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Abstract

Parametric mapping techniques provide a non-invasive tool for quantifying tissue alterations in myocardial disease
in those eligible for cardiovascular magnetic resonance (CMR). Parametric mapping with CMR now permits the
routine spatial visualization and quantification of changes in myocardial composition based on changes in T1, T2,
and T2*(star) relaxation times and extracellular volume (ECV). These changes include specific disease pathways
related to mainly intracellular disturbances of the cardiomyocyte (e.g., iron overload, or glycosphingolipid
accumulation in Anderson-Fabry disease); extracellular disturbances in the myocardial interstitium (e.g., myocardial
fibrosis or cardiac amyloidosis from accumulation of collagen or amyloid proteins, respectively); or both (myocardial
edema with increased intracellular and/or extracellular water). Parametric mapping promises improvements in
patient care through advances in quantitative diagnostics, inter- and intra-patient comparability, and relatedly
improvements in treatment. There is a multitude of technical approaches and potential applications. This document
provides a summary of the existing evidence for the clinical value of parametric mapping in the heart as of mid
2017, and gives recommendations for practical use in different clinical scenarios for scientists, clinicians, and CMR
manufacturers.
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Background
CMR is the primary imaging modality for myocardial tissue
characterization. CMR parametric mapping now permits
the routine spatial visualization of quantitative changes in
myocardium based on changes in myocardial parameters
T1, T2, T2*(star) and ECV. These changes include specific
disease pathways related to mainly intracellular distur-
bances of the cardiomyocyte (e.g., iron overload, or glyco-
sphingolipid accumulation in Anderson-Fabry disease);
extracellular disturbances in the myocardial interstitium
(e.g., myocardial fibrosis of cardiac amyloidosis from accu-
mulation of collagen or amyloid proteins, respectively); or
both (e.g. myocardial edema and/or infarction with
increased intracellular and/or extracellular water). Unlike
T1-, T2-, or T2*-weighted images, mapping permits both
visualization and quantification of the disease process, inde-
pendent of whether myocardial disease is focal or diffuse.
This innovation is important because historically, diffuse
myocardial disease related to specific disease pathways has
been difficult to non-invasively quantify or even appreciate.
Our technical capabilities with parametric mapping

may exceed our understanding of how this data can
guide optimal treatment for patients with signs or symp-
toms of underlying disease. Nonetheless, there is an
important precedent demonstrating that image guided
care exploiting CMR parametric measurements can im-
prove patient outcome in iron overload states [1]. Thus,
advances in CMR parametric mapping promise to im-
prove patient care though better diagnostic decision-
making, which in turn can result in better treatment, as a
major step towards Precision Medicine. In addition, CMR
parametric mapping also promises to facilitate the devel-
opment of novel therapeutics, by providing quantitative
endpoints reflective of the disease pathway of interest, es-
pecially in phase 2 efficacy trials. Technological advances
now permit routine acquisition of parametric maps in pa-
tients eligible for CMR. While mapping adds unique and
relevant diagnostic information on the status of the myo-
cardium, its clinical application requires specific hardware,
software, data acquisition and evaluation procedures,
which are not completely standardized.

Aims and scope of this document
This document provides recommendations for clinical
and research applications of CMR myocardial T1, T2,
T2*, and ECV mapping. We cite published evidence
when available and provide expert consensus where in-
complete. We recognize a priori that multiple method-
ologies for CMR parametric mapping do and should
exist, with continued evolution and residual imperfec-
tions. Despite these limitations, abundant evidence dem-
onstrates that parametric mapping appears robust under
many conditions in its present form. We make analogy
to another key cardiac imaging biomarker, the left

ventricular ejection fraction (LVEF), where measurement
variations persist within and across modalities, yet the
yield of biological information is sufficient to diagnose
disease, guide and monitor treatment, and to predict
outcome. CMR parametric mapping goes beyond non-
specific functional surrogate markers of cardiovascular
disease such as LVEF. Rather, CMR parametric mapping
offers the potential to examine specific disease pathways
that affect myocardial tissue composition.
In 2013, the “T1 Mapping Development Group” pub-

lished a consensus statement that proposed suitable termin-
ology and specific recommendations for site preparation,
scan types, scan planning and acquisition, quality control,
visualization and analysis, and technical directions [2].
Building on this initiative, the Consensus Group on Cardiac
MR Mapping has formed itself to provide guidance on
CMR mapping to scientists, clinicians, and manufacturers.
The team includes experts with a wide and representative
range of technical and clinical expertise, a broad geograph-
ical base and a balanced spectrum of interest.
Considering the rapidly increasing interest in mapping-

based myocardial tissue characterization, the group devel-
oped this document to provide 1) an update on the available
experimental and clinical evidence, 2) an updated list of
clinical indications, 3) practical recommendations for state-
of-the-art protocols and techniques, and 4) guidance for
research.

Terminology
Table 1 provides definitions for terminology related to
the field of parametric mapping of the heart. We now
recommend that ECV be expressed as a percentage (e.g.
25% rather than 0.25).

Recommendations part I: Clinical indications and
utility

1 Parametric mapping is useful in patients undergoing
evaluation for suspected myocardial disease, and
masses.

2 In the clinical scenarios of potential iron overload,
amyloidosis, Anderson-Fabry disease, and myocarditis,
cardiac mapping provides unique information to
guide clinical care and should be applied (Tables 2
and 3; Fig. 1).

3 Parametric mapping should be considered in the
diagnostic evaluation of all patients with heart
failure and unexplained troponin elevation.

4 The choice of CMR mapping techniques and
protocols should be guided by the clinical context.

5 In patients receiving extracellular gadolinium-based
contrast agents, routine assessment of ECV may be
reasonable.
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Centers undertaking parametric mapping should fulfill
the site requirements described in Rationale and diag-
nostic potential of parametric mapping techniques.

Recommendations part II: Implementation
Site preparation and normal values
CMR systems

1) T1, ECV and T2 mapping are typically performed at
1.5 or 3 Tesla (T).

2) T2* mapping for iron overload currently should be
performed at 1.5 T.

Pulse sequence schemes

1) CMR mapping sequences for clinical use should
have a published clinical evidence base.

2) Where mapping is clinically reported, the use of a
commercial pulse sequence is preferable if supplied
by the manufacturer. Other pulse sequences can be
considered, but both need to fulfill (1) above.

Normal/reference ranges

1) For native T1 and T2 mapping, local results should
be benchmarked against published reported ranges,
but a local reference range should be primarily used.

2) Reference ranges should be generated from data sets
that were acquired, processed, and analyzed in the
same way as the intended application, with the
upper and lower range of normal defined by the
mean plus and minus 2 standard deviations of the
normal data, respectively.

Table 1 Definitions of technical terms in the field of parametric mapping of the heart

Term Meaning

T1 [ms] Time constant representing the recovery of longitudinal magnetization (spin–lattice relaxation)

Native T1 T1 in the absence of an exogenous contrast agent

T2 [ms] Time constant representing the decay of transverse magnetization (spin-spin relaxation)

T2* [ms] Time constant representing the decay of transverse magnetization in the presence of local field
inhomogeneities

ECV [%] Extracellular volume fraction, calculated by

ECV ¼
1

T1myopostGd
− 1
T1myonative

� �

1
T1bloodpostGd

− 1
T1bloodnative

� �� ð100−hematocritÞ

where myo = myocardium; blood = intracavitary blood pool; hematocrit = cellular volume fraction of blood [%]

Synthetic ECV [%] ECV where hematocrit is not measured by laboratory blood sampling but derived from blood T1

Parametric mapping A process where a secondary image is generated in which each pixel represents a specific magnetic tissue property
(T1, T2, or T2*) or a derivative such as ECV) derived from the spatially corresponding voxel of a set of co-registered
magnetic resonance source images

Table 2 Clinical utility of parametric mapping techniques ordered
by pathophysiologic mechanism and tissue characteristics.
++ = useful; + = potentially useful;? = unknown; − = not useful.
*: Diffuse/global refers to findings affecting the majority of the
myocardium, whereas focal/regional refers to localized, including
patchy abnormalities

T1 (native) ECV T2 T2*

Infiltration Iron + ? + ++

Amyloid ++ ++ ? –

Anderson-Fabry ++ – + –

Acute myocardial injury Edema ++ + ++ ?

