD variant.

Introduction

Type 2 diabetes (T2D) is a health scourge rising unabated worldwide, escaping all past and cur-

rent control measures, in part because only half of prevalent T2D worldwide has been clinically

diagnosed [1]. Glycated hemoglobin (HbA1c) is an accepted diagnostic test for T2D and a

principal clinical measure of glycemic control in individuals with diabetes. T2D arises from

the environment interacting with genetics. Studies investigating genetic contributions to

HbA1c in individuals of European [2–4] and Asian ancestry [5–7] have identified 18 loci influ-

encing HbA1c through glycemic and nonglycemic pathways, the latter primarily reflecting

erythrocytic biology. Alterations in HbA1c that are due to genetic variation acting through

nonglycemic pathways may not accurately reflect ambient glycemia or T2D risk and could

affect the validity of HbA1c as a diagnostic test and measure of glycemic control in some indi-

viduals or populations. Some genetic variants (e.g., the sickle cell variant HbS) that vary in fre-

quency across ancestries can interfere with the accuracy of certain assays [8]. Further, certain

hematologic conditions associated with shortened erythrocyte lifespan (e.g., hemolytic ane-

mias) lower HbA1c values irrespective of the assay performed. HbA1c values in such patients

may no longer accurately reflect ambient glycemia [9].

Epidemiologic studies have reported ethnic differences in HbA1c, with African Americans

having, on average, higher HbA1c than European ancestry Americans [10]. While these differ-

ences are largely due to demographic and metabolic factors [11,12], genetic factors associated

with hematologic conditions that impact erythrocyte turnover may confound the relationship

between HbA1c and glycemia, causing misclassification of T2D diagnosis [8,13].

This study had 3 aims, the first was to expand genetic discovery efforts to larger sample

sizes, including populations of ancestries not previously studied, to uncover novel loci influenc-

ing HbA1c and that might capture a greater fraction of the variability in HbA1c. Second, as

done in previous studies, we aimed to classify the variants as acting through glycemic or eryth-

rocytic biology. Thirdly, as erythrocytic variants may influence HbA1c due to effects on the red

Genetics of HbA1c and impact on type 2 diabetes risk and diagnosis

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002383 September 12, 2017 7 / 30

https://doi.org/10.1371/journal.pmed.1002383


blood cell (RBC), we wished to explore whether this might lead to HbA1c values that no longer

reflected ambient glycemia. To do this, we specifically tested the hypothesis that HbA1c-associ-

ated genetic variants, particularly those that act through erythrocytic pathways, influence the

performance of HbA1c for diabetes risk prediction and diabetes diagnoses (S1 Fig).

Methods

Analysis plans were followed and can be found in S1 Analysis Plans.

Genetic discovery study participants

In the genetic discovery analysis, we combined data from up to 159,940 participants (maxi-

mum number available for any variant) of European, African American, East Asian, and South

Asian ancestry, including subsets from previous publications [4,5] (S1 Table, S2 Fig). All par-

ticipants were free of diabetes defined by physician diagnosis, medication use, or fasting glu-

cose (FG)� 7 mmol/L. A small number of cohorts also removed individuals with 2hr glucose

(2hrGlu)� 11.1 mmol/L, or HbA1c� 6.5%, where FG was not available (details of exclusions

by individual cohorts, S1 Table). Analysis followed the details in S1 Analysis Plans (Hemoglo-

bin A1c Genetic Discovery Analysis Plan).

HbA1c measurement

Where possible, studies reported HbA1c as a National Glycohemoglobin Standardization Pro-

gram (NGSP) percent [14] (S1 Table).

Genotyping and quality control

Each cohort was genotyped on commercially available genome-wide arrays (for instance, the

Affymetrix Genome-Wide Human SNP Assay 6.0 or the Illumina Human610-Quad Bead-

Chip) or the Illumina CardioMetabochip (Metabochip) [15]. Variant and sample quality con-

trol (QC) was conducted within each cohort following a shared analysis plan (S1 Analysis

Plans). Cohorts were advised to keep SNPs with hardy-weinberg-disequilibrium p-value�

1 × 10−6, SNP genotyping call rate� 95% and minor allele frequency (MAF)� 1% (full details

of SNP and sample QC can be found in S1 Table). Following QC, studies with genome-wide

array data were imputed (primarily using the Phase 2 of the International HapMap Project ref-

erence panel [16], see S1 Table, row 40), and poorly imputed variants (variants which could

not reliably be inferred from surrounding variants) were excluded based on standard imputa-

tion quality thresholds (R-sq< 0.3, INFO < 0.4). Approximately 2.5 million SNPs were avail-

able for analysis after imputation and QC (S1 Table). QC of the Metabochip data is described

elsewhere, but included filtering out poorly genotyped individuals or low-quality SNPs [17].

Variant association testing in men and women combined was conducted under an additive

model adjusting for study-specific covariates and was limited to variants with MAF of at least

1% in each cohort. Details of the study cohorts, genotyping platforms and QC criteria, imputa-

tion reference panel, covariates in the analysis, and software used are provided for each study

in S1 Table. Our study followed STREGA guidelines (S1 Checklist).

Genetic discovery using ancestry-specific and trans-ancestry meta-

analyses

Association data were combined within each ancestry group using a fixed-effects meta-analysis in

METAL, which assumes the SNP effect is the same for each study within an ancestry [18]. Results

for each cohort were corrected for any systematic biases, such as residual population structure
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using the genomic control inflation factor, λGC [17,19]. We excluded variants from further follow-

up if they had an ancestry-specific sample size N< 20,000 in Europeans, N< 3,000 in African

Americans, N< 7,000 in East Asians, and N< 3,000 in South Asians (minimum number of sam-

ples, where the threshold was chosen to minimize signals driven by a single cohort), or evidence

of significant within-ancestry heterogeneity, suggesting effect size significantly differs between

cohorts of the same ancestry (Cochran’s Q-test heterogeneity p-value< 0.0001). We retained the

lead variant in the X-chromosome analysis of the African American ancestry data (rs1050828,

G202A in G6PD) despite significant heterogeneity, as it was a strong biological candidate.

