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Abstract

Genome-wide linkage analysis studies (GWAS) studies in systemic lupus erythematosus

(SLE) identified the 1q23 region on human chromosome 1, containing the Signaling Lym-

phocytic Activation Molecule Family (SLAMF) cluster of genes, as a lupus susceptibility

locus. The SLAMF molecules (SLAMF1-7) are immunoregulatory receptors expressed pre-

dominantly on hematopoietic cells. Activation of cells of the adaptive immune system is

aberrant in SLE and dysregulated expression of certain SLAMF molecules has been

reported. We examined the expression of SLAMF1-7 on peripheral blood T cells, B cells,

monocytes, and their respective differentiated subsets, in patients with SLE and healthy

controls in a systematic manner. SLAMF1 levels were increased on both T cell and B cells

and their differentiated subpopulations in patients with SLE. SLAMF2 was increased on SLE

CD4+ and CD8+ T cells. The frequency of SLAMF4+ and SLAMF7+ central memory and

effector memory CD8+ T cells was reduced in SLE patients. Naïve CD4+ and CD8+ SLE T

cells showed a slight increase in SLAMF3 levels. No differences were seen in the expres-

sion of SLAMF5 and SLAMF6 among SLE patients and healthy controls. Overall, the

expression of various SLAMF receptors is dysregulated in SLE and may contribute to the

immunopathogenesis of the disease.

Introduction

Systemic Lupus Erythematosus (SLE) is a multisystem autoimmune disease characterized by

a loss of tolerance to self antigens, the production of autoantibodies and inflammation of

multiple organs [1–3]. Genome wide association studies (GWAS) in human SLE have identi-

fied the 1q23 region on chromosome 1, which contains the SLAMF (Signaling Lymphocytic

Activation Molecule Family) cluster of genes, as a susceptibility locus for lupus [4, 5]. In
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addition, the syntenic genomic region 1H3 has been described to be associated with autoim-

mune manifestations in three different murine models of spontaneous lupus, namely the

NZB/W F1, NZM and BXSB strains [6–8]. Specific SLAMF variants and single nucleotide

polymorphisms have been associated with autoimmune diseases, such as rheumatoid arthri-

tis, and/or specific lupus manifestations, such as neuropsychiatric and renal disease, thus

further underscoring the potential involvement of the SLAMF molecules in autoimmunity

[9–12].

The SLAMF gene cluster encodes seven co-regulatory receptors: SLAMF1 (CD150, SLAM),

SLAMF2 (CD48), SLAMF3 (CD229, Ly9), SLAMF4 (CD244, 2B4), SLAMF5 (CD84),

SLAMF6 (CD352, NTBA, Ly108) and SLAMF7 (CD319, CRACC, CS1). SLAMF8 (CD353,

BLAME) and SLAMF9 (CD84-H1) are located outside, but in close proximity to the SLAMF
locus. SLAMF molecules are mainly expressed on hematopoietic cells. They are type I trans-

membrane glycoprotein cell surface receptors and they belong to the CD2 superfamily of

immunoglobulin domain-containing molecules. The extracellular region of the SLAMF mem-

bers is characterized by the presence of one variable (V)-Ig like and by one constant (C2)-Ig

like domain, with the exception of SLAMF3 which is composed of four Ig-like domains (two

variable and two constant) [13, 14]. A unique feature of the SLAMF members is that they act

as self-ligands and they interact in a homophilic manner, with the exception of SLAMF2 that

associates with SLAMF4.

All SLAMF members, apart from SLAMF2, which is structurally a glycophosphatidylino-

sitol (GPI) membrane anchor without cytoplasmic tail, and SLAMF9 [14], contain a cyto-

plasmic domain characterized by the presence of one to four intracellular switch motif

amino acid sequences (ITSM). Upon SLAMF engagement, the ITSM sequence recruits with

high affinity the SLAM-associated protein (SAP) or EAT-2 and mediates downstream

signaling.

Previous limited reports suggested an altered expression of isolated SLAMF protein on the

surface of T and/or B cells from SLE patients compared to healthy controls (SLAMF1[15],

SLAMF3 [16], SLAMF4 [17, 18], SLAMF6 [19, 20] and SLAMF7 [18]). However, a more

detailed characterization of all SLAMF in the same patient material and in immune cell subsets

has not been reported.

In this communication we systematically assess the cell-surface expression of SLAMF1-7 on

peripheral blood mononuclear cells isolated from patients with SLE and healthy controls sub-

jects. More specifically we examined the expression of SLAMF molecules on T cells, B cells

and monocytes and then further assessed SLAMF expression in a more detailed manner on

the surface of differentiated CD4+T cells, CD8+ T cells and B cells subsets, in an attempt to

identify new subpopulations that may contribute to the pathogenesis of SLE. We report aber-

rant expression of all but SLAMF5 and SLAMF6 in immune cell subsets from patients with

SLE.