Necrosis ++ ++ + ++

Hemorrhage + ? + ++

Fibrosis Diffuse/global* + ++ ? –

Focal/regional* + ++ – –

Table 3 Clinical utility of parametric mapping techniques
according to expert opinion

Proven clinical utility Iron deposition

Amyloid disease

Anderson-Fabry disease

Myocarditis

Potential clinical utility Cardiomyopathy

Heart failure

Congenital heart disease

Acute/chronic myocardial infarction

Myocardial ischemia

Suspected transplant rejection

Athlete’s heart

(Para-)cardiac masses
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3) If local reference ranges are not available for native
T1 and T2 mapping, quantitative results should not
be reported clinically.

4) The required precision of the local reference
range depends on the proposed clinical
application:
a. For scenarios with large-magnitude biological

changes (e.g. T1 for establishing diagnosis in
amyloid, iron, Anderson-Fabry disease, and
acute myocardial injury), lower precision is
acceptable; e.g. native T1 and T2 reference
ranges on the basis of 15 healthy subjects or
20 normal individuals (e.g. referred for CMR
without any abnormal findings) may be
sufficient.

b. For small-magnitude biological changes (e.g.
diffuse myocardial fibrosis), high precision is
required for native T1 and T2 mapping; e.g.
gender +/− age adjusted reference ranges derived
from 50+ healthy subjects.

c. For ECV, reference ranges from the literature
using the same CMR system and same pulse
sequence may be acceptable, as the dependence
of ECV on field strength, sequence choice and
imaging parameters appears lower than for
native T1.

d. For T2*, a 3-tier risk model (low risk, >20 ms;
intermediate risk, 10–20 ms; and high risk,
<10 ms) for cardiac iron overload should be used
if images are acquired at 1.5 T with ≥8-point
gradient echo pulse sequences.

e. Tracking changes over time requires the use of
identical imaging parameters or high-precision
reference ranges (see b).

CMR system-related changes of normal/reference ranges
over time

1) Once a reference range is established, the major
scan parameters (slice thickness, flip angles etc.),
contrast agent/dose and systolic/diastolic phase
should not be changed.

2) Regularly repeated phantom-based quality control is
recommended to ensure that status and stability of
the CMR system have not changed significantly
during the time between establishing normative
values and clinical scanning.

3) Phantom-based quality control should be performed
every time there is a change to the CMR system
(hardware, software), a software installation, and
every 3 months.

Imaging protocols
General recommendations:

1) Native T1, T2, and T2* are measured in the absence
of contrast agents (at least 24 h from the last dose, if
any, in patients with normal renal function).

2) Motivation and detailed instructions of patients are
important to avoid incomplete breath-holds or
motion artifacts.

3) In-plane motion correction is recommended if
available, but is not a replacement for breath-
holding in non-navigated techniques.

4) Volume-selective B0 shimming focused on the heart
is highly recommended at 1.5 T, and essential at
3 T. B1 (radiofrequency) volume shimming is
recommended at 3 T.

Fig. 1 Typical appearance of T1, T2, T2*, and ECV maps in healthy subjects and in patients with myocardial disease. Arrows denote relative
change in respective parametric maps. Courtesy of P.K
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5) In-plane resolution should not be increased to levels
where the resulting acquisition duration of the
source images exceeds the time frame within the
cardiac cycle where data can be acquired without
blurring effects by the giving technique, with
consideration of the subject’s heart rate.

6) Diastolic image acquisition is recommended if there
is a regular heart rhythm.

7) In patients with tachycardia, specific sequences
designed for higher heart rates can be useful.

8) In patients with atrial fibrillation, image acquisition
should be repeated to allow for averaging of the
results. Systolic readout has been shown to produce
robust T1 maps in tachyarrhythmias but requires
specific normal values.

9) In patients with pacemakers or implanted
cardiodefibillators (ICDs), CMR parametric mapping
is not reliable unless specific shimming algorithms
or sequences can be used to minimize the impact of
artifacts.

T1 mapping/ECV

1) Optimized acquisition schemes for post-contrast
acquisitions can be used to gain precision.

2) For Look-Locker-based techniques (e.g. MOLLI),
correction for readout-induced deflection of T1
relaxation is required (Look-Locker correction).

3) An extracellular contrast agent with non-protein
bound distribution should be used for the
assessment of ECV.

4) Gadolinium based contrast doses of 0.1 – 0.2 mmol/kg
are recommended.

5) Hematocrit for the calculation of ECV should be
obtained immediately before the scan if possible,
otherwise within 24 h of scanning.

6) For ECV measurements, post-contrast T1 mapping
should be performed 10 – 30 min post contrast
administration.

7) Split dose protocols (e.g. in adenosine perfusion
scans) can be used to assess ECV. The timing should
be taken from the last dose.

T2 mapping

1) T2-prepared balanced steady-state free precession
(bSSFP) or gradient echo pulse sequences with a
minimum of 3 source images are recommended.

2) GraSE or turbo spin echo (TSE) approaches may be
appropriate if published data on accuracy and
precision are available and favorable.

3) Two-parameter fitting is appropriate.
4) Saturation pulse acquisition may help to remove T1

recovery bias.

T2* mapping

1) If available, T2* mapping should be performed at
1.5 T (see also Rationale and diagnostic potential of
parametric mapping techniques).

2) Multi-echo gradient echo with 8 equally
spaced echoes ranging from 2 to 18 ms
may be used at 1.5 T.

3) A dark-blood approach is recommended if available.
4) T2* for the assessment of iron overload an

interventricular septal region-of-interest (ROI) is
recommended

5) For the concomitant assessment of liver T2*, the use
of fat saturation and the shortest echo time (TE)
available are recommended.

Scan planning and acquisition

1) Added pulse sequences should not compromise the
primary study indications.

2) Proper adjustment of main magnetic field shim and
center frequency should be assured to minimize off
resonance.

3) Through-plane partial volume effects should be
minimized where possible by choosing slice
orientations that are located orthogonal to the target
structures. Caution is required in short axis views of
the apex.

4) Image quality should be reviewed during acquisition
(e.g. by monitoring sequence sounds and
electrocardiographic (ECG) gating), and by looking
at source images, error maps, and other quality
control maps). Scans should be repeated if sub-
optimal or non-diagnostic.

5) Native and post-contrast T1 maps should be
acquired using the same slice prescription and other
scan parameters at the same cardiac phase (but T1
sampling scheme may be changed – see also T1
mapping/ ECV).

6) A comprehensive imaging protocol for myocardial
tissue characterization including parametric
mapping is presented in Fig. 2. Disease-specific
recommended slices and approaches are given in
Table 4. We give the following recommendations:
a) For global/diffuse disease, a basal and mid short
axis map should be acquired with an optional single
long axis map.
b) For patchy disease, the acquisition of at least
one long axis map is mandatory (4-chamber for
amyloid to visualize base-to-apex gradient,
3-chamber for Anderson-Fabry disease to assess
basal inferolateral scar) in addition to basal and
mid short axis maps.
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c) For focal and/or acute disease, additional short
axis maps should be added and should cover an
area of maximal abnormality and an area of
apparently minimal abnormality (as determined on
cine and/or T2-weighted images) or the whole left
ventricle (if information from cine and T2-
weighted images should not be available at the
time of image acquisition).
d) Whole heart coverage may add diagnostic yield
but risks disproportionately long imaging protocols
and patient fatigue.

7) Inline ECV maps (including synthetic, if the
relationship between native blood T1 and
hematocrit is known for the pulse sequence and field
strength) can be a useful alternative to manual ECV
calculations.

Visualization and analysis

1) Reporting clinicians should learn how to review
source images and quality control maps to ensure
registration/significant artifacts not present.

2) Maps may be displayed in color if the color look up
tables are set according to site-specific ranges of
normal, or in gray scale in combination with
appropriate image processing, to highlight areas of
abnormality.

3) For global assessment and diffuse disease, a single
ROI should be drawn in the septum on mid-cavity
short-axis maps to avoid lung, liver and veins as
sources of susceptibility artifacts.

4) In case of artifacts or non-conclusive results on mid-
cavity ROIs, basal ROIs can be used for validation.

5) For focal disease, additional ROIs might be drawn in
areas of abnormal appearance on visual inspection.
Very small ROIs (<20 pixels) should be avoided.

