
Citation

Published Version
doi:10.1093/ofid/ofx163.1706

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34492893

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:34492893

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility

Judith Strychny, MD, MS1; Makoto Jones, MD, MS, MSc2; Martin Evans, MD, FIDSA, FSHEA3; Westyn Branch-Elliman, MD, MS2; Ernest Robillard, RN2; Jeffrey Chan, BS, BA1, Amy Rosen, PhD, MSc, LNAP3, and Kalpana Gupta, MD, MPH, FIDSA, FSHEA3, Eleanor H. Adams, MD, MPH1; Lisa Saiman, MD, MPH1; Healthcare Epidemiology and Infection Control, New York State Department of Health, New Rochelle, New York; Pediatric, Mount Sinai Hospital, New York, New York; Health Care Epidemiology and Infection Control, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center, Bronx, New York; Pediatric Infectious Diseases, Columbia University Medical Center, New York, New York

Session: 242. HAIE: MRSA, MSSA, and Other Gram—positives Saturday, October 7, 2017: 12:30 PM

Background. Colonization with Staphylococcus aureus (SA) increases the risk of surgical site infection (SSI) and de-colonization reduces this risk depending on level of patient adherence. Our VA facility's participation in a multi-site study to identify the best strategies for implementing peri-operative SA de-colonization provided an opportunity to examine the reliability of existing internal processes. The objectives of this single-site study were to assess self-reported patient adherence, and barriers to recommended de-colonization procedures, as well as to examine if current patient educational materials were sufficient.

Methods. A survey measuring self-reported adherence and barriers to recommended de-colonization procedures was administered by telephone. A process map of the patient education process was employed to identify key front line staff who were asked to review existing patient education materials and procedures. A new patient education tool was then developed with their input and input from an expert in patient education.

Results. 34 patients responded to the telephone interview. Self-reported de-colonization adherence was 100%. 32% of patients reported high levels of social/economic deprivation and only 32% reported using medication reminders, suggesting some risk of non-adherence. Process mapping revealed that patient education was delivered through a combination of face-to-face training and printed materials. Review of the printed materials identified a number of opportunities for improvement. The newly developed patient education tool was rewritten at a 7th grade reading level and revised to include: (1) more concrete information on the benefits of SA de-colonization; (2) visual aids to enhance performance of different de-colonization tasks; and (3) a tracking log to facilitate adherence to each of the recommended de-colonization tasks.

Conclusion. We identified many opportunities to improve the education of patients undergoing SA de-colonization prior to high-risk surgery at our VA. Further work will be done to determine whether these changes positively impacted patient adherence to recommended de-colonization procedures and whether this translates into improved patient outcomes.

Disclosures. M. Schweizer, B. Braun: Speaker at a course, Travel reimbursement to teach course.

2178. Developing a Checklist to Identify and Manage MRSA Outbreaks in the Neonatal ICU using a Multi-Disciplinary Approach

Karen Southwick, MD, MSc1; Kathleen Gibbs, MD2; Monica Quinn, RN, MS3; Belinda D'Orskey, MD, MPH, FIDSA, FSHEA1; Ernest Robillard, RN1; Jeffrey Chan, BS, BA1; Amy Rosen, PhD, MSc, LNAP3; and Kalpana Gupta, MD, MPH, FIDSA, FSHEA3, Eleanor H. Adams, MD, MPH1; Lisa Saiman, MD, MPH1; Healthcare Epidemiology and Infection Control, New York State Department of Health, New Rochelle, New York; Pediatrics, Mount Sinai Hospital, New York, New York; Health Care Epidemiology and Infection Control, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center, Bronx, New York; Pediatric Infectious Diseases, Columbia University Medical Center, New York, New York

Session: 242. HAIE: MRSA, MSSA, and Other Gram—positives Saturday, October 7, 2017: 12:30 PM

Background. From 2001 to 2015, the New York State Department of Health (NYSDOH) received 241 hospital associated infection reports from neonatal ICUs (NICUs); 72 (29%) were caused by methicillin-resistant Staphylococcus aureus (MRSA) and involved 390 babies at initial report. Given this MRSA burden and variability in outbreak response, a checklist was developed to help NICUs identify and manage MRSA outbreaks. NYSDOH and academic partners conducted a workshop to teach NICU multidisciplinary teams these skills.

Methods. The checklist committee were members of the NYSDOH and academic subspecialists in infectious disease, infection control and neonatology from three medical centers in NYC; all of whom had reported MRSA outbreaks within the past year. The committee met twice monthly for 6 months and developed the checklist as a practical tool for a multidisciplinary care team to implement existing guidelines. A checklist draft was distributed during the NYSDOH’s one-day workshop to Control and Prevent MRSA Outbreaks, attended by 73 individuals from 25 NICUs in the NYC metropolitan region. Attendees provided feedback to modify the checklist.

Conclusion. The checklist has 10 sections including guidance about developing a case definition and line list; reporting to the NYS DOH; managing census; communicating with local microbiology laboratories, interdisciplinary teams, families, and employee health service; using transmission-based precautions, obtaining surveillance cultures, cohorting infants and staff, and improving environmental cleaning. Implementation strategies are emphasized, e.g., evaluate effectiveness of environmental cleaning and disinfection practices and empower staff to observe and enforce hand hygiene compliance. Practical tips are provided, e.g., assess equipment shared with other units, review clinical cultures for patterns suggestive of acquisition route, take a non-punitive approach with MRSA-positive staff, perform environmental cultures if other strategies fail to stop transmission.

Disclosures. All authors: No reported disclosures.

Results. N = 14,260 MRSA clinical cultures were identified in 9,209 unique patients. Of these, 1,703 met definition for MRSA HAI infection. Electronic algorithm detected MRSA HAI rates varied widely across 137 facilities (Figure 1), ranked by rate per 1,000 patient-days. IPEC rates were universally lower than estimates derived using the MRSA electronic detection tool. Discordance in the estimates was attributable to infections present on admission, differences in capture of surgical site infections, and differences between clinical and surveillance definitions of infection.