Ancestry-specific meta-analysis results were conservatively corrected for a second round of

genomic control by ancestry: European (λGC = 1.072); African American (λGC = 1.020); East

Asian (λGC = 1.027); South Asian (λGC = 1.004); and combined using the Meta-Analysis of

Transethnic Association (MANTRA) software that accounts for allelic heterogeneity across

ancestry groups [20].

Identification of primary and secondary distinct HbA1c-associated

signals

Variants were considered to be significantly associated with HbA1c when they met standard

genome-wide significant thresholds (based on p = 0.05 divided by the estimated number of

independent tests across the genome), of p< 5 × 10−8 in the European and Asian, or p< 2.5 ×
10−8 in African American [21] ancestry-specific meta-analyses, or a log10 Bayes Factor�6 in

the transancestry meta-analysis. All significant variants within 500 kb of a lead (most signifi-

cantly associated) variant were grouped into a single locus. Novel loci were by definition >500

kb from previously reported HbA1c-associated variants. We ran approximate conditional

analyses using the Genome-wide Complex Trait Analysis (GCTA) software [22,23] (following

analysis plans detailed in S1 Analysis Plans, Conditional analyses in GCTA) using the Wom-

en’s Genome Health Study (WGHS, Europeans), Jackson Heart Study (JHS, African Ameri-

cans), Singapore Malay Eye Study (SiMES, East Asians), and the London Life Sciences

Prospective Population Study (LOLIPOP, South Asians) as reference populations for linkage

disequilibrium (LD) estimates, to confirm the lead variants on the autosomes (within 1 Mb)

were distinct, and similarly used exact conditional regression for the African-American signals

on the X-chromosome in JHS.

To identify distinct signals at associated loci (that is, secondary signals), we performed

approximate conditional analyses using GCTA, conditioning on lead variants identified in the

transancestry MANTRA analysis. Where the lead variant was absent in a cohort, an exact

proxy (r2 = 1) was used, unless the variant was very low frequency or monomorphic.

Classification of variants as glycemic or erythrocytic

We extracted summary association statistics from publicly available meta-analysis results for

glycemic [17,24–26] and blood-cell [27] traits and asked a subset of the genome-wide discov-

ery cohorts to repeat association analyses for each lead variant, conditioning on any one of FG,

2hrGlu, hemoglobin level (Hb), mean corpuscular volume (MCV), or mean corpuscular

hemoglobin (MCH), where available (S3 Fig, S2 Table and S3 Table).

Variants were classified as “glycemic” if they were associated (p< 0.0001) with any of the

glycemic traits from publicly available results or had�25% attenuation of variant HbA1c effect

size in association models conditioned on fasting or 2hrGlu. That is, evidence of being associ-

ated with any of the glycemic traits or a reduction in the effect of the variant on HbA1c after

repeated association analysis in a model additionally adjusting for fasting/2hrGlu, suggested

the observed association with HbA1c was being driven through an association with fasting/
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2hrGlu. Variants not classified as glycemic were classified as “erythrocytic” if they were associ-

ated (p< 0.0001) with Hb, MCH, MCV, PCV, RBC, or MCHC in the publicly available results

or, as above, had�25% attenuation of effect size in Hb-, MCV-, or MCH-conditioned models

(suggesting the observed association with HbA1c was being driven through an association

with these blood cell traits). The 25% attenuation threshold was chosen as the optimal balance

between specificity and sensitivity based on comparisons with the classification based only on

association with any of the glycemic/erythrocytic traits. Two SNPs were classified based on evi-

dence from the literature, rs12132919 (TMEM79) was classified as erythrocytic based on asso-

ciation with MCHC in Japanese individuals [28] and rs7616006 (SYN2) was classified as

erythrocytic based on association with platelet count in Europeans [29].

Variants associated with HbA1c but not glycemic or erythrocytic traits remained “unclassi-

fied” (S3 Fig). A single variant (rs579459 near ABO) was classified as both glycemic and eryth-

rocytic, but as we were primarily concerned about variants that might affect HbA1c without

reflecting ambient glycemia and this variant also affected glycemia, we treated it as glycemic in

all analyses.

Effect of HbA1c genetic scores on reclassification of prevalent

undiagnosed T2D for population screening using HbA1c

Analyses on the reclassification of prevalent T2D around the HbA1c 6.5% threshold before

and after accounting for the contribution of erythrocytic variants were conducted in up to

19,380 individuals and incident T2D prediction analyses in up to 33,241 individuals from

European, African, and East Asian ancestry cohorts (derived in part from discovery cohorts; in

S4 Table, and following the details in the S1 Analysis Plans, Net-reclassification analysis). We

acknowledge that nonindependent GWAS discovery and application cohorts can lead to

inflated effect estimates [30]; however, this was not evident in our study, and effect estimates

across all cohorts were similar with low heterogeneity.