Fig. 2 General imaging protocol for myocardial tissue characterization
including parametric mapping. The choice of components depends on
the clinical scenario (see Tables 2 and 4). For slice orientations see Table
4. STIR = Short TI inversion recovery. 1: Should be obtained immediately
before the scan if possible, otherwise within 24 h of scanning. Not
necessary if synthetic ECV available. 3: Search tool for focal myocardial
edema. Dispensable if high-quality T1 and/or T2 mapping is performed
with full LV coverage. 3&5: Not necessary in non-acute disease. 6: Not
necessary if iron is not of interest. 7–9: Not necessary if both focal and
diffuse myocardial fibrosis are not of interest

Table 4 Recipe table for specific parametric mapping protocols.
SAX = short axis slice, 3Ch = 3 chamber view, 4Ch = 4 chamber
view, T1 = T1 mapping, T2 = T2 mapping, T2* = T2* mapping

Scenario Pulse sequences/slice
orientations

Breathholds

Amyloid T1 mid and basal SAX, 4Ch 7

repeated post contrast

T2 mid SAX,

T2* -

Anderson-Fabry T1 mid and basal SAX, 3Ch 4 – 7

repeated post contrast
(research)

T2 basal SAX

T2* -

Iron overload T1 mid and basal SAX, 4Ch 6

not post contrast

T2 liver single transverse

T2* mid SAX, liver single
transverse

Myocarditis, acute myocardial
infarction, other regional
disease

T1 SAX multi-slice, long
axis (through region of
hyper-intensity on STIR or
regional wall motion
abnormality on cine)

16 – 25

repeated post contrast

T2 SAX multi-slice

T2* -

Diffuse fibrosis T1 mid and basal SAX, 4Ch
(research)

6

repeated post contrast

T2 (research)

T2* -
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6) ROIs should be checked if generated automatically.
7) Drawing ROIs on greyscale may avoid bias.
8) Myocardial ROIs should be placed accurately to

minimize partial volume effects from adjacent blood
pool or extra-myocardial tissues.

9) ROIs should be drawn independently of late
gadolinium enhancement (LGE) fibrosis imaging. It
is acceptable for ROIs to exclude infarcts (i.e.,
include remote myocardium) and include non-
ischemic LGE.

10)There is currently no specific recommended/
preferred analysis software package. The image
reader should be trained with the local standards
and with the analysis software package of choice and
be aware of and familiar with the appearance of
artifacts.

11)Sensitivity of mapping techniques to confounders
such as heart rate and magnetic field
inhomogeneities should be considered during
interpretation.

Reporting

1) For clinical reports, the type of pulse sequence,
reference range, and type/dose of gadolinium
contrast agent (if applied) should be quoted.

2) Mapping results should include the numerical
absolute value, the Z-score (number of standard
deviations by which the result differs from the
local normal mean; if available), and the normal
reference range.

3) An interpretation should be given as normal, mild,
moderate, or severe increase/decrease.

4) Best practice is defining the severity of deviation
based on prognostic data. If such data are not
available (as is the case for most applications of
cardiac mapping) and no published suitable scheme

Fig. 3 Alterations of T1 and ECV in different myocardial diseases (reproduced with permission from [193]). T1 values refer to MOLLI-based
techniques at 1.5 T

Table 5 Typical alterations of T1, T2, T2* relaxation times
and ECV according to pathology. For further details see
Captur et al. [194]

Measure Decrease Mild increase Moderate or
severe increase

Native T1 Anderson-Fabry, iron
overload, fat,
hemorrhage (athlete’s
heart)

diffuse fibrosis,
scar, subacute
inflammation

amyloid, acute
inflammation,
acute ischemia,
necrosis

ECV athlete’s heart diffuse fibrosis amyloid, necrosis,
scar

T2 iron, hemorrhage subacute
inflammation

acute
inflammation,
acute ischemia,
necrosis

T2* iron, hemorrhage,
stress-induced
ischemia
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is available, the findings may be classified as mild,
moderate, and severe, referring to tertiles of the
known spectrum of disease severity.

Rationale and diagnostic potential of parametric
mapping techniques
Cardiac mapping techniques extend the diagnostic
capabilities of CMR by enabling the quantification of
CMR signal changes on an absolute scale. Conventional
CMR techniques require a reference tissue (intracardiac:
remote myocardium, or extracardiac: skeletal muscle) to
detect alterations of myocardial tissue composition. The
direct quantification of myocardial tissue properties
effectively eliminates the need for such a reference tis-
sue, which makes parametric mapping the first CMR
tool that allows for direct assessment of diffuse myocar-
dial disease.
The different cardiac mapping techniques provide

specific parameters of the myocardium (native T1, T2,
T2*, and ECV). While changes of these parameters are
not specific for single diseases, they might serve as
valuable biomarkers in the context of specific clinical
scenarios, as changes of these parameters can be
grouped into different patterns depending on the under-
lying pathology and reflect significant alterations in
myocardial tissue composition (Fig. 3), Table 5.
As with any novel diagnostic approach, much of the

research initially published in the field of parametric
mapping was centered on advances in acquisition
methodology. With a multitude of fast and robust
mapping techniques described in the literature, some
of which are commercially available on modern CMR
systems. There is now growing evidence on the
clinical value of CMR myocardial mapping from
large-scale clinical outcomes trials. In principle, CMR
myocardial mapping techniques hold important
potential for making diagnosis, risk-stratifying, and
monitoring therapy. Thus, parametric mapping can be
regarded as a natural extension of comprehensive
CMR protocols for the assessment of myocardial
disease.

Available evidence
CMR mapping of T1, T2, T2*, and estimation of ECV
in the clinical setting has intensively been studied
over the past decade. Until very recently, the neces-
sary pulse sequences and post-processing software
have not been commercially available. Scientific
developments in the field have mainly been driven by
single large CMR centers, while evidence from multi-
center trials is limited. Thus, current levels of evi-
dence in the field mainly rely on single-center studies
and opinions of experts who perform CMR mapping
sequences in clinical routine for several years.

The present recommendations intend to introduce the
concept of development steps towards the clinical appli-
cation of T1, ECV, T2, and T2* mapping. These steps
are defined by the available evidence supporting the clin-
ical use of particular mapping sequences for the assess-
ment of distinct disease patterns.
The proposed levels of utility are A) established applic-

ability and usefulness which has been demonstrated by
several clinical trials performed by more than one CMR
center; B) emerging utility, defined as applications that
have been proven useful in only one center; and C) po-
tential applications, i.e. applications that have so far only
been tested in experimental settings or animal models.

Physical and technical background
Principles of measuring magnetic relaxation times
The most common method for measuring relaxation
times is to acquire a series of images in which the
time to readout after inversion had been varied over
a sufficiently wide range. The relaxation time can
then be calculated on a pixel-by-pixel basis by fitting
the image intensity of the series against the parameter
that was used to vary the relaxation time weight. This
pixel-wise relaxation time fitting needs to meet two
conditions in order to be accurate and to avoid bias:
1) the variation in weight of other factors (different
relaxation times, diffusion, etc.) is negligible or cor-
rected for, and 2) there is negligible physical displace-
ment between the images in the series. In the case of
CMR, cardiac and respiratory motion make meeting
both conditions more challenging: avoiding motion
artifacts limits the pulse sequence choices. Cardiac
motion is normally avoided by only acquiring for a
sufficiently short duration at mid-systole or end-
diastole, while respiratory motion can be avoided or
compensated for through breath holding or navigator
gating, respectively. Any residual image-to-image dis-
placement (shifts due to respiration or myocardial
size differences due to contraction of the heart) can
potentially be corrected through affine or non-rigid
image registration after the acquisition and before
pixel-by-pixel fitting. After the maps have been gener-
ated, several segmentation options are available: 1)
the entire LV myocardium is segmented to establish
an average value or perform a threshold-based ana-
lysis to determine areas of abnormality as a percent-
age of the LV myocardium, 2) the septal region is
segmented, 3) the myocardium is divided into 16 seg-
ments as defined by the American Heart Association
guidelines, or 4) ROIs are drawn in regions of
pathology and healthy (remote) tissue for comparison.
Option 2 (septal assessment) is mandatory for T2*
mapping due to frequent artifacts in other regions of the
myocardium (especially off-resonance close to the
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air-tissue interface), and might also be preferable for the
assessment of diffuse myocardial disease by T1 and T2
mapping because of a high level of robustness and ease of
omitting contamination from epicardial fat.