Material and methods

Human SLE and control cells

All patients with SLE (n = 48) included in this study were diagnosed according to the Ameri-

can College of Rheumatology classification criteria [21]. Patients with SLE were recruited from

the Division of Rheumatology at Beth Israel Medical Center and provided written consent, as

approved by the Institutional Review Board of Beth Israel Deaconess Medical Center, in com-

pliance with Helsinki Declaration. Age-, sex-, and ethnicity-matched healthy individuals were

chosen as controls (n = 12–20). Disease activity score for the patients with SLE was measured

using the SLEDAI scoring system (Table 1)
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Cell isolation

Peripheral blood was collected in heparin-lithium tubes from the study subjects. Peripheral

blood mononuclear cells (PBMC) were enriched by density gradient centrifugation (Lympho-

cyte Separation Medium, Corning Life Sciences). PBMC were cryopreserved in liquid nitrogen

until analysis.

Antibodies

The following antibodies were used for FACS staining: PE/Cy7 conjugated anti-CD3 (clone

UCHT1), PerCP conjugated anti-CD8 (clone RPA-T8), APC conjugated anti-CD45RA (clone

HI100), Alexa Fluor 488 conjugated anti-CCR7 (clone G043H7), PE/Dazzle 594 conjugated

anti-CD19 (clone HIB19), Alexa Fluor 700 conjugated anti-CD14 (clone HCD14), PerCP con-

jugated anti-CD19 (clone HIB19), Alexa Fluor 488 conjugated anti-CD20 (clone 2H7), Bril-

liant Violet 510 conjugated anti-CD38 (clone HB-7), PE/Cy7 conjugated anti-CD24 (clone

ML5), Brilliant Violet 421 conjugated CD27 (clone M-T271), Alexa Fluor 647 conjugated anti-

IgD (clone IA6-2), PE conjugated anti-SLAMF1/CD150 (clone A12), PE conjugated anti-

SLAMF2/CD48 (clone BJ40), PE conjugated anti-SLAMF3/CD229 (clone HLy-9.1.25), PE

conjugated anti-SLAMF4/CD244 (clone C1.7), PE conjugated anti-SLAMF5/CD84 (clone

CD84.1.21), PE conjugated anti-SLAMF6/CD352 (clone NT-7), PE conjugated anti-SLAMF7/

CD319 (clone 162), APC/Brilliant Violet 421/PE conjugated Mouse IgG1 Isotype Control

(clone MOPC-21) were purchased from Biolegend. PerCP eFLuor 710 conjugated anti-CD4

(clone SK3) was purchased from eBioscience.

Table 1. Characteristics of patients with SLE included in the study.

Characteristics of SLE patients (N = 48)

Age—yr

Median 42.5

Range 22–72

Gender

Female—(%) 42 (87.5)

Male—(%) 6 (12.5)

Ethnicity

Afro-american—(%) 14 (29.2)

Asian—(%) 3 (6.3)

Hispanic—(%) 6 (12.5)

Caucasian—(%) 25 (52.1)

SLE disease activity index (SLEDAI)

Median 3.3

Range (0–21)

Treatments

Prednisone—(%) 31 (64.6)

Hydroxychloroquine—(%) 37 (77.1)

Mycophenolate Mofetil—(%) 19 (39.6)

Azathioprine—(%) 9 (18.8)

Methotrextate—(%) 2 (4.2)

I.V. Immunoglobulins—(%) 2 (4.2)

Belimumab—(%) 2 (4.2)

Tocilizumab—(%) 1 (2.1)

Abatacept—(%) 1 (2.1)

https://doi.org/10.1371/journal.pone.0186073.t001
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Cell staining

Cryopreserved blood peripheral mononuclear cells were stained for dead cells using the Zom-

bie Aqua or UV Fixable Viability Kit (Biolegend), and then labeled with the mentioned surface

antibodies. Data were acquired on a LSR II SORP (5 lasers, BD Bioscience) and analyzed using

FlowJo (version 10.0.8, FlowJo Enterprise).

Statistics

Kruskal Wallis was performed followed by correction for multiple comparisons using the

Holm-Sidak method. Statistical analyses were performed using GraphPad Prism (version 6).

Statistical significance was reported as follows: �p<0.05, �� p<0.01, ��� p<0.001.