We estimated reclassification of prevalent T2D status by HbA1c after accounting for the

contribution of erythrocytic loci in 5 population-based cohorts with 3 ancestries partially over-

lapping with the discovery GWAS: the Framingham Heart Study (FHS), the Atherosclerosis

Risk in Communities Study (ARIC), and the Multiethnic Study of Atherosclerosis (MESA) in

individuals of European ancestry; ARIC and MESA in African Americans; and MESA, the Tai-

wan-Metabochip Study for Cardiovascular Disease (TAICHI), and the Singapore Prospective

Study (SP2) in East Asians (N = 19,380). Variant-adjusted HbA1c was calculated as:

Yi �
X

b̂kðgki � EðgkiÞÞ

where Yi was the measured HbA1c for individual, i, b̂i is the ancestry-specific, meta-analytic β
coefficient for the kth erythrocytic SNP, gki is the dosage (estimated number of HbA1c-raising

alleles), and E(gki) was two times the HbA1c-raising allele frequency. When the less frequent

(minor) allele was associated with higher HbA1c, it was coded as the HbA1c-raising allele,

when it was associated with lower HbA1c, the more frequent (major) allele was coded as the

HbA1c-raising allele. As some HbA1c-raising alleles in one ancestry could be HbA1c-lowering

in a different ancestry, we coded HbA1c-raising alleles by ancestry.

Participants on antidiabetic therapy were excluded, and screen-detected T2D was defined

as FG� 7 mmol/L. For the reclassification analysis, we constructed 2-by-2 tables showing the

proportion of participants reclassified around the HbA1c 6.5% diagnostic threshold, with and

without adjusting measured HbA1c for the contribution of erythrocytic loci.

Calculation of genetic risk scores. Genetic risk scores of erythrocytic variants and glyce-

mic variants (GS-E and GS-G, respectively) were calculated as detailed in S1 Analysis Plans
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(Investigate the Effect of Glycemic and Erythrocytic Hemoglobin A1c (HbA1c) Genetic Vari-

ants on Diabetes Prediction), as standard in the field, by summing the number of ancestry-spe-

cific HbA1c-raising alleles at each variant (0, 1, 2, or expected number of alleles based on the

probability of each genotype), multiplied by their ancestry-specific β coefficients for HbA1c

from the genome-wide association study (GWAS) meta-analysis multiplied by the number of

variants and divided by the sum of β coefficients [31]. This means the contribution of each

associated variant to the trait, in a given individual, is influenced by the number of “risk alleles”

(or in this case HbA1c-raising alleles) and the effect of the variant on the trait (increase in

HbA1c estimated from the meta-analysis).

Effect of HbA1c genetic scores on prediction of incident T2D

We tested the hypothesis that glycemic and erythrocytic HbA1c loci predicted incident T2D

differently in Europeans, East Asians, and African Americans from 5 cohorts (partially over-

lapping with the discovery GWAS) with prospective follow-up: FHS, the European Prospective

Investigation into Cancer and Nutrition InterAct project (EPIC-InterAct), ARIC, MESA, and

the Singapore Chinese Health Study (SCHS) (N = 33,241). Using age- and sex-adjusted regres-

sion models, we tested the association between the genetic scores GS-E or GS-G and incident

T2D, defined by FG� 7 mmol/L, 2hrGlu� 11.1 mmol/L, antidiabetic medication use, or a

physician diagnosis for T2D, accrued over a 10-to-15-year follow-up period. Clinical practice

guidelines did not include HbA1c as a diagnostic test until 2010. As the majority of incident

T2D cases were accrued before 2010, participants are very unlikely to have received a T2D

diagnosis based only on HbA1c measurements. To test whether individuals with higher GS-E,

compared to those with lower GS-E, had lower T2D risk for the same HbA1c, we adjusted

models for baseline HbA1c. We meta-analyzed results using a fixed-effects meta-analysis and

assessed heterogeneity using Higgin’s I-squared. See S1 Analysis Plans (Investigate the Effect

of Glycemic and Erythrocytic Hemoglobin A1c (HbA1c) Genetic Variants on Diabetes Predic-

tion) for analysis plan.

Ancestral differences in the genetic architecture of HbA1c

In FHS, ARIC, MESA, and SCHS, we calculated the difference in HbA1c of individuals at the

bottom and top 5% of the distribution of an ancestry-specific GS composed of all 60 variants

(GS-Total) and an equivalent analysis using GS-E.

We also pursued additional analyses at chromosome X rs1050828 because this single vari-

ant showed the largest effect on HbA1c in African Americans and was monomorphic in the

other ancestries. The T allele is known to be associated with glucose-6-phosphate dehydroge-

nase (G6PD) deficiency, an enzymatic defect causing hemolytic anemia [32,33]. Imperfect cor-

relation between HbA1c and glycemia may indicate the impact of reduced erythrocyte lifespan

on HbA1c in individuals with the T allele. Fructosamine, a measure of serum protein glycation

not influenced by erythrocyte-related factors, reflects average glycemia over the previous 2–3

weeks. Following the analysis plan detailed in S1 Analysis Plans (The Difference Between Fruc-

tosamine-inferred HbA1c and Measured HbA1c) we thus calculated the estimated residuals

from a linear regression of HbA1c on fructosamine in ARIC African Americans (N = 1,676) to

determine whether the T allele was associated with lower HbA1c than predicted by fructosa-

mine, suggesting that the T allele artificially lowered HbA1c through a reduction in the average

erythrocytic lifespan. We then reported the mean estimated residuals by genotype (women:

CC, CT, TT; men: C, T).

Estimated number of African Americans with T2D in the United States whose diagnosis

would be missed due to the G6PD variant if screened with HbA1c. Using publicly-available
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data from the National Health and Nutrition Examination Survey (NHANES) 2013–2014 [34],

a nationally representative sample of US residents, we calculated the proportion of African

American adults (aged� 18 years) with T2D who would be missed by not accounting for

rs1050828 when using a single HbA1c diagnostic threshold of 6.5%, assuming the observed

effect size of rs1050828, allele frequency of 11% and accounting for NHANES sampling design.

The study sample was restricted to 1,133 adults, aged� 18 years, who self-identified as non-

Hispanic black with measured HbA1c in 2013–2014. We defined known T2D by self-reported

physician diagnosis or medication use. Assuming Hardy-Weinberg Equilibrium and a T allele

frequency of 11% for the G6PD variant in our sample, we lowered the diagnostic threshold

from the widely accepted 6.5%-units cut-point to 5.7%-units in men with the T genotype,

5.8%-units in women with the TT genotype, and 6.2%-units in women with the CT genotype.