Acquisition and processing strategies
T1 mapping and ECV
Several approaches for the quantification of myocardial
T1 have been described. The majority of sequences
utilize multiple single-shot bSSFP acquisitions, using in-
version preparation (MOLLI [3–5], ShMOLLI [6],
ANGIE [7], STONE [8]), saturation preparation (AIR
[9], SASHA [10], SAP-T1 [11]) or a combination of the
two (SAPPHIRE [12]).
The modified Look-Locker [13] inversion recovery

(MOLLI) sequence is widely used for myocardial T1

mapping [3, 5, 14]. MOLLI offers excellent T1 precision,
although its T1 assessment is sensitive to magnetization
transfer (MT) effects [15], T2, flip angle, inversion pulse
efficiency, heart rate and off-resonance, which reduces
its accuracy [15–18]. Variants of MOLLI, defined by the
number of images (or seconds) in a set (i.e. acquired fol-
lowing a given preparation pulse) and the number of re-
covery heartbeats (or seconds) between sets, have been
optimized based on targeted ranges of T1 values and
heart rates [16]. The MOLLI 5(3)3 [16] and the
Shortened MOLLI (ShMOLLI) variants have emerged as
approaches that require reduced scan time at a modest
noise penalty [6], with little impact on their practical
performance in direct comparison to the original
MOLLI scheme [16, 19–22].
Saturation-based approaches typically use a single

image acquisition per preparation pulse, minimizing the
complex magnetization history of the Look-Locker ap-
proaches, and largely eliminating sensitivity to MT, T2,
heart rate and off-resonance effects at the price of re-
duced precision [10, 15, 16]. SAturation Pulse Prepared
Heart-rate-independent Inversion REcovery (SAPPHIRE)
uses a hybrid of saturation and inversion pulses to im-
prove precision of the saturation-recovery approach
while maintaining accuracy [12].
Researchers continue to address the challenges of opti-

mizing accuracy and precision with new acquisition and
processing methods, for example, with the use of Bloch
equation-based T1 corrections for MOLLI acquisitions
[23–25] and a free-breathing version of SASHA with im-
proved precision and contrast [26]. Whole heart T1
mapping with 3D ANGIE [7] or Slice-interleaved T1
mapping (STONE) [8] have illustrated full T1 map
coverage of the LV with free-breathing acquisitions. In
patients with atrial fibrillation, systolic data acquisition
might be more robust than diastolic readout, but yields
lower T1 values [27, 28].

T1 mapping can be used to estimate the myocardial
ECV, a validated surrogate marker of fibrosis [29–31] in
the absence of confounders (e.g. infiltration), based on
the change in T1 values following the injection of con-
ventional extracellular T1-shortening agents (e.g. Gd-
DTPA) [22]. ECV estimation requires repeated T1 map-
ping acquisitions at baseline (native T1) and post-
contrast delivery (typically >10 min post-contrast to ap-
proach steady-state conditions). Briefly, the change in 1/
T1 (R1) in the tissue and blood pool is used to deter-
mine contrast agent concentrations, the ratio of which
yields an estimation of ECV, following a correction for
red blood cell density in the blood pool (hematocrit). Re-
cently, a simplified approach for the assessment of ECV
was presented where the hematocrit was estimated from
native values of blood pool T1 (“synthetic ECV”) [32].
Preliminary data suggest that synthetic ECV values cor-
relate with hematocrit-derived ECV, which might allow
for abstaining from laboratory tests of hematocrit for the
assessment of ECV in the future [33].
For T1 mapping acquisition methods, T1 values are

estimated by fitting a T1 recovery curve to each pixel in
a series of images with different degrees of T1 recovery
using a two- or three-parameter fit [3]. Therefore, mo-
tion between images will adversely impact T1 measure-
ments and should be corrected [34, 35]. Methods for the
quantification of variability (e.g. quality control maps) in
T1 and ECV values in the calculated maps have been de-
scribed [36].

T2 mapping
In the presence of edema, myocardial T2 will increase.
T2 weighted CMR imaging is commonly used to assess
myocardial inflammation. However, image quality, repro-
ducibility and subjective assessment of T2 weighted im-
ages have been limiting factors in its clinical adoption.
To overcome these challenges, regional myocardial T2
mapping has emerged to directly quantify local myocar-
dial inflammation and edema. Few studies have investi-
gated the value of T2 mapping in other myocardial
diseases [37]. T2 mapping is generally performed by
pixel-wise fitting for a T2 decay curve of a series of T2-
weighted images. These source images can be acquired
by a TSE sequence with varying echo time [38], a bSSFP
or spoiled gradient echo (GRE) sequence with an initial
T2 preparation module [39–42], or a sequence scheme
that combines spin echo excitation with gradient echo
readout (GraSE) [43]. In these T2 mapping sequences,
images are acquired with different echo times (e.g. 0, 25,
and 50 ms) [39] and are used to estimate the T2 values
using a two-parameter or three-parameter fit model
[44]. Despite the potential of T2 mapping to replace T2-
weighted imaging for assessment of inflammation and
edema due to its quantitative nature and higher
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robustness, confounders such as sensitivity to T1 and
off-resonance effects have to be considered. Recent stud-
ies have thus focused on quantifying the reproducibility
[45–50], robustness against artifacts [51], and the influ-
ence of motion correction [45, 52]. At the same time,
several challenges of myocardial T2 mapping have been
overcome by proposing faster image acquisition, redu-
cing bias [44], and increasing spatial coverage [53–55].

T2* mapping
T2* relaxation mapping is usually based on GRE se-
quences and forms the basis for numerous CMR appli-
cations [56]. In particular, T2* quantification is currently
the method of choice for myocardial tissue iron assess-
ment [57]. In this scenario, images are typically acquired
at 8 different echo times ranging from 2 to 18 ms. For
cardiac imaging, a segmented GRE sequence combined
with ECG gating allows all echo images to be acquired
in a single breath-hold. Currently, both a bright blood
[58] and a black blood [59] technique are validated and
widely used clinically [60, 61]. For the bright-blood tech-
nique, images are acquired immediately after the R-wave
to reduce artifact because of blood flow and myocardial
wall motion. For the black-blood technique, a double in-
version recovery pulse is used to null the signal from
blood, and data acquisition is extended to late diastole
with minimal cardiac motion. In comparison, the black--
blood technique produces less bias and reduced inter-
observer variability and is hence recommended if avail-
able [62].
For the measurement of myocardial T2* in vivo, a mid-

ventricular short axis slice is acquired and a homogeneous
ROI is defined encompassing both sub-epicardial and sub-
endocardial regions, as iron is preferentially stored in the
sub-epicardial compared with the sub- endocardial layers
[62]. The analysis is restricted to the septum to reduce
susceptibility artifacts. A multi-slice T2* approach has also
been proposed, which may have advantages for the
evaluation of myocardial hemorrhage in acute myocardial
infarction by providing whole-heart coverage. The single-
slice technique based on the septal analysis remains ac-
cepted practice [63].

Quality control
Changes in CMR system hardware and software may lead
to changes in mapping sequence parameters (see Normal
values). During image acquisition, mis-triggered heart beats,
motion (cardiac and respiratory), and off-resonance or
other artifacts may lead to inaccurate measured relaxation
times (see [64], electronic supplementary material). When
possible, breath-held acquisitions with data collection dur-
ing the quiescent period the cardiac cycle, typically mid-
diastole, is preferred. Pixel-by-pixel parametric maps still
benefit from breath-holds, even if motion-correction

algorithms are used, as motion correction algorithms can
only correct in-plane but not through-plane motion. These
algorithms can incorrectly co-register anatomy, and corrupt
image quality and accuracy [48], so it is imperative to view
the motion-corrected raw images to ensure that the motion
correction had worked properly. The operator should en-
sure that there are no mis-triggered or skipped heart beats
during data acquisition. Once acquired, the user should im-
mediately inspect the raw images, quality control maps (e.g.
R2 or error), if available, and the parametric maps to assess
for quality, reacquiring images as necessary. For instance,
motion may manifest as obvious diaphragmatic motion or
variation in cardiac phases on the raw images, areas of poor
curve fit on quality control maps, or blurring of tissue bor-
ders on T1/T2 maps. For T2* measurements, poor breath
holding and cardiac motion typically manifests as ghosting,
and may significantly affect image and data quality. Off-
resonance artifacts may be particularly prominent at 3 T,
and the use of a local box shim is essential to reduce off-
resonance variation across the heart.