Results

We examined the expression of SLAMF members (SLAMF1-7) on the surface of PBMC iso-

lated from SLE patients and age-, sex-, ethnicity- matched healthy controls. The SLAMF

expression was initially assessed on total T cells, CD4+T cells, CD8+T cells, double negative

T cells (DNT, CD3+CD4-CD8-), B cells and monocytes. By assessing the expression of CCR7

and CD45RA on T cells we were able to distinguish the following differentiated CD4+ and

CD8+ T cells subsets: naïve (CCR7+CD45RA+), central memory (CM, CCR7+CD45RA-) and

effector memory (EM, CCR7-CD45RA-), as well as terminally differentiated effector memory

CD8+ T cells (TDEM, CD8+CCR7-CD45RA+) (S1A Fig). The various B cell subsets were

identified based on the expression of CD27, IgD, CD24 and CD38: naïve B cells (CD27-IgD+),

unswitched memory (USM, CD27+IgD+), switched memory (SM, CD27+IgD-) and double

negative B cells (DNB, CD27-IgD-). By gating on naïve B cells and staining with CD24 and

CD38 we were able to define transitional B cells (CD24hiCD38hi) and by gating on switched

CD27+IgD- cells we defined CD24-CD38+ plasmablasts (S1B Fig).

SLAMF1

SLAMF1 expression is more pronounced on T cells. B cells also express SLAMF1, albeit at

lower levels compared to T cells, whereas no SLAMF1 expression was seen in monocytes, in

agreement with previously reported data (Table 2, Fig 1A and S2A Fig) [3]. Among total T

cells, SLAMF1 is primarily expressed by CD4+ and double negative CD3+CD4-CD8-. CD8+ T

cells from healthy individuals were also positive for SLAMF1, but levels of expression were

lower compared to CD4+ and double negative T cells (Table 2, Fig 1A and S2A Fig).

In patients with SLE, we detected a significant up-regulation of SLAMF1 on the cell-surface

of both total T cells and B cells (Table 2, Fig 1A and S2A Fig). Among T cells, SLAMF1 up-reg-

ulation was mainly observed on SLE CD4+ T cells, but not on SLE CD8+ or double negative T

cells compared to normal donors (Table 2, Fig 1A and S2A Fig). On both SLE and healthy

CD4+ T cells, highest SLAMF1 expression was observed on the EM differentiated subset, with

SLE CD4+ EM and CM T cells expressing significantly higher SLAMF1 levels compared to

healthy controls (Table 2, Fig 2A and S2B Fig).

Increased SLAMF1 expression was also seen on SLE naïve, EM and TDEM CD8+ T cells

compared to healthy donors (Table 2, Fig 2A and S2B Fig). We then assessed the expression

profile of SLAMF1 on the cell surface of peripheral blood B cells subsets in SLE patients and

controls. As previously reported, SLAMF1 expression tended to diminish as B cells progress

into unswitched and switched memory differentiated subset, with switched memory B cells

presenting the lowest levels of expression of SLAMF1[3]. A significant increase in SLAMF1

SLAMF expression in PBMC from patients with SLE
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expression was evident in total SLE B cells and was more pronounced in the naïve B cell com-

partment (Table 2, Fig 3A and S2C Fig).

We did not establish any correlation between SLAMF1 expression levels and disease activity

or specific disease manifestations in our cohort of SLE patients, although a higher number of

study subjects may be needed in order to be able to draw any definitive conclusions with

respect to clinical implications.

SLAMF2

Expression of SLAMF2 characterizes all peripheral blood hematopoietic cells. Highest

SLAMF2 expression (two to three-fold difference compared to T cells and monocytes) was

observed on B cells on both healthy controls and patients with SLE. A tendency towards

decreased SLAMF2 expression was documented on SLE total B cells, but the difference did not

reach statistical significance (Table 3, Fig 1B and S3A Fig).

On the contrary, SLAMF2 was significantly up-regulated on the cell-surface of both SLE

CD4+ and CD8+ T cells (Table 3, Fig 1B and S3A Fig). A more detailed analysis of SLAMF2

levels on CD4+ and CD8+ T cells subsets revealed that SLAMF2 expression is independent of

the T cells differentiation status. Indeed, SLAMF2 expression levels are comparable among

naïve, CM, EM and TDEM CD4+ or CD8+ T cells. Interestingly, differences in expression

level of SLAMF2 between SLE and healthy controls are observed in most CD4+ and CD8+ T

Table 2. Expression of SLAMF1 on peripheral blood T and B lymphocytes, monocytes and on T and B cell differentiated subsets on healthy

donors and patients with SLE.