We then calculated the proportion of African American individuals with missed T2D diagno-

sis if screened with HbA1c using the 6.5% diagnostic threshold. We applied procedures to

account for sampling probabilities and complex sampling design to enable population-level

inferences. Data analysis was performed using SAS (version 9.2 or 9.3; SAS Institute, Cary,

NC).

Results

HbA1c-associated genetic variants and classification into glycemic and

nonglycemic pathways

To discover new genetic loci influencing HbA1c in populations from 4 different ancestries

(European, African American, East Asian, and South Asian), we performed within-ancestry

fixed-effects genome-wide association meta-analyses and transancestry meta-analyses using a

model that allowed for different effects between ancestry groups (Methods, S2 Fig). Using this

approach in up to 159,940 participants without diabetes, we identified 60 variants associated

with HbA1c at genome-wide significance (Fig 1, Table 1 and S5 Table). Of 60, 18 have been

previously reported, and 42 were novel, including distinct secondary signals at 5 known loci.

To classify the associated loci into groups reflecting their likely mode of action on HbA1c, we

repeated association analyses conditioning on erythrocytic or glycemic traits and performed

lookups in publicly-available association results summary statistics for additional glycemic and

erythrocytic traits (Methods, S3 Fig, S2 Table and S3 Table). Based on the combined results

from conditional and lookup results, we were able to classify 22 variants as erythrocytic and 19

as glycemic, with 19 remaining unclassified (Fig 1, Table 1 and S5 Table).

Effect of HbA1c genetic scores on reclassification of prevalent

undiagnosed T2D in population screening using HbA1c

Next, we tested whether erythrocytic variants influenced the ability of HbA1c to accurately

classify individuals with diabetes when screening populations using a single HbA1c measure-

ment. In 5 cohorts, among the 767 individuals with undiagnosed T2D by FG� 7 mmol/L, 390

(50.8%) had measured HbA1c < 6.5% and would remain undiagnosed based on HbA1c. After

accounting for the effect of erythrocytic variants, 5 (1.3%) of these individuals were correctly

reclassified to having a HbA1c� 6.5%. Among the 18,613 individuals without T2D by FG< 7

mmol/L, 266 (0.3%) had measured HbA1c� 6.5% and would be incorrectly diagnosed with

T2D by HbA1c. After accounting for the effect of erythrocytic variants, 50 (18.8%) of these

individuals [13 of 80 (16.3%) European ancestry, 28 of 109 (25.7%) African ancestry, 9 of 77

(11.7%) Asian ancestry] were correctly reclassified to having a HbA1c<6.5% (Table 2, S6

Table). While adjusting for the effect of erythrocytic variants improved reclassification for
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Fig 1. Manhattan plot of HbA1c associated variants. Manhattan plot of the transethnic meta-analysis results in

MANTRA. The dashed grey line indicates log10BF = 6. Grey and green points denote known/novel loci, respectively. The

lead HbA1c-associated variants identified through the ancestry-specific/transethnic analyses are circled in purple (the

G6PD variant was not included in the MANTRA analysis, but the locus on the X-chromosome is indicated in the figure).

Lines joining the plot & SNP number denote known loci (black), novel loci (green), and loci with a secondary distinct signal

(red). MANTRA, Meta-Analysis of Transethnic Association.

https://doi.org/10.1371/journal.pmed.1002383.g001
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Table 1. Table of HbA1c associated variants. Table with results and classification of the 60 HbA1c-associated variants. SNP number corresponds to num-

ber in Fig 1.

SNP Markername Chr. Position

(bp)

Effect

Allele

Other

Allele

Gene Status Signals Classification European

ancestry

METAL

p-value

Trans-ethnic

MANTRA log10BF

1 rs2375278 1 25401625 A G SYF2 Novel Single Unclassified 2.03 × 10−7 6.93

2 rs267738 1 149207249 T G CERS2 Novel Single Unclassified 2.59 × 10−9 6.41

3 rs12132919 1 154584765 A C TMEM79 Known Single Erythrocytic 0.0169 10.08

4 rs857691 1 156893002 T C SPTA1 Known Single Erythrocytic 3.97 × 10−25 25.52

5 rs17509001 2 23874735 C T ATAD2B Novel Single Unclassified 1.94 × 10−15 13.30

6 rs12621844 2 48268239 T C FOXN2 Novel Single Unclassified 1.87 × 10−8 5.32

7 rs13387347 2 169463092 T C G6PC2 Novel Multiple Glycemic 0.308 5.77

8 rs560887 2 169471394 C T G6PC2 Known Multiple Glycemic 1.48 × 10−58 55.77

9 rs17256082 2 175000610 C T SCRN3 Novel Single Unclassified 0.00112 6.27

10 rs7616006 3 12242648 A G SYN2 Novel Single Erythrocytic 5.07 × 10−10 10.16

11 rs9818758 3 49357929 A G USP4 Novel Single Unclassified 7.74 × 10−10 7.20

12 rs11708067 3 124548468 A G ADCY5 Novel Single Glycemic 1.42 × 10−12 10.62

13 rs8192675 3 172207577 T C SLC2A2 Novel Single Glycemic 1.38 × 10−11 10.33

14 rs4894799 3 173278234 A G FNDC3B Novel Single Unclassified 1.80 × 10−6 6.05

15 rs13134327 4 144879245 A G FREM3 Novel Single Glycemic 2.64 × 10−15 12.66

16 rs11954649 5 156988069 G C SOX30 Novel Single Unclassified NA 6.20

17 rs7756992 6 20787688 G A CDKAL1 Known Single Glycemic 2.80 × 10−12 16.53

18 rs1800562 6 26201120 G A HFE Known Multiple Erythrocytic 4.67 × 10−28 26.81

19 rs198846 6 26215442 G A HFE Novel Multiple Erythrocytic 1.18 × 10−23 23.72

20 rs11964178 6 109668728 A G C6orf183 Novel Single Erythrocytic 6.38 × 10−10 7.03