Normal values
In healthy subjects, myocardial tissue exhibits a very uni-
form composition and thus possesses very regular mag-
netic properties. As a result, native T1, T2, and T2*
values from normal myocardium are highly reproducible
and show relatively narrow ranges when acquired under
the same conditions.
In practice, the term “same conditions” becomes highly

relevant. If these conditions change, it becomes impossible
to judge if changes in tissue parameters results are due to
a pathologic state or simply to a change in the way the
measurement was performed.
The conditions for parametric mapping can be divided

into two areas:

1. Physical/biological confounders. These include
magnetic field strength and temperature, meaning
that native T1, T2, and T2* values are not directly
comparable between 1.5 T and 3 T, T1 will increase
by approximately 1% for every 1 °C increase in body
temperature [65], and T2 shortens with increasing
temperature [66]. Temperature dependency is
usually neglected as extremes of body temperature
(pyrexia, hypothermia) are not typical features of
patients undergoing a CMR scan, but nonetheless
should be considered in the unusual event that a
febrile (or hypothermic) patient undergoes CMR
parametric mapping.

2. Methodological confounders. The acquisition and
processing of parametric maps require several
technical steps. There are multiple technical options
for each of these steps, each of those introducing
different types and degrees of error to the
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measurement. For example, the use of inversion
recovery Look-Locker based acquisition schemes for
T1 mapping introduces a significant negative offset
to T1 values as compared to saturation recovery
sequences; the use of insufficient waiting time for
signal recovery in inversion recovery T1 methods
and T2-prepared mapping can introduce heart rate
dependence; and low flip angles can lead to low SNR
in all approaches.

This problem is complicated by the fact that there is no
reference technique to determine the “real”myocardial relax-
ation times in-vivo, as in-vitro reference techniques cannot
be applied to live human hearts and hearts from other spe-
cies (that might be subjected to several hours of scanning)
do not exhibit the exact same normativevalues as human
hearts.
As a consequence, native parameter values should

only be compared to other parameter values if they
are obtained under similar conditions. In other words,
the acquisition scheme, field strength and processing
approach should be the same, and the results should
be reported along with corresponding reference
ranges for the given methodology (see Reporting).
This situation actually resembles that of other bio-
markers including serologic tests, where reference
values of the local laboratory are usually provided
along with the results sheet. In the future, it might
become possible to normalize native parameter results
to a “standard parameter” based on phantom or soft-
ware calibration methods [67].
Apart from these variations caused by confounders,

there are subtle differences in myocardial T1 and T2
(but not T2* [68]) that are related to gender and (less
so) age. In 1231 participants of the Multi-Ethnic Study
of Atherosclerosis (MESA) aged 54 to 93 years, women
showed stable native T1 throughout different age groups
whereas men had lower native T1 at 54 to 63 years that
increased in higher age groups and approached that of
women in the group of >84 years [69]. In a study of 342
healthy subjects, native T1 values of women were higher
up to the age of 45 years [70]. Similarly, a study in 74
healthy subjects revealed higher myocardial T2 in
women and in subjects with greater age [47, 71]. Further
insights are expected from on-going other population-
based studies [72]. Taken together, the magnitude of
gender- and age-related differences for myocardial relax-
ation times in these studies reached approximately 0.5
standard deviations from the normal mean. While these
effects seem negligible in diseases with alterations of
high magnitude (e.g. amyloidosis), they become relevant
if pathologic processes with more subtle impact on na-
tive relaxation times such as diffuse myocardial fibrosis
are of interest. As a consequence, non-specific normal

ranges might be appropriate for high-magnitude disease
states, while the assessment of low-magnitude patholo-
gies requires the use of granular normal ranges accord-
ing to gender and to a lesser extent age, which are
currently not available for all acquisition approaches.

Clinical applications: Current state
Mechanisms of myocardial injury
T1, T2, and T2* times of a given pixel in a respective para-
metric map represent a composite signal of the correspond-
ing tissue voxel. Changes of myocardial tissue composition
lead to alterations of T1, T2, and T2* times. Such changes
usually occur in the same direction (i.e. shorten or
lengthen) for all three magnetic properties but might not
reach the same degree in all of them, depending on the
underlying process. ECV behaves different in that it only re-
flects alterations of the extracellular component of the
myocardium. Table 10 gives an overview on principal direc-
tions and degrees of changes in parameters depending on
pathology.

Acute myocardial disease
Acute ischemic injury
As acute myocardial edema develops in areas of acute
ischemia and infarction, native T1 and T2 relaxation
times prolong, whereas post-contrast T1 time
shortens, compared to remote myocardium [14, 73,
74]. Both native T1 and T2 mapping correlate well
with the area-at-risk measured by microspheres in
animal studies [75], and may be used to delineate the
area-at-risk and determine myocardial salvage in clin-
ical applications [76, 77]. With the development of
significant interstitial edema and other changes in the
vasculature, ECV is expanded in the areas of acute
myocardial injury and infarction [78]. Compared to
T2-weighted imaging, native T1 mapping was superior
in detecting areas of injury in non-ST elevation myo-
cardial infarction (NSTEMI), and similar in STEMI
[79]. Furthermore, native T1 and T2 mapping may
provide prognostic information through the identifica-
tion of the infarct core [80] and intra-myocardial
hemorrhage [81], both of which are associated with
an adverse prognosis. Post-contrast T1 and ECV
changes have been identified in the remote myocar-
dium early in the course of acute infarction [82–84],
suggesting that adverse cardiac remodeling may com-
mence at the time of infarction and is not simply a
consequence of longer term hemodynamic stress. T2
mapping may be used to track the resolution of myo-
cardial edema, and T2* imaging may be used to as-
sess for intramyocardial hemorrhage and reperfusion
injury post infarction [85].
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Acute inflammation
Increases in myocardial free water content, as occurs in
acute myocardial edema and inflammation, prolong T1 and
T2 relaxation times [73, 86]; where myocardial edema is
extra-cellular, this will also expand the interstitial space and,
hence, ECV. Both T1 and T2 mapping are sensitive to
detecting acute myocardial edema and inflammation in ani-
mal models [73, 75, 86] and in clinical patients who present
with various forms of acute myocardial injury, including
myocardial infarction, stress-induced (a.k.a. Tako-tsubo) car-
diomyopathy and myocarditis [64, 79, 87–89]. Mapping
techniques possess a number of technical advantages over
conventional T2-weighted imaging for detecting myocardial
edema and inflammation, and have demonstrated superior
diagnostic performance in the clinical setting [64, 79, 87, 89].
T1, ECV and T2 mapping have clinical utility in the diagno-
sis of acute myocarditis, shown by a number of clinical
studies, and may be used in conjunction with the Lake
Louise Criteria [90, 91]. Additionally, mapping techniques
are sensitive to less acute presentations of inflammation, and
are able to detect subclinical forms of myocarditis as part of
systematic inflammatory diseases, such as rheumatoid
arthritis, lupus erythematosus, systemic sclerosis, pheochro-
mocytoma, human immunodeficiency virus infection and
cardiac sarcoidosis [92–97]. Mapping techniques may also
have emerging roles in the diagnosis of cardiac transplant re-
jection [98], and differentiation of athlete’s heart from dilated
cardiomyopathy, which may have an inflammatory compo-
nent detectable using parametric maps [99].

Heart failure with reduced or preserved ejection fraction
Aortic stenosis
While the key measure determining the need for
valve replacement in aortic stenosis is the degree of
valvular obstruction, the myocardium also undergoes
progressive changes that can lead to deteriorating car-
diac performance and increased morbidity and mor-
tality [100]. The degree of LV hypertrophy in aortic
stenosis is independently associated with a higher rate
of cardiovascular events [101], and recent T1 map-
ping data suggest that myocardial ECV is a stronger
predictor of adverse cardiovascular outcomes than the
extent of LV hypertrophy. A number of T1 mapping
techniques have already been shown to correlate with
the degree of histological interstitial fibrosis in aortic
stenosis patients [102, 103]. Compared to healthy
controls, patients with aortic stenosis have a higher
ECV [30], suggesting a maladaptive response to
pressure overload. In these patients severe diastolic
dysfunction is associated with higher ECV levels,
implying a mechanistic link between interstitial fibro-
sis and myocardial stiffness. The notion that patho-
logical LV remodeling in aortic stenosis is at least in
part driven by increasing levels of interstitial fibrosis

suggests that in the future T1 mapping may play a
role in predicting future cardiovascular outcomes in
aortic stenosis, or even help to time intervention.
Although the principle determinant of regression of
hypertrophy following aortic valve replacement for se-
vere aortic stenosis may be a reduction in cell volume
rather than regression of interstitial fibrosis [30],
studies are currently underway aimed at assessing the
role of ECV measurement in the selection of patients
for aortic valve replacement. Furthermore, it has been
suggested that coronary vasodilation may also contrib-
ute to increased native T1 via intravascular volume
expansion in severe aortic stenosis [104].