SLAMF1

Healthy Donors (n = 12) SLE patients (n = 15) p valueb

Mean MFIa SEM Mean MFI SEM

CD4 1181 92 1982 237 0.040

CD8 580 79 754 83 0.381

DNT 1257 159 1443 160 0.667

B cells 674 65 1296 147 0.008

Monocytes 12 8 10 8 0.872

CD4+ T cells

Naïve 175 33 400 102 0.160

CM 1523 98 2373 198 0.010

EM 2174 155 3168 243 0.013

CD8+ T cells

Naïve 24 12 296 67 0.010

CM 1153 105 1772 106 0.003

EM 1283 142 1366 150 0.695

TDEM 205 62 742 131 0.011

B cells Healthy Donors (n = 15) SLE patients (n = 12) p value

Mean MFI SEM Mean MFI SEM

Transitional 561 74 714 197 0.563

Naive 515 59 954 157 0.045

Unswitched Mem 441 49 636 64 0.103

Switched Mem 267 24 371 50 0.219

DNB 418 57 651 148 0.330

Plasmablasts 725 116 570 89 0.549

a Results are expressed as mean fluorescence intensity (MFI) ± SEM.
b p values� 0.05 are considered statistically significant

https://doi.org/10.1371/journal.pone.0186073.t002
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Fig 1. Expression of SLAMF1-7 in lymphocytes and monocytes from healthy individuals and patients with SLE. SLAMF1-7

expression levels were assessed by flow cytometry in PBMC subpopulations from healthy individuals and patients with SLE. Cumulative

results of SLAMF expression in CD4+, CD8+, DNT cells, B cells and monocytes are shown for (A) SLAMF1, (B) SLAMF2, (C) SLAMF3, (D)

SLAMF4, (E) SLAMF5, (F) SLAMF6 and (G) SLAMF7. Results are expressed as mean MFI ± SEM or mean percentage (%) ± SEM, as

indicated.

https://doi.org/10.1371/journal.pone.0186073.g001
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Fig 2. SLAMF1-7 expression in peripheral blood T cell differentiated subpopulations from healthy donors and patients with SLE.

Cumulative results of SLAMF expression on CD4+ (naïve, EM and CM) and CD8+ (naïve, EM, CM and TDEM) as assessed by flow

cytometry are shown for (A) SLAMF1, (B) SLAMF2, (C) SLAMF3, (D) SLAMF4, (E) SLAMF5, (F) SLAMF6 and (G) SLAMF7. Results are

expressed as mean MFI±SEM or mean percentage (%) ± SEM, as indicated.

https://doi.org/10.1371/journal.pone.0186073.g002
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cells differentiated subsets (Table 3, Fig 2B and S3B Fig). No differences were observed among

SLE patients and controls when we assessed the expression of SLAMF2 on the cell surface of

differentiated peripheral blood B cell subsets (Table 3, Fig 3B and S3C Fig).

SLAMF3

SLAMF3 is expressed on almost all hematopoietic cells, with the exception of CD14+ mono-

cytes. SLAMF3 is highly expressed on T cells from both healthy donors and SLE patients. B

Fig 3. SLAMF1-7 expression in peripheral blood B cell differentiated subpopulations from healthy donors and patients with SLE.

Cumulative results of SLAMF expression on transitional, naïve, unswitched memory, switched memory, double negative B cells and

plasmablasts are shown for (A) SLAMF1, (B) SLAMF2, (C) SLAMF3, (D) SLAMF5 and (E) SLAMF6. Results are expressed as mean

MFI ± SEM

https://doi.org/10.1371/journal.pone.0186073.g003
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cells are also positive for SLAMF3, albeit levels of expression are lower compared to that of T

cells (Fig 1C and S4A Fig).

In a very small cohort of SLE patients, a slightly increased expression of SLAMF3 has been

described on SLE CD4+ T cells compared to healthy controls [20]. In our cohort of patients,

we observed only a slight non-statistically significant upregulation of SLAMF3 on the cell sur-

face of CD4+ T cells from patients with SLE compared to normal individuals whereas no dif-

ferences were documented for CD8+, double negative T cells and B cells among SLE patients

and controls (Fig 1C and S4A Fig). A more careful analysis of SLAMF3 expression in CD4+

and CD8+ T cells differentiated subsets revealed a SLAMF3 up-regulation on the cell surface

of naïve SLE CD4+ and CD8+ T cells (Fig 2C and S4B Fig). In both SLE patients and healthy

donors, SLAMF3 is up-regulated as CD4+ and CD8+ T cells progress from naïve to CM and

EM differentiated status. However, no differences were noted regarding SLAMF3 expression

levels in CM and EM CD4+ and CD8+ T cells among patients with SLE and healthy controls

(Fig 2C and S4B Fig).

Further analysis of SLAMF3 levels on naïve, unswitched memory, switched memory and

double negative B cells also revealed no differences between normal controls and SLE patients

(Fig 3C and S4C Fig).

Table 3. Expression of SLAMF2 on peripheral blood T and B lymphocytes, monocytes and on T and B cell differentiated subsets on healthy

donors and patients with SLE.