21 rs11154792 6 135473333 T C MYB Known Single Erythrocytic 7.45 × 10−18 17.89

22 rs592423 6 139882386 A C CITED2 Novel Single Erythrocytic 3.96 × 10−8 4.50

23 rs2191349 7 15030834 T G DGKB Novel Single Glycemic 2.09 × 10−7 6.63

24 rs4607517 7 44202193 A G GCK Known Multiple Glycemic 8.76 × 10−38 51.28

25 rs3824065 7 44213783 C T GCK Novel Multiple Glycemic 4.22 × 10−35 31.87

26 rs6474359 8 41668351 T C ANK1 Known Multiple Unclassified 1.50 × 10−16 14.88

27 rs4737009 8 41749562 A G ANK1 Known Multiple Erythrocytic 4.48 × 10−27 32.08

28 rs6980507 8 42502241 A G SLC20A2 Novel Single Erythrocytic 3.58 × 10−8 8.73

29 rs11558471 8 118254914 A G SLC30A8 Known Single Glycemic 1.38 × 10−19 23.26

30 rs2383208 9 22122076 A G MTAP Novel Single Glycemic 7.04 × 10−12 11.74

31 rs7040409 9 90693056 C G C9orf47 Novel Single Erythrocytic 2.56 × 10−14 11.29

32 rs1467311 9 109576753 G A KLF4 Novel Single Unclassified 2.09 × 10−7 8.72

33 rs579459 9 135143989 C T ABO Novel Single Glycemic 9.42 × 10−9 10.14

34 rs4745982 10 70759849 T G HK1 Known Multiple Erythrocytic 2.87 × 10−65 63.05

35 rs10823343 10 70761019 A G HK1 Novel Multiple Unclassified 1.68 × 10−55 49.45

36 rs17747324 10 114742493 C T TCF7L2 Known Single Glycemic 6.12 × 10−11 8.49

37 rs3782123 11 195198 C A BET1L Novel Single Unclassified 1.51 × 10−10 9.51

38 rs2237896 11 2815016 G A KCNQ1 Novel Single Glycemic 0.00246 6.07

39 rs174577 11 61361390 C A FADS2 Novel Single Glycemic 5.45 × 10−7 8.45

40 rs11603334 11 72110633 G A ARAP1 Novel Single Glycemic 6.85 × 10−9 6.53

41 rs10830963 11 92348358 G C MTNR1B Known Single Glycemic 2.23 × 10−23 26.64

42 rs11224302 11 99961814 C T CNTN5 Novel Single Erythrocytic 4.76 × 10−7 6.40

43 rs2110073 12 6946143 T C PHB2 Novel Single Unclassified 4.44 × 10−8 7.18

44 rs2408955 12 46785398 T G SENP1 Novel Single Erythrocytic 1.42 × 10−15 11.65

(Continued )
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individuals diagnosed with T2D by only HbA1c and not FG, it caused wrong reclassification

for individuals diagnosed with T2D by both FG and HbA1c (S6 Table), suggesting that

accounting for the contribution of erythrocytic variants may not be relevant for individuals

who already meet diagnostic thresholds using both FG and HbA1c.

Effect of HbA1c genetic scores on prediction of incident T2D

Next, we tested whether erythrocytic variants influenced the ability of HbA1c to predict inci-

dent diabetes in initially nondiabetic populations. GS-G was associated with increased incidence

of T2D (odds ratio [OR] per weighted allele 1.05, 95% CI 1.04–1.06 p = 2.5 × 10−29) overall,

although not in African Americans (Fig 2, S7 Table). GS-E was not associated overall with inci-

dent T2D (OR 1.00 95% CI 0.99–1.01, p = 0.60) (Fig 3, S7 Table), but was negatively associated

Table 1. (Continued)

SNP Markername Chr. Position

(bp)

Effect

Allele

Other

Allele

Gene Status Signals Classification European

ancestry

METAL

p-value

Trans-ethnic

MANTRA log10BF

45 rs10774625 12 110394602 G A ATXN2 Novel Single Erythrocytic 1.46 × 10−8 6.38

46 rs11619319 13 27385599 G A PDX1 Novel Single Glycemic 4.58 × 10−7 8.38

47 rs576674 13 32452302 G A KL Novel Single Glycemic 1.39 × 10−5 6.38

48 rs282587 13 112399663 G A ATP11A Known Single Unclassified 1.70 × 10−12 13.92

49 rs9604573 13 113571085 T C GAS6 Novel Single Unclassified 9.60 × 10−9 6.72

50 rs11248914 16 233563 T C ITFG3 Novel Single Erythrocytic 2.56 × 10−14 10.60

51 rs1558902 16 52361075 A T FTO Novel Single Unclassified 3.27 × 10−8 6.88

52 rs4783565 16 67307691 A G CDH3 Novel Single Erythrocytic 1.73 × 10−7 6.73

53 rs837763 16 87381230 T C CDT1 Known Single Erythrocytic 1.68 × 10−28 28.89

54 rs9914988 17 24207230 A G ERAL1 Novel Single Erythrocytic 2.77 × 10−11 11.34

55 rs2073285 17 73628956 C T TMC6 Novel Single Unclassified 1.27 × 10−4 6.47

56 rs1046896 17 78278822 T C FN3KRP Known Single Unclassified 4.46 × 10−64 71.79

57 rs11086054 19 17107737 A T MYO9B Novel Multiple Unclassified 8.16 × 10−6 9.12

58 rs17533903 19 17117523 A G MYO9B Known Multiple Erythrocytic 5.27 × 10−12 9.912

59 rs4820268 22 35799537 G A TMPRSS6 Known Single Erythrocytic 1.40 × 10−22 20.79

60 rs1050828 X 153417411 T C G6PD Novel Single Erythrocytic NA* NA

*African American meta-analysis p-value for the G6PD variant (rs1050828) = 8.23 × 10−135. Chr, chromosome; MANTRA, Meta-Analysis of Transethnic

Association

https://doi.org/10.1371/journal.pmed.1002383.t001

Table 2. Reclassification of individuals with discordant T2D status based on prevailing diagnostic thresholds for FG and HbA1c before and after

accounting for the effect of erythrocytic variants.