Arterial hypertension
Similar to the response to pressure overload in aor-
tic stenosis, CMR T1 mapping studies in patients
with arterial hypertension have demonstrated small
degrees of expansion in ECV that parallels the devel-
opment of LV hypertrophy [105]. Furthermore, the
development of ECV expansion as a consequence of
hypertension is associated with reduced cardiac
performance, suggesting a mechanism by which
hypertrophy in hypertension may evolve into a more
malignant phenotype [106, 107]. In addition, T1
mapping may play a diagnostic role in discriminating
patients with LV hypertrophy due to hypertrophic
cardiomyopathy from those with hypertrophy
secondary to arterial hypertension [108]. This dis-
tinction is not merely academic, as hypertension is a
common finding in the community and there are
important differences in the management of patients
with hypertrophic cardiomyopathy compared to
those with hypertensive heart disease. Finally, of
great interest would be the demonstration of regres-
sion of interstitial fibrosis following antihypertensive
therapy. In one study, following marked blood pres-
sure reduction in a cohort of hypertensive patients
who underwent renal denervation, there was a sig-
nificant reduction in the blood-tissue partition coef-
ficient, lambda (a surrogate of ECV), in those who
underwent renal denervation versus controls [109].

Amyloid disease
Two types of amyloidosis commonly infiltrate myocar-
dium: immunoglobulin light-chain derived (AL) and
transthyretin (ATTR) amyloid. While these two types have
different natural history and prognosis, cardiac involve-
ment drives outcome and therapeutic choices in both.
Early recognition and therapy are critical in AL amyloid-
osis when cardiac involvement is detected. CMR with
LGE has been shown to be a valuable tool in cases with
typical subendocardial tramline pattern, which is replaced
by transmural RV and LV enhancement at later stages.
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However, atypical patterns have been described and renal
impairment restricting contrast use is common in amyl-
oid. Native T1 mapping may allow for making the diagno-
sis of cardiac amyloidosis without the need for gadolinium
contrast application, although the normal T1 in renal
disease is not yet well defined [110–112]. ECV appears to
be a surrogate marker for the amyloid burden and carries
prognostic value [113]. In early disease, native T1 and
ECV are elevated before LGE appears, although these
changes are initially non-specific and thus only clinically
useful when the pre-test probability is high. Once suben-
docardial LGE appears, ECV elevation in remote areas be-
gins to be diagnostic, as diffuse fibrosis rarely increases
the ECV above 40%. ECVs of >55% appears in transmural
LGE. The T1 and ECV are subtly divergent in established
AL vs. ATTR with a higher ECV in ATTR, a higher native
T1 in AL, and greater cell volume expansion in ATTR
[114]. Particularly in the elderly, occult ATTR amyloid
confounds other diseases such as heart failure, hyper-
trophic cardiomyopathy, and aortic stenosis, although
bone tracer scanning appears more sensitive [115]. ECV
can be used to track therapy in amyloid [116], and might
be able to track amyloid regression.

Anderson-Fabry disease
Anderson-Fabry disease is a rare X-linked lysosomal
storage disease that causes LV hypertrophy and eventu-
ally fibrosis and heart failure. The underlying pathology
is intra-cellular accumulation of glycosphingolipid.
Native T1 in this disease is low, unlike any other cause
of hypertrophy except for iron overload (see Iron
overload), in around 85% of all subjects with LV hyper-
trophy, though to be directly related to sphingolipid
storage [117, 118]. This is highly characteristic and
diagnostic, despite the rarity of Anderson-Fabry and
consequent low pre-test probability. T1 is low in around
half of patients with Anderson-Fabry even in the absence
of hypertrophy, making T1 mapping a useful test for
early cardiac involvement and raising the possibility of
early therapy to prevent the downstream events and
overt disease.
Patients with Anderson-Fabry frequently show a

characteristic mid-wall LGE pattern in the basal infer-
olateral wall, which often appears thin. Recent data
suggest that in this area, in contrast to LGE from
other origin, there is an increased native T1 and T2
even in the absence of wall thinning, with the T2 ele-
vation corresponding to elevated levels of blood
troponin. This suggests that the lesions on LGE may
reflect chronic, active inflammation [119]. This im-
portant finding may be a critical link of underlying
mutation to a final fibrotic phenotype and may point
to a pathway common to other non-ischemic LGE
findings and disease development.

Iron overload
Cardiac iron overload is a serious condition, caused
either by repeated blood transfusions for anemia (e.g. in
thalassemia major) or increased intestinal iron absorp-
tion (e.g. hereditary hemochromatosis). Iron overload
leads to severe heart failure and lethal arrhythmias but
can be treated effectively if diagnosed early. T2*
mapping is an accurate and reliable method for the
quantification of cardiac iron load [120]. It is reproducible
across different CMR systems [121, 122], and identifies
patients at risk for heart failure or arrhythmia from myo-
cardial siderosis [123]. Furthermore, T2* mapping can be
used to monitor disease progression and therapy [124–
126], and currently is the only parametric mapping tech-
nique that is recommended in disease-specific clinical
guidelines [62].
Recently, T1 mapping has also been evaluated for the

assessment of cardiac siderosis, and compared with T2
and T2* in a substantial population with and without
cardiac iron overload [127], showing considerable scatter
between techniques. In patients with only mild increases
of cardiac iron, non-contrast T1 mapping showed super-
ior reproducibility as compared to T2* measurements
[128], but there might be little relevance of this finding
in significant iron overload states causing heart failure.
ECV may be increased in patients with thalassemia

major and is associated with cardiac iron overload [129].
However, ECV correlated significantly with lowest his-
torical T2* measurements but not with systolic function.
Thus it is currently unknown whether ECV has a role in
the management of cardiac siderosis patients.

Diffuse myocardial fibrosis and cardiac remodeling
Myocardial fibrosis occurs in a continuum from mild to
severe where excess collagen (concentration) appears in
the myocardial interstitium [130]. Accordingly myocar-
dial native T1 and ECV increase, whereas post contrast
T1 decreases [2]. ECV is well suited to measure intersti-
tial expansion occurring with fibrosis (or amyloidosis)
with extracellular gadolinium-based contrast agents.
ECV simply quantifies the interstitial presence of gado-
linium relative to the plasma. Accordingly, histologic val-
idation data overall show best agreement with ECV
compared to other T1 metrics based on R2 values (i.e., the
proportion of variation in a variable explained by another
variable) [131, 132]. Despite the potential confounding in-
troduced by capillary rarefaction or myocardial edema
(since myocardial gadolinium presence includes the myo-
cardial vasculature), most validation studies report high
R2 values ≥0.6 [29, 103, 133–138]. The intra-myocardial
vascular compartment is another potential confounder in
the setting of vasodilation (e.g., adenosine [104, 139, 140]),
so the clinical context for ECV measures must be known
for optimal interpretation. Since LGE detection of fibrosis
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depends on its spatial heterogeneity, LGE is not designed
for quantifying fibrosis in noninfarcted myocardium and
is not validated as a quantitative metric for this purpose.
Nonetheless, LGE can often identify cardiac amyloidosis
(see above) [113]; thus LGE can assist discrimination of
the cause of elevated ECV, i.e., myocardial fibrosis versus
cardiac amyloidosis.
ECV dichotomizes the myocardium into its primarily

cellular compartment and predominantly interstitial
compartment (including the myocardial vasculature) [2].
While myocardial fibrosis may follow myocyte loss due
to various injuries, it also may occur with primary fibro-
blast activation. The positive correlation between myo-
cardial fibrosis (whether by ECV or histology) and LV
mass suggests significant primary fibroblast activation
since myocyte loss would decrease LV mass [132]. This
information is relevant when appraising potential thera-
peutic targets.
Emerging data reveal that many cardiac insults culmin-

ate in myocardial fibrosis, and the extent of fibrosis can
vary across disease categories [78]. The extent of myocar-
dial fibrosis regardless of cause or disease category then
appears to govern vulnerability to adverse outcomes
(death or heart failure) [141]. ECV appears to reflect the
extent of myocardial fibrosis and has been validated
against collagen volume fraction [29, 103, 133–138]. ECV
has been shown to be reproducible [136, 142–147], pre-
dict outcomes [148–155], and provide “added prognostic
value” manifest by reclassification metrics [141]. Thus,
ECV quantification of interstitial expansion remains a
powerful tool to investigate myocardial remodeling, espe-
cially when combined with ancillary clinical data.