SLAMF2

Healthy Donors (n = 12) SLE patients (n = 15) p valueb

Mean MFIa SEM Mean MFI SEM

CD4 2899 194 4929 497 0.009

CD8 2328 159 4023 458 0.015

DNT 2308 169 3606 388 0.028

B cells 15022 1235 12997 864 0.182

Monocytes 4945 206 6338 581 0.098

CD4+ T cells

Naïve 2497 144 4346 457 0.010

CM 3319 212 5689 600 0.010

EM 2646 175 4693 517 0.010

CD8+ T cells

Naïve 2427 148 4662 527 0.008

CM 3361 207 5803 614 0.010

EM 2299 154 3414 371 0.020

TDEM 1574 111 2983 351 0.010

B cells Healthy Donors (n = 13) SLE patients (n = 7–9) p value

Mean MFI SEM Mean MFI SEM

Transitional 6455 919 9921 1684 0.320

Naive 4579 608 4003 326 0.720

Unswitched Mem 10618 1435 7876 1239 0.584

Switched Mem 5620 998 3126 445 0.320

DNB 3223 480 2350 364 0.584

Plasmablasts 3588 677 2998 343 0.720

a Results are expressed as mean fluorescence intensity (MFI) ± SEM.
b p values� 0.05 are considered statistically significant

https://doi.org/10.1371/journal.pone.0186073.t003
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SLAMF4

Presence of SLAMF4 mainly characterizes CD8+ T cells, DNT cells and monocytes. A small

percentage (approximately 5%) of CD4+ T cells is also positive for SLAMF4, whereas B cells

are SLAMF4 negative (Table 4, Fig 1D and S5A Fig).

SLAMF4 levels increased over CD8+ T cells differentiation in healthy donors: approxi-

mately 48% of CM CD8+ T cells and almost all EM and TDEM CD8+ T cells are positive for

SLAMF4, whereas naïve CD8+ T cells are SLAMF4 negative cells (Table 4, Fig 2D and S5B

Fig). Among CD4+ T cells, naïve and CM are SLAMF4 negative, while approximately 10% of

the EM differentiated CD4+ T cells express SLAMF4 (Table 4 Fig 2D and S5B Fig). As previ-

ously described [22], the frequency of CD8+SLAMF4+ T cells is significantly reduced in

patients with SLE. This reduction is mostly apparent on CD8+ CM and EM SLE T cells

(Table 4, Fig 2D and S5B Fig). In addition, the frequency of SLAMF4+CD3+CD4-CD8- dou-

ble negative cells is decreased in the peripheral blood of patients with SLE (Table 4, Fig 1D and

S5A Fig).

SLAMF5

All circulating hematopoietic cells express SLAMF5, with highest levels of expression being

documented on monocytes (Fig 1E and S6A Fig).

Naïve CD4+ T cells express relatively low levels of SLAMF5, but SLAMF5 increased on the

cell surface of CM and EM CD4+ T cells in both healthy donors and patients with SLE (Fig 2E

and S6B Fig). Naïve CD8+ T cells display slightly higher levels of SLAMF5 compared to naïve

CD4+ T cells and, as in CD4+ T cells, SLAMF5 expression increased over cell differentiation

(Fig 2E and S6B Fig). Circulating B cells also express high levels of SLAMF5. Highest levels of

SLAMF5 expression among B cells differentiated subsets were seen on unswitched memory B

cells (Fig 3D and S6C Fig). We detected no differences on SLAMF5 among patients with SLE

Table 4. Expression of SLAMF4 on peripheral blood T and B lymphocytes, monocytes and on T cell differentiated subsets on healthy donors and

patients with SLE.

SLAMF4

Healthy Donors (n = 12–22) SLE patients (n = 14–25) p valueb

Mean (%)a SEM Mean (%) SEM

CD4 5.0 1.4 3.6 1.9 0.925

CD8 56.4 2.6 45.1 3.7 0.025

DNT 77.2 4.3 55.7 5.0 0.0000020

B cells 0.6 0.1 0.2 0.1 0.944

Monocytes 99.0 0.3 95.3 2.2 0.856

CD4+ T cells

Naïve 1.1 0.4 0.9 0.3 1.000

CM 1.3 0.3 1.2 0.4 1.000

EM 11.7 2.4 5.0 1.6 0.232

CD8+ T cells

Naïve 2.5 0.9 2.3 0.8 1.000

CM 48.4 3.9 37.8 4.4 0.014

EM 85.8 2.4 75.7 4.4 0.020

TDEM 93.2 1.7 88.6 2.6 0.563

a Results are expressed as mean percentage (%) ± SEM.
b p values� 0.05 are considered statistically significant

https://doi.org/10.1371/journal.pone.0186073.t004
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and healthy controls on none of the cell populations we examined (Figs 1E, 2E and 3D and

S6 Fig).

SLAMF6

SLAMF6 is strongly expressed on the cell surface of both T cells and B cells, but cannot be

found on monocytes (Fig 1F and S7A Fig).