FG� 7 mmol/L but HbA1c < 6.5% (N = 390) FG < 7mmol/L but HbA1c� 6.5% (N = 266)

Not reclassified after

accounting for the effect of

erythrocytic variants

Reclassified to HbA1c� 6.5% after

accounting for the effect of

erythrocytic variants

Not reclassified after

accounting for the effect of

erythrocytic variants

Reclassified to HbA1c < 6.5% after

accounting for the effect of

erythrocytic variants

European 314 1 (0.3%) 67 13 (16.3%)

African 64 4 (6.3%) 81 28 (25.7%)

Asian 7 0 (0.0%) 68 9 (11.7%)

Total 385 5 (1.3%) 216 50 (18.8%)

FG, fasting glucose; HbA1c, glycated hemoglobin

https://doi.org/10.1371/journal.pmed.1002383.t002
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with incident T2D in Europeans and African Americans after adjusting for HbA1c (OR 0.95,

95% CI, 0.94–0.96, p = 3.3 × 10−16) (Fig 4, S4 Fig and S7 Table), meaning individuals with a

higher GS-E will have a lower risk of developing T2D given the same HbA1c value, suggesting

that despite having the same HbA1c value, this does not reflect the same level of glycemia.

Ancestral differences in the genetic architecture of HbA1c

The population genetic history of African ancestry groups has undergone selective pressure due

to the effects of malaria and other infectious diseases on erythrocytes, unlike in most European

ancestry populations [35]. This led us to seek ancestral differences in the genetic determinants

of HbA1c. The variance in HbA1c levels explained by all 60 genetic variants over a basic regres-

sion model including age and sex was 4.2%–5.8% in Europeans, 6.0%–14.3% in East Asians,

and 8.9%–9.7% in African Americans (S8 Table). In addition, compared to Europeans and East

Asians, African Americans had the largest difference in mean HbA1c between the bottom and

top 5% of the GS-Total distribution (0.91%-units, 95% CI 0.78–1.05; Fig 5 and S9 Table).

Fig 2. T2D prediction, glycemic genetic score. Forest plot of association between glycemic genetic score with incident T2D over a

decade-long follow-up period, by ancestry. MESA (European and Asian ancestry) and the G6PD variant (rs1050828) in ARIC

(European and African American) were not included in the discovery GWAS analysis. Effect estimates were combined in a fixed

effects meta-analysis. Overall effect estimate: 1.05, 95% CI 1.04–1.06, p = 2.5 × 10−29. ARIC, Atherosclerosis Risk in Communities

Study; ES, Effect Size; FHS, Framingham Heart Study; GWAS, genome-wide association study; G6PD, glucose-6-phosphate

dehydrogenase; I-Squared, Higgin’s I-squared statistic, a measure of heterogeneity; MESA, Multiethnic Study of Atherosclerosis;

SCHS, Singapore Chinese Health Study; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1002383.g002
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Erythrocytic variants alone explained around one-fifth to three-quarters of the total ex-

plained genetic variance in HbA1c (S8 Table). The absolute differences in mean HbA1c from

the bottom and top 5% of the GS-E distribution were similar to GS-Total, implying that geneti-

cally-induced differences in HbA1c may be largely driven by erythrocytic variants (S9 Table

and S10 Table). In African Americans, this difference was largely driven by the C-to-T mis-

sense variant (G202A) in G6PD, rs1050828 on chromosome X. This variant alone explained

14.4% of variance in HbA1c (MESA; 9.6% in women; 19.9% in men). Men with the T allele

had, on average, an absolute 0.81%-units (95% CI 0.66–0.96) lower HbA1c than those with the

C allele. Homozygous TT women had, on average, an absolute 0.68%-units (95% CI 0.38–0.97)

lower HbA1c compared to CC homozygous women. The effect size was similar after excluding

those with anemia (Hb < 12 g/dL in women and< 13 g/dL in men, S11 Table).

Fructosamine is another measure of serum protein glycation, which reflects glycemia over

a 2–3 week window, but unlike HbA1c it is not influenced by RBC traits; therefore, we sought

to explore the difference between fructosamine-inferred HbA1c and measured HbA1c

Fig 3. T2D prediction, erythrocytic genetic score. Forest plot of association between erythrocytic genetic score with incident T2D

over a decade-long follow-up period, by ancestry. MESA (European and Asian ancestry) and the G6PD variant (rs1050828) in ARIC

(European and African American) were not included in the discovery GWAS analysis. Effect estimates were combined in a fixed

effects meta-analysis. Overall effect estimate: 1.00, 95% CI 0.99–1.01, p = 0.60. ARIC, Atherosclerosis Risk in Communities Study;

ES, Effect Size, FHS, Framingham Heart Study; GWAS, genome-wide association study; G6PD, glucose-6-phosphate

dehydrogenase; I-Squared, Higgin’s I-squared statistic, a measure of heterogeneity; MESA, Multiethnic Study of Atherosclerosis;

SCHS, Singapore Chinese Health Study; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1002383.g003
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(Methods, S1 Analysis Plans) to test the hypothesis that the G6PD variant might be influencing

HbA1c levels independently of ambient glycemia. Among African Americans, the T allele at

rs1050828 was associated with measured HbA1c that was lower than fructosamine-predicted

HbA1c (0.31%-units, 95% CI 0.25–0.37, p = 6.4 × 10−19). Among men with the C allele, mea-

sured HbA1c was similar to fructosamine-predicted HbA1c (residuals, 0.04%-units, 95% CI

−0.04 to 0.12, N = 351). This suggested that only the T allele was associated with markedly

lower HbA1c than expected from glycemic measurements (S11 Table).