Primary cardiomyopathy
Dilated cardiomyopathy and hypertrophic cardiomyop-
athy are associated with the development of diffuse myo-
cardial fibrosis. In both groups of patients, native T1 was
found to be increased not only in areas corresponding to
LGE but also in areas without LGE, hence suggesting
that native T1 can detect areas of tissue pathology be-
yond those detected by LGE [156]. In patients with di-
lated cardiomyopathy, high native myocardial T1 is
associated with an increased risk for cardiovascular
events and heart failure [157]. Furthermore it could be
shown for both dilated cardiomyopathy [158] and hyper-
trophic cardiomyopathy [159] that ECV is increased not
only in patients with typical phenotype, but also in
asymptomatic relatives without clinical findings but with
positive phenotype. Whether ECV provides additional
information in these patients for the prediction of ven-
tricular arrhythmia is under investigation. There are no
data on the diagnostic value of parametric mapping in
patients with arrhythmogenic right ventricular cardio-
myopathy (ARVC). The fibrofatty replacement, which is

a typical finding in this disease, should theoretically lead
to alterations of both native T1 and ECV. However, the
thin RV free wall prevents the application of breathhold
parametric mapping techniques, which do not provide
high-enough spatial resolution. Respiratory-gated seg-
mented techniques might circumvent this problem in
the future [7].

Valvular disease
Fibrotic remodeling as a consequence of chronically in-
creased afterload has long been recognized. Even young
patients with aortic stenosis exhibit increased ECV,
which correlates with the degree of diastolic dysfunction
[160]. In addition to the cardiac remodeling driven by
pressure overload, volume overload driven by valvular
regurgitation is also associated with adverse cardiac re-
modeling. In contrast to stenotic valvular lesions, most
patients with valvular regurgitation develop significant
cardiac remodeling prior to the development of symp-
toms; therefore the role of CMR in characterizing sub-
clinical myocardial changes is of particular importance.
In patients with chronic aortic regurgitation, shorter
post-contrast T1 time, consistent with diffuse myocardial
fibrosis, is present in myocardial segments with impaired
function [161], again suggesting a relationship between
cardiac dysfunction and interstitial fibrosis. More re-
cently, similar findings have been demonstrated with
ECV in patients with mitral regurgitation [162], where
changes in ECV were linked with early cardiac remodel-
ing and reduced cardiovascular performance. Taken to-
gether these studies suggest a potential future role for
CMR T1 mapping in the identification of subclinical
myocardial changes due to volume overload, which may
help guide future interventional strategies for regurgitant
valve lesions.

Ischemic heart disease
Besides the severe alterations of native T1 seen in the
acute stage (Acute ischemic injury), myocardial infarc-
tion also causes changes of native T1 in the chronic stages
of the disease. However, the heterogeneous nature of these
changes both within and in between subjects limit the
sensitivity of native T1 for the detection and – even more
so – the quantification of the extent of chronic myocardial
infarction in a given individual [14, 163]. An increase of
native T1 has also been reported for remote areas of
hearts with acute myocardial infarcts (see Acute ischemic
injury), and was associated with LV remodeling and
adverse cardiac events [164]. Recently, characteristic pat-
terns of pathologic T1 response to adenosine stress have
been demonstrated in patients with significant coronary
artery stenosis using native T1 mapping [139, 140]. Apart
from direct effects of impaired myocardial perfusion on
T1, additional mechanisms that might contribute to these
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patterns include blood oxygenation level dependent
(BOLD) and arterial spin labelling (ASL) effects [165].
Further studies are necessary to answer the question if
native T1 mapping can be used as a non-contrast stress
perfusion test for the assessment of myocardial ischemia.

Congenital heart disease
In congenital heart diseases, volume and/or pressure
overload are important factors in alterations of myocar-
dial structure and function [166]. In adolescents and
adults with Tetralogy of Fallot, for example, the presence
of volume overload due to pulmonary regurgitation is
associated with expansion of ECV, which in turn is asso-
ciated with a higher incidence of cardiac arrhythmia
[167]. Although Tetralogy of Fallot is a “right heart dis-
ease”, LV ECV is elevated as well [168, 169]. Pediatric
Tetralogy of Fallot patients from a contemporary era
enjoy an overall better myocardial health than previous
surgical generations, but an association of both ECV and
native T1 in the LV with exposure to cardiopulmonary
bypass more than 10 years earlier remains a concern and
highlights the need for improved cardioprotection [168].
Furthermore, chronic hypoxemia and genetic disposition
have been associated with adverse myocardial remodel-
ing in repaired and unrepaired malformations of the
heart. Nearly all CMR T1 mapping studies in Tetralogy
of Fallot have demonstrated higher ECV and/or native
T1 values in females [167]. This finding together with
worse RV function and exercise tolerance [170] suggests
that we may need to monitor and treat females differ-
ently from males after Tetralogy of Fallot repair.
Patients with physiologically uni-ventricular hearts (so

called “single ventricles”) are at particular risk for develop-
ing ventricular dysfunction, especially when the dominant
ventricle is of RV morphology, as in hypoplastic left heart
syndrome [171]. Even at a young age, these patients have
been demonstrated to develop elevated ECV, which is as-
sociated with reduced myocardial contractility. So far, the
prognostic significance of this finding is not known.
Drug trials for the treatment of heart failure in con-

genital heart disease have been nearly unequivocally dis-
appointing. Information on myocardial health from T1
mapping might potentially allow for a more personalized
pharmacological approach. As pharmacologic heart fail-
ure therapies have been less effective in these situations
than in acquired heart disease, interventional and surgi-
cal approaches play a major role. T1 and ECV mapping
have been proposed as tools to guide decision-making
and timing of such procedures in the course of the dis-
ease. For example, the goal of pulmonary valve replace-
ment in post-repair patients with Tetralogy of Fallot may
become preservation of myocardial health over and
above restoring RV volume, which is currently at the
center of timing for pulmonary valve replacement. Thus,

longitudinal RV ECV assessments may prove helpful in
making the decision when to restore pulmonary valve
competency. However, RV disease is hard to assess with
common breath-hold T1 mapping approaches as their
spatial resolution approaches the low thickness of the
RV wall. Even in patients with right ventricles that sup-
port the systemic circulation, the RV free wall has been
deemed not measurable by T1 mapping [172]. This prob-
lem of insufficient spatial resolution is further aggravated in
pediatric patients with small hearts. Therefore, while initial
studies could demonstrate the diagnostic potential of T1
and ECV mapping in patients with RV disease, meaningful
clinical applications seem to warrant the availability of
high-resolution mapping techniques, which are based on
non-breath hold (navigated) segmented acquisition strat-
egies, examples of which are currently still restricted to re-
search applications (ANGIE [7], SALLI [173]).
Information on the prognostic significance of paramet-

ric mapping in pediatric cardiomyopathies and myocar-
ditis is scarce, and it remains unclear whether the
experience in adults can be extrapolated to children. In
patients with chronic Kawasaki disease, ECV is elevated,
including in LGE-negative myocardial segments. It is
highest in segments supplied by severely aneurysmal
and/or obstructed coronary arteries and is associated
with decreased myocardial blood flow and strain. There-
fore, CMR T1 mapping may present an opportunity to
improve risk stratification and monitoring in Kawasaki
disease beyond coronary artery angiography and stress
testing. In boys with Duchenne muscular dystrophy,
heart failure treatment is typically started or intensified
when myocardial dysfunction and/or LGE develop.
However, even patients with normal LV ejection fraction
and no LGE have elevated ECV and T1 values [174].
This observation suggests that T1 mapping, and perhaps
native T1 more than ECV [175], may identify the onset
of fibrotic remodeling earlier than LGE and ejection
fraction, providing an opportunity for a more timely
intervention.

(Para-)cardiac masses
Mapping techniques may be used for characterizing extra-
myocardial tissues, such as masses, pericardial effusion
and fat, although current clinical evidence is sparse for
these applications. For instance, cardiac masses with high
fat content, such as lipomatous hypertrophy of the inter-
atrial septum, may be readily apparent on T1 maps [176],
demonstrating homogenous and characteristically low T1
values. Simple cysts and pericardial effusion, composed al-
most entirely of water, are expected to exhibit very long
T1 and T2 relaxation times. Cystic lesions without com-
munication with the systemic circulation and its vascula-
ture will show unchanged T1 values post gadolinium
administration. Masses that have a high water content and
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substantial vascularization (and therefore blood volume)
also show long T1 and T2 relaxation times, and will have
evidence of gadolinium contrast uptake (e.g. low T1 values
post contrast) [177]. Due to bias caused by intramyocar-
dial fat seen in inversion- and saturation-recovery T1-
mapping techniques, a wide range of native T1 values may
be seen in tissues with fat content when a voxel is only
partially occupied by fat [178, 179]. It is also important to
select mapping techniques that have been validated across
a wide range of T1 and T2 values that include the ranges
typically seen in the tissues types under study (e.g. cysts
with very high T1 and T2 values), to avoid potential mis-
diagnosis due to underestimation of long relaxation times
(e.g. cyst versus malignant tumor). More research and val-
idation against tissue pathology are needed in this area be-
fore routine clinical applications for diagnoses.