On both CD4+ and CD8+ T cells levels of SLAMF6 progressively increase as cells progress

into their differentiation status. Highest levels of SLAMF6 expression are seen among CM and

EM subsets of CD4+ and CD8+ T cells (Fig 2F and S7B Fig). Despite previous reports showing

that SLAMF6 is up-regulated on the cell surface of SLE CD4+ T cells [20] in a small cohort of

SLE patients, we were not able to detect any differences in our cohort among SLE patients and

healthy controls. Highest level of SLAMF6 expression was observed on total B cells and its lev-

els appear to remain stable on the differentiated subsets of circulating B cells (Figs 1F and 3E

and S7C Fig), without any differences among SLE patients and normal controls.

SLAMF7

As with SLAMF4, expression of SLAMF7 mainly characterizes CD8+ and DNT cells, and is

present only on a very small proportion (less than 5%) of CD4+ T cells (Table 5, Fig 1G and

S8A Fig).

Its levels of expression are low on naïve CD8+ T cells. Approximately 3% of naïve CD8+ T

cells express SLAMF7 (Table 5, Fig 2G and S8B Fig). As naïve CD8+ T cells differentiate into

CM and EM cells, SLAMF7 expression progressively increases. In healthy controls, approxi-

mately 40% of CM CD8+ T cells, 70% of EM CD8+ and 80% of TDEM CD8+ T cells are

SLAMF7 positive (Table 5, Fig 2G and S8B Fig). With respect to CD4+ T cells, less than 10%

of healthy EM CD4+ T cells express SLAMF7. In SLE we observed a significant decrease in the

Table 5. Expression of SLAMF7 on peripheral blood T and B lymphocytes, monocytes and on T cell differentiated subsets on healthy donors and

patients with SLE.

SLAMF7

Healthy Donors (n = 11–21) SLE patients (n = 15–26) p valueb

Mean (%)a SEM Mean (%) SEM

CD4 4.7 1.3 2.9 1.1 0.663

CD8 54.7 3.3 38.8 3.9 0.019

DNT 70.8 4.5 47.8 4.2 0.006

B cells 5.5 1.2 5.7 1.1 0.959

Monocytes 11.7 1.9 10.9 2.3 0.959

CD4+ T cells

Naïve 1.7 0.2 1.2 0.2 0.257

CM 1.8 0.3 1.1 0.2 0.145

EM 11.3 3.8 4.2 1.5 0.188

CD8+ T cells

Naïve 3.1 0.8 3.3 0.8 0.885

CM 47.5 3.3 33.7 3.0 0.024

EM 76.6 2.9 63.4 3.3 0.029

TDEM 86.9 2.9 73.4 3.6 0.033

a Results are expressed as mean percentage (%) ± SEM.
b p values� 0.05 are considered statistically significant

https://doi.org/10.1371/journal.pone.0186073.t005
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frequency of SLAMF7 expressing double negative and CD8+ T cells populations (Table 5, Fig

1G and S8A Fig). Among CD8+ T cells, decreased SLAMF7 expression was evident on CM

cells, and was even more apparent on SLE EM and TDEM CD8+ T cells, compared to normal

controls (Table 5, Fig 2G and S8B Fig). As far as B cells are concerned, we were not able to

detect SLAMF7 on the cell surface of peripheral blood total B cells isolated from healthy con-

trols or patients with SLE, despite previously published reports (Table 5, Fig 1G and S8A Fig)

[23].

Discussion

Adaptive immunity plays an important role in immunopathogenesis of SLE. In this context, T

and B cells play an important role in this process [1, 2]. Full T cell and B cell activation requires

recognition of antigen via the cognate antigenic receptor (TCR and BCR respectively), fol-

lowed by a second signal provided via co-stimulatory receptors. The best characterized co-

stimulatory pathways for T cell activation involves the engagement of CD28 to CD80 and

CD86, and for B cell activation the interaction of CD40L to CD40. However, other molecules

may also contribute to optimal T cell and/or B cell activation and differentiation. During

recent years, the SLAMF receptors have emerged as important immunoregulatory molecules

implicated in autoimmunity. Their involvement in SLE was initially suggested by genome-

wide linkage analysis studies performed in SLE affected families in which the 1q23 locus on

chromosome 1, where the SLAMF gene cluster is located, was identified as a lupus susceptibil-

ity locus. Moreover, data from recent studies have unveiled the existence of SNPs and poly-

morphisms of SLAMF molecules associated with SLE and/or specific lupus manifestations [9,

10, 24]. Aberrant expression of various SLAMF molecules has also been reported in SLE

patients [18, 22, 25, 26].