Public health implications of the G6PD variant on T2D screening

Given the large effects of the G6PD G202A variant on HbA1c levels, we sought to investigate

the impact this variant would have on diabetes detection if using HbA1c as a screening tool.

To do this, we used publicly-available data from NHANES 2013–2014 [34], a nationally re-

presentative sample of the US, to calculate the proportion of African Americans adults with

Fig 4. T2D prediction, erythrocytic genetic score adjusted for HbA1c as a binary variable. Forest plot of association between

erythrocytic genetic score with incident T2D over a decade-long follow-up period adjusted for HbA1c as a binary variable (�5.7%

versus <5.7%), by ancestry. HbA1c at baseline was not available in SCHS and was excluded from the meta-analysis. MESA (European

and Asian ancestry) and the G6PD variant (rs1050828) in ARIC (European and African American) were not included in the discovery

GWAS analysis. Effect estimates were combined in a fixed effects meta-analysis. Overall effect estimate: 0.95, 95% CI 0.94–0.96,

p = 3.3 × 10−16. ARIC, Atherosclerosis Risk in Communities Study; ES, Effect Size; GWAS, genome-wide association study; FHS,

Framingham Heart Study; G6PD, glucose-6-phosphate dehydrogenase; HbA1c, glycated hemoglobin; I-Squared, Higgin’s I-squared

statistic, a measure of heterogeneity; MESA, multiethnic study of atherosclerosis; SCHS, Singapore Chinese Health Study; T2D, type 2

diabetes.

https://doi.org/10.1371/journal.pmed.1002383.g004
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T2D who would be missed by not accounting for rs1050828 when using a single HbA1c diag-

nostic threshold of 6.5%, assuming the observed effect size of rs1050828, allele frequency of 11%,

and accounting for NHANES sampling design. In the NHANES sample of African Americans

(N = 1,133), the mean age was 44.2 years (standard error 0.9), 55.2% were women, and mean

HbA1c, excluding those with physician-diagnosed T2D, was 5.5%-units (standard error 0.02).

13.45% of African American adults aged� 18 years had physician-diagnosed T2D with an addi-

tional 2.50% with undiagnosed T2D by HbA1c� 6.5%. An additional estimated 2.17% (95% CI

1.88–2.46) with HbA1c< 6.5% may be considered to have T2D if the effect of rs1050828 was

accounted for by using genotype-specific diagnostic thresholds of 5.7% for T in men, 5.8% for

TT, and 6.2% for TC in women. According to the 2014 United States Census Bureau, approxi-

mately 29.9 million adults identified themselves as African American [36], suggesting that 0.65

(95% CI 0.55–0.74) million adults with T2D would remain undiagnosed when screened by a sin-

gle HbA1c measurement if this genetic information were not taken into account (S12 Table).

Discussion

In a very large transancestry GWAS of HbA1c, we identified 42 novel and 18 known genetic

variants associated with HbA1c, explaining 4%–14% of the trait variance. Genetic variants

influencing HbA1c through erythrocytic pathways did not predict future T2D, and adjusting

for their contribution to HbA1c led to a moderate misclassification of T2D by adjusted

Fig 5. Mean HbA1c of individuals at the bottom 5% and top 5% of the distribution of ancestry-specific

genetic scores and rs1050828 by genotype. The difference in measured HbA1c of individuals at the bottom 5%

and top 5% of the distribution of an ancestry-specific additive GS composed of all 60 variants (GS-Total), and the

equivalent calculation for an ancestry-specific GS composed of up to 20 erythrocytic variants (GS-E). Far right of

the figure shows the mean HbA1c by genotype for chromosome X rs1050828. AA men, African American men; AA

women, African American women; HbA1c, glycated hemoglobin; GS, genetic scores.

https://doi.org/10.1371/journal.pmed.1002383.g005
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HbA1c. Notably, we detected strong ancestral differences in the contribution of genetic vari-

ants to HbA1c that substantially altered the performance of HbA1c as a diagnostic test for

T2D in African Americans compared with Europeans and East Asians.

Our findings elucidate the contribution of common genetic variants to the genetic arch-

itecture of HbA1c and identify an important interface of modern human genetics with clinical

and public health. In people of European and Asian ancestry, we found multiple genetic loci

with small-to-modest effects, whereas, in African American ancestry, the genetic architecture

was dominated by a single variant at G6PD (G202A). This variant was responsible for 0.81%-

units HbA1c difference in men and 0.68%-units in homozygous TT women, corresponding to

adjusted T2D diagnosis thresholds of 5.7 (95% CI 5.5–5.8) and 5.8 (95% CI 5.5–6.1), respec-

tively. To meet the NGSP certification criteria, laboratory-reported HbA1c ought to be within

6% of the standard reference laboratory mean values (e.g., 6.5%-units ± 0.4%-units) for the

majority of patient samples [14]. The limits of acceptable analytic variability were exceeded by

this G6PD variant. This may also have important implications for the management of diabetes,

with carriers of the HbA1c-lowering G6PD allele requiring adjusted (lower) HbA1c treatment

targets. Previous epidemiologic studies have shown that a 1%-unit increase in HbA1c in indi-

viduals without T2D was associated with a more than 2-fold increase in risk of future T2D and

a 20%–50% increased risk of cardiovascular disease (CVD) [37]. HbA1c� 6.5% compared to

those with HbA1c< 5.7% had a higher risk of kidney disease and retinopathy [38].