Knowledge gaps and areas for ongoing research
Relaxometry assumptions
The measurement of T1, T2, and T2* relaxation time con-
stants assumes a mono-exponential behavior on a macro-
scopic scale. This simplifying assumption has proven to be
useful in clinical practice for differentiation of tissues and
assessment of their state. However, the molecular compos-
ition of biological tissue is frequently more complex, lead-
ing to multiple compartments with chemical exchange
(magnetization transfer) and finite diffusion distances.
How the simplified model is affected by more complex
molecular composition of tissue and pathology is unclear,
and the clinical consequences of the simplified view needs
to be studied for various scenarios.

Confounding factors
The measurement of a parameter of interest such as T1
may depend on other variables such as T2 or patient’s
heart rate (HR), and numerous other confounding fac-
tors. From a clinical perspective, the consequences of
such bias are not fully understood. There are instances
for which the confounding factor may make a disease
more detectable. However, the interpretation of the shift
from baseline normal is no longer clear. For example, an
elevated T1 might be due to fibrosis, or might be due to
confounding effect of elevated T2 arising from edema.
In another example, a decrease in T1 might be due to
increased iron concentration, or might be due to off-
resonance in the scanner center frequency. Some of the
confounding variables are due to patient physiology, but
others may be due to scanner adjustments or field inho-
mogeneities. The extent to which the desired measure-
ment is confounded will depend on both the sequence
design and specific protocol. Some of the confounding
effects may be disentangled by multi-parametric
measurements, or by calibrations scans, but these come
at the expense of time and complexity.

Partial volume effects
Partial volume effects arise from a) the contamination of
the desired signal by adjacent tissue such as blood pool
or fat, or b) mixtures of tissue within the voxel of
interest such as intramyocardial fat. Use of blood or fat
suppression may help mitigate partial volume effects but
may also affect the measurement of interest. The degree
to which partial volume errors influence the measure-
ment depends on aspects such as wall thickness or angu-
lation of the slice prescription.
Myocardial tissue may be heterogeneous with variation

on the scale of the voxel resolution. In this instance, the
quantitative measurements are smoothed and represent
an average, which may not accurately reflect the focal
elevation or baseline normal values. For example, the
focal elevation of T1 or T2 may depend on the slice
thickness when the focal abnormality is thinner than the
slice. This is compounded when ROIs are drawn which
introduced further averaging. Thus the degree of hetero-
geneity and size of focal abnormalities is a factor influen-
cing the quantitative measurement and depends on
resolution and manner of measurement and reporting.
For example, in assessment of iron overload, where the
concentration of iron is heterogeneous, it is unknown
whether there is clinical significance of the peak concen-
tration and distribution in addition to the average value
quantified in typical analysis. The influence of these
effects on clinical assessment needs to be characterized.

Post-processing
The impact of the post-processing methodology (i.e. deriv-
ation of relaxation times from a set of source images) on
the quality of parametric results can equal or sometimes
even exceed that of the acquisition strategy. Consequently,
advanced post-processing strategies have been investigated.
For T1 mapping, several methods have been proposed that
aim to optimize T1 estimation from MOLLI source images
[24, 25]. In T2* mapping, there is evidence that a com-
monly used offset model is fundamentally incorrect [180].
The truncation model is challenging in the presence of se-
vere iron overload [181]. Researchers continue to address
this challenge with novel methods. For example, an im-
proved truncation model was extended to black-blood T2*
mapping [182] and a noise-corrected mode was developed
[183] to cope with both pixel-wise and region-of-interest
(ROI)-based curve-fitting. Further studies are needed to
identify the methods that provide the best diagnostic accur-
acy in clinical applications.

Map analysis
While the assessment of average parameter values of septal
ROIs is regarded as appropriate for diffuse myocardial dis-
ease, conditions with patchy presentation such as myocardi-
tis (which in some cases changes its distribution from focal
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to diffuse throughout the course of disease) might require
more detailed analysis of regional behavior. Histogram ana-
lysis [6] and statistical analysis of tissue heterogeneity
[184] have been proposed as means to detect and quantify
different tissue populations within ROIs, and might be help-
ful in the analysis of inhomogeneous myocardial disease.

Future directions
Future developments in cardiac mapping will likely focus
on standardization of data acquisition and post-processing,
as well as on optimizing workflows. In parallel, the clinical
utility of mapping will have to be carefully explored for
various cardiovascular diseases to further define where
mapping parameters can firmly establish diagnosis, guide
therapeutic decisions, and predict prognosis. The robust-
ness of mapping protocols and results will play an import-
ant role in its acceptance for clinical decision-making.
Challenges include proprietary approaches of CMR system
manufacturers, cost for software packages and the need for
calibration of hardware and sequence settings.
On the technical side, accelerated image acquisition

such as compressed-sensing techniques [185, 186] may
allow for a significant shortening of scan times or for
improving image quality or spatial resolution. Three-
dimensional (3D) mapping may allow for more complete

coverage of the heart and a better characterization of
complex regional distribution patterns of disease pro-
cesses [53, 54, 187].
The combination of mapping with quantitative data

from functional (cine) studies can be sufficient to dif-
ferentiate diseases from physiologic adaptation of car-
diac mass, shape and function such as in athlete’s
heart [99, 188].
As native T1 and T2 are sensitive to increased

myocardial water content and myocardial blood
volume, there is current interest to investigate the
ability of vasodilatory stress T1 and T2 mapping to
detect ischemia without the need for exogenous
contrast agents as a novel application of mapping
techniques [139, 140].
Several techniques have also appeared that map mul-

tiple relaxation times simultaneously (MR fingerprinting)
[189–191], with the double advantage of saving time and
removing confounders introduced by the interaction of
relaxation times. Although the precision, bias, and re-
producibility of such techniques need to be carefully
quantified, these new techniques augment the available
arsenal for various challenging imaging conditions, such
as those found in patients with arrhythmia, patchy dis-
ease patterns or the inability to perform breath holds.

Fig. 4 Roadmap for developing biomarkers derived from parametric mapping
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Non-contrast protocols will be useful for patients with
a need for repeated CMR or with kidney failure.
Eventually, data on accuracy and prognosis will have

to be followed by trials on the impact on patient out-
comes. It is likely that relaxation times and ECV may
achieve the status of biomarkers (Fig. 4), which allow for
defining the current status of the myocardium [192].

Conclusion
CMR mapping of T1, T2, T2* and ECV provides quanti-
tative information on changes of magnetic tissue proper-
ties, which reflect alterations of myocardial tissue
composition. CMR mapping methodology has left be-
hind the early stages of principal implementation and
validation, and robust techniques are available for com-
mercial CMR systems. Iron overload, amyloidosis,
Anderson-Fabry, and myocarditis are clinical scenarios
where cardiac mapping provides unique information and
should be applied to guide clinical care. Due to its add-
itional diagnostic and prognostic value in the assessment
of diffuse myocardial disease, parametric mapping
should be considered in the diagnostic evaluation of all
patients with heart failure.
This document provides recommendations related to

both clinical indications and practical implementation,
and summarizes the underlying rationale. Building on
the 2013 Consensus statement on myocardial T1 map-
ping and extracellular volume quantification [2], which
primarily provided guidance on technical aspects, the
clinical focus of this document reflects the growing body
of evidence regarding the clinical utility of this maturing
field. Where they overlap, the recommendations of this
document are in agreement with those of the previous
consensus statement with the two exceptions that a
waiting time of 10 min after contrast application for
post-contrast T1 mapping is now regarded sufficient
(formerly 15 min; see T1 mapping/ ECV) and that ECV
should be given as a percentage (see Terminology).
CMR parametric mapping has seen many innovations

over the last decade and continuous to attract interest
from both basic and clinical researchers. Thus, any con-
sensus document can only attempt to reflect the state of
evidence at a single point in time, and will invariably start
to be incomplete by the time of publication. Nevertheless,
this document is meant to give guidance for CMR clini-
cians who would like to provide state-of-the-art tissue
characterization for patients with myocardial disease.
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