Risk Factors for Herpes Zoster: a Systematic Review and Meta-Analysis

The Harvard community has made this article openly available. **Please share** how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1093/ofid/ofx163.733</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493190</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
1034. Etiologic Involvement of Enterovirus and Human Bocavirus in Acute Flaccid Paralytic Cases in India
Manjari Balani, Ph.D(Pursuing); Dharmaveer Singh, Ph.D(Pursuing); Sneha Ghildiyal, PhD Pursuing; Tanzeem Fatima, Ph.D (Pursuing); Amreen Zia, Ph.D(Pursuing)1, and Tapan Phole, MD,1 Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India, 2Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India, 3Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
Session: 139. Adult Viral Infection
Friday, October 6, 2017: 12:30 PM

Background. Acute flaccid paralysis (AFP), characterized by the rapid onset of asymmetric paralysis, can be caused by a variety of viral infections or coinfections. Besides wild-type and revertant vaccine strains of polioviruses, several nonpolio enteroviruses, have also been associated with AFP. Enteroviruses (EVs) are RNA viruses in the family Picornaviridae comprising more than 100 serotypes that are divided into four species, human enteroviruses A to D. The clinical manifestations of EVs range from conjunctivitis, respiratory tract infection, myocarditis, meningitis, encephalitis, and neonatal sepsis, like illness. Human Bocavirus (HBoV), a newly classified member of the Parvoviridae family, has been detected frequently in feces of diarrhoeic children suggesting its possible etiological involvement in the disease.

Methods. Total 586 stool specimens were collected in 2016 from children suspected for AFP. Molecular method for targeting 5' untranslated region (UTR) and VPI capsid region was used for detection of human enteroviruses (HEV), human bocavirus (HBoV), and saffold viruses in direct clinical specimen.
associated with a modest increased risk of HZ (pooled RR = 1.14; 95% CI: 1.11, 1.17). Recent physical trauma increased risk of HZ by almost two-fold (pooled RR = 2.56; 95% CI: 1.97, 3.33).

Conclusion. In addition to age and immunocompromised conditions, our review shows that female sex, race/ethnicity, family history, and comorbidities are risk factors for HZ. Efforts are needed to better understand risk factors and to increase the uptake of zoster vaccination.

Disclosures. B. P. Yawn, GSK: Consultant and Scientific Advisor, Consulting fee.

1037. Herpes–Zoster Infection in a Tertiary Hospital in Brazil
Luciana Antoniolli, Medical student; Aline Azambuja, MD, PhD; Camila Rodrigues, Medical student; Rafael Borges, medical student; and Luciano Goldani, PhD, MD, MSc. 1Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2Infectious Diseases, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 3Internal Medicine, Infectious Diseases Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

Session: 139. Adult Viral Infection
Friday, October 6, 2017: 12:30 PM

Background. Herpes zoster (HZ) is a common infection with potential complications requiring hospital care, especially for patients with multiple comorbidities. However, there is little information on HZ from hospital registries.

Methods. We searched for hospital-based records of 802 code (ICD-10) between March 2000 and January 2017 at Hospital de Clínicas de Porto Alegre, a tertiary, university hospital in south Brazil. To avoid misclassifications, we considered clinical evaluation for the diagnosis of cutaneous HZ and postherpetic neuralgia (PHN), ophthalmological evaluation for ophthalmic HZ and the combination of clinical, radiologic and cerebrospinal fluid analysis for HZ meningitis-encephalitis (ME). We analyzed conditions associated with immune dysregulation, complications, length of hospital stay, and mortality. Chi-square test and Kaplan-Meier estimator were used for statistical analyses. P < 0.05 was considered statistically significant.

Results. There were 847 records for this period, of which 801 were confirmed according to our criteria and included in the analysis. Most patients were women (n = 448; 60%), with an average of 48.8 years, standard deviation of 22.2. There were more diagnoses in the inpatients group (74.4%), and fewer in the emergency room (22.4%) and outpatient (3.3%). The median length of hospital stay was 7 days (2-10, IQR=3 days) when HZ was the main reason for admission. Most patients presented cutaneous HZ (n = 743, 92.8%). There were fewer cases of PHN (6.1%), ophthalmic HZ (7.6%), and ME (4.1%). Seventy percent had some kind of immune dysregulation; more frequently AIDS (31%), use of immunosuppressive agents (18%) and malignant disease (16.2%). We followed the subjects for a median of 28.2 (2.8-77.5) months. During this period, there were 105 (13.1%) deaths. Five were related to HZ ME. The 30-day overall mortality rate was 1.5%. There was no statistical difference