In this study we performed a systematic analysis of the expression pattern of SLAMF1-7 on

peripheral blood cells involved in adaptive immunity. Therefore, we examined the expression

of SLAMF1-7 on monocytes, T cells, B cells and their respective differentiated subsets isolated

from the peripheral blood of patients with SLE. Our findings are of particular interest regard-

ing the expression levels of SLAMF1, SLAMF2, SLAMF4 and SLAMF7. We found a significant

up-regulation of SLAMF1 on the cell surface of both T cells and B cells in patients with SLE, in

agreement with previously published data [15]. In SLE T cells, up-regulation in SLAMF1 levels

was mostly evident in differentiated CD4+ CM and EM subsets, yet a tendency towards

increased SLAMF1 levels was already apparent in the naïve CD4+ compartment. SLE B cells

presented with higher SLAMF1 levels compared to healthy controls, a difference that was

mostly evident in the naïve B cell compartment. Although the pathophysiological significance

of this finding in SLE remains to be determined, SLAMF1 engagement on healthy human B

cells has been shown to promote B cell proliferation and Ig production [27]. Regarding T cells,

SLAMF1 ligation on human T cell clones has been shown to induce IL-2-independent, cyclo-

sporine A-sensitive proliferation and to promote IFN-gamma production [28].

SLAMF2 is structurally different compared to other SLAMF members in the sense that it is

a glycophosphatidylinositol (GPI) membrane anchor without cytoplasmic tail. Despite the lack

of an intracellular domain, SLAMF2 is capable of eliciting downstream signaling upon interac-

tion with SLAMF4 or CD2 [29], although how signaling is mediated remains unclear. An

increase in SLAMF2 mRNA levels has been previously described for SLE CD4+ T cells [30].

We found a significant up-regulation of SLAMF2 on the cell surface of SLE CD4+ and CD8

+ T cells that was evident on all differentiated subsets, even naïve CD4+ and CD8+ T cells. It

has been proposed that the primary function of the SLAMF2:CD2 interaction is to facilitate

adhesion and to secure the distance between T cells and antigen presenting cells for optimal
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antigen presentation [31]. Moreover, SLAMF2 constitutes a central component of the lipid

rafts. SLAMF2 ligation has been shown to be able to amplify early TCR-initiated responses by

facilitating actin cytoskeleton reorganization and recruitment of associated lipid rafts to the

TCR associated activation cap [32]. Freshly isolated SLE T cells are characterized by faster

actin polymerization kinetics compared to normal T cells, as well as by the presence of pre-

clustered lipid rafts that are enriched for activated Syk and the common γ chain of the Fcε
receptor (FcεRγ) [33]. Alterations described in the lipid raft signaling machinery in SLE T

cells may contribute to the hyperactivity that characterizes lupus T cells [33]. Whether

increased SLAMF2 expression facilitates lipid raft clustering on SLE T cells or whether target-

ing SLAMF2 can disrupt lipid raft formation, therefore correcting aberrant signaling responses

in lupus, remains to be examined.

In patients with SLE, the expression profile pattern of SLAMF4 and SLAMF7 is of particular

interest in the CD8+ T cell compartment. Normally, both molecules increase on the cell sur-

face of healthy CD8+ T cells as they progress into differentiation to CM and EM cells. How-

ever, the frequency of SLAMF4+ and SLAMF7+ CD8+ T cells is significantly reduced in

patients with SLE. Both SLAMF4 and SLAMF7 characterize CD8+ T cells with cytotoxic

capacity [22, 34]. Additionally, in patients with SLE the viral-specific antigenic responses of

SLAMF4+ and SLAMF7+ CD8+ T cells are defective [22, 35, 36]. The loss of the SLAMF4+

and SLAMF7+ memory CD8+ T cell population may account for the increased rate of infec-

tions, the leading cause of mortality in SLE.

For SLAMF3, SLAMF5 and SLAMF6 we were not able to identify any substantial differ-

ences in expression levels among healthy controls and patients with SLE. However, as was

illustrated for SLAMF3 [16], the possibility remains that their function is not intact in lupus.

The intracellular region of SLAMF molecules, with the exception of SLAMF2, contains at least

one ITSM sequence that binds with high affinity to either SAP or EAT-2. Reduced, but not

absent, SAP levels have been described for SLE T cells and this decrease may interfere with

proper signal transduction upon SLAMF:SLAMF engagement [37].

SLAMF molecules could present potential therapeutic targets in autoimmunity. SLAMF3

co-engagement on CD4+ T cells with the use of a specific monoclonal antibody, enhances

CD4+ T cells sensitivity to IL-2 and favors regulatory T-cell polarization [16]. Moreover,

despite reduced SLAMF7 levels in lupus CD8+ T cells, targeting SLAMF7 allowed to enhance

anti-viral cytotoxic responses in patients with SLE [34]. As the need for new drugs and treat-

ment strategies in SLE remains mandatory, further understanding the potential involvement

of SLAMF molecules in lupus immunopathogenesis may lead to the development of novel

therapeutic options.