Only one other African-specific variant, rs11954649, located in the intron of SOX30,

reached genome-wide significance in African Americans. However, this variant had a rela-

tively small effect size (β = 0.12 per G allele) on HbA1c and was not classified as glycemic or

erythrocytic. The variant was thus not included in the genetic scores and, unlike G6PD, the

causal transcript and biological mechanism through which it influences HbA1c remains

unclear. Future studies on larger sample sizes of ethnic minorities can focus on dissecting the

genomic and biological implications of novel HbA1c-related variants.

When considering all ethnicities, both glycemic and erythrocytic variants influence mea-

sured HbA1c; yet, only glycemic variants were associated with increased T2D risk (5% per

allele) over a decade-long follow-up period. For an equivalent HbA1c, individuals carrying

more erythrocytic HbA1c-raising alleles, or fewer HbA1c-lowering alleles, had lower incident

T2D risk (−5% per allele), implying that for the same HbA1c level those individuals with the

greater number of erythrocytic HbA1c- raising alleles have artificially higher HbA1c values

that do not reflect ambient glycemia. Thus, the influence of erythrocytic HbA1c variants may

partly explain why some individuals with the same HbA1c may have different risks of future

T2D. We note that the estimates of variance explained by genetic variants underlying HbA1c

were comparable with those for FG in Europeans (4.8%) [17].

Our results on the reclassification of prevalent T2D were consistent with previous reports

indicating that a diagnostic cut-point at 6.5% for HbA1c classified fewer cases than FG� 7

mmol/L [39,40]. Adjusting for the contribution of erythrocytic variants correctly reclassified

approximately 1 in 5 individuals with FG< 7 mmol/L who were incorrectly diagnosed as hav-

ing T2D (HbA1c� 6.5%) to having HbA1c < 6.5%, suggesting that a subset of these individu-

als may have artificially elevated HbA1c due to the contribution of the erythrocytic variants.

Though the specific G6PD variant we identified is monomorphic in Asian and European

ancestry, other diverse G6PD variant alleles have reached polymorphic frequencies in malarial

endemic regions around the world [35]. G6PD deficiency is unlikely to be identified through

routine screening for anemia in healthy individuals, and universal screening for G6PD defi-

ciency is not currently recommended worldwide [32,41]. Testing for G6PD deficiency is

only performed on individuals before being prescribed specific drugs, such an antimalarial

medications, or in patients with clinical presentation consistent with the disease; for instance,
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prolonged neonatal jaundice or hemolytic crisis following exposure to specific drugs, infections,

or foods [32]. Thus, asymptomatic individuals often remain unaware of their G6PD genotype

status and screening for the G6PD genotype before using HbA1c to diagnose T2D may be war-

ranted in populations or ethnic groups where G6PD deficiency is common. Similarly, a recent

study identified a significant hemolytic risk in women heterozygous for the G6PD Mahidol vari-

ant when treated with primaquine who were not detected by current screening methods [42].

Rarer hematologic conditions that reduce erythrocyte lifespan, e.g., hereditary hemolytic ane-

mias, hereditary spherocytosis, and hemoglobinopathies have also been shown to lower HbA1c

[9,43], and should also be considered before using HbA1c in these patients. We recommend

additional testing using direct glucose measurements (e.g., FG or oral glucose tolerance testing)

or other erythrocyte-independent methods to diagnose T2D. This supports the use of a combi-

nation of HbA1c and FG to confirm T2D diagnosis in routine screening [44]. Future studies

could also explore G6PD effect modification by HbA1c assay type.

Further studies in large cohorts with HbA1c, glycemic, and erythrocytic traits are required

to better determine the biological action of genetic variants that have yet to be classified. Simi-

larly, future analyses conditional on RBC distribution width or reticulocyte count will help to

better understand the effects of erythrocytic HbA1c-associated variants, should such data

become available. The relatively small sample size for Asian and African ancestry cohorts

limited the discovery of ancestry-specific genetic variants, beyond the African-specific G6PD
variant, and could explain why GS-G was associated with higher incident T2D in European,

but not other, ancestries. This underscores the need to extend such studies to non-European

populations, particularly those with a high prevalence of some hemoglobinopathies or iron

deficiency anemias. Epidemiologic studies have reported higher mean HbA1c in African

Americans compared to European ancestry individuals in the US [45,46]. While our genetic

findings could not determine whether this difference was completely attributable to relative

hyperglycemia, accounting for the effect of the G6PD variant that lowers HbA1c only in Afri-

can Americans would further widen this disparity.

In conclusion, HbA1c remains an appropriate diagnostic test for the majority of people of

diverse genetic backgrounds, having lower intraindividual variability compared to FG with the

ability to capture chronic hyperglycemia, and robust associations with T2D-related complica-

tions [37]. Nevertheless, nonglycemic lowering of measured HbA1c for 1 in 10 African Ameri-

can men who carry this G6PD variant, and 1 in a 100 African American women homozygous

for this variant, could amount to 0.65 (95% CI 0.56–0.74) million African American adults in

the US with a missed T2D diagnosis using HbA1c as a screening test. We therefore recom-

mend investigation of the possible benefits of screening for the G6PD genotype along with

using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD defi-

ciency is common, and screening with direct glucose measurements, or genetically-informed

HbA1c diagnostic thresholds in people with G6PD deficiency. This work supports a role for a

precision medicine application to reduce race-ethnic health disparities using HbA1c genetics

to improve T2D diagnosis and prediction and to inform screening strategies for T2D across

the African continent where the prevalence of the G6PD variant can reach 20%.
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