Supporting information

S1 Fig. Gating strategy. Representative flow panels and gating strategy of peripheral blood

mononuclear cells isolated from healthy controls and patients with SLE. (A) T cells:

CD3+CD19-; B cells: CD3-CD19+; CD4+ T cells: CD3+CD4+CD19-; CD8+ T cells:

CD3+CD8+CD19-; double negative T cells (DNT): CD3+CD4-CD8-; monocytes: CD14+;

naïve CD4+ or CD8+ T cells: CCR7+CD45RA+; central Memory (CM) CD4+ or CD8+ T

cells: CCR7+CD45RA-; effector memory (EM) CD4+ or CD8+ T cells: CCR7-CD45RA-;

terminally differentiated effector memory CD8+ T cells (TDEM): CCR7-CD45RA+. (B)

Lymphocytes are defined as in (A) (upper panel). B cells are defined as CD19+CD20+ cells.

Naïve B cells: IgD+CD27-; unswitched memory B cells (USM): IgD+CD27+; switched mem-

ory B cells (SM): IgD-CD27+; double negative B cells (DNB): IgD-CD27-; transitional B
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cells: IgD+CD27-CD24hiCD38hi; plasmablasts: IgD-CD27+CD24-CD38+.

(TIF)

S2 Fig. Expression of SLAMF1 on peripheral blood T and B lymphocytes, monocytes

and on T and B cell differentiated subsets on healthy donors and patients with SLE.

SLAMF1 expression was assessed by flow cytometry on (A) CD4+, CD8+, Double negative

T cells (DNT), B cells and monocytes, (B) T cell differentiated subsets and (C) B cell

differentiated subsets. CM = central memory; EM = effector memory; TDEM = Terminally

Differentiated Effector Memory; USM = unswitched memory; DNB = double negative B

cells.

(TIF)

S3 Fig. Expression of SLAMF2 on peripheral blood T and B lymphocytes, monocytes and

on T and B cell differentiated subsets on healthy donors and patients with SLE. SLAMF2

expression was assessed by flow cytometry on (A) CD4+, CD8+, Double negative T cells

(DNT), B cells and monocytes, (B) T cell differentiated subsets and (C) B cell differentiated

subsets. CM = central memory; EM = effector memory; TDEM = Terminally Differentiated

Effector Memory; USM = unswitched memory; DNB = double negative B cells.

(TIF)

S4 Fig. Expression of SLAMF3 on peripheral blood T and B lymphocytes, monocytes and

on T and B cell differentiated subsets on healthy donors and patients with SLE. SLAMF3

expression was assessed by flow cytometry on (A) CD4+, CD8+, Double negative T cells

(DNT), B cells and monocytes, (B) T cell differentiated subsets and (C) B cell differentiated

subsets. CM = central memory; EM = effector memory; TDEM = Terminally Differentiated

Effector Memory; USM = unswitched memory; DNB = double negative B cells.

(TIF)

S5 Fig. Expression of SLAMF4 on peripheral blood T and B lymphocytes, monocytes and

on T cell differentiated subsets on healthy donors and patients with SLE. SLAMF4 expres-

sion was assessed by flow cytometry on (A) CD4+, CD8+, Double negative T cells (DNT), B

cells and monocytes, (B) T cell differentiated subsets. CM = central memory; EM = effector

memory; TDEM = Terminally Differentiated Effector Memory; USM = unswitched memory;

DNB = double negative B cells.

(TIF)

S6 Fig. Expression of SLAMF5 on peripheral blood T and B lymphocytes, monocytes and

on T and B cell differentiated subsets on healthy donors and patients with SLE. SLAMF5

expression was assessed by flow cytometry on (A) CD4+, CD8+, Double negative T cells

(DNT), B cells and monocytes, (B) T cell differentiated subsets and (C) B cell differentiated

subsets. CM = central memory; EM = effector memory; TDEM = Terminally Differentiated

Effector Memory; USM = unswitched memory; DNB = double negative B cells.

(TIF)

S7 Fig. Expression of SLAMF6 on peripheral blood T and B lymphocytes, monocytes and

on T and B cell differentiated subsets on healthy donors and patients with SLE. SLAMF6

expression was assessed by flow cytometry on (A) CD4+, CD8+, Double negative T cells

(DNT), B cells and monocytes, (B) T cell differentiated subsets and (C) B cell differentiated

subsets. CM = central memory; EM = effector memory; TDEM = Terminally Differentiated

Effector Memory; USM = unswitched memory; DNB = double negative B cells.

(TIF)
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S8 Fig. Expression of SLAMF7 on peripheral blood T and B lymphocytes, monocytes and

on T cell differentiated subsets on healthy donors and patients with SLE. SLAMF7 expres-

sion was assessed by flow cytometry on (A) CD4+, CD8+, Double negative T cells (DNT), B

cells and monocytes, (B) T cell differentiated subsets. CM = central memory; EM = effector

memory; TDEM = Terminally Differentiated Effector Memory; USM = unswitched memory;

DNB = double negative B cells.

(TIF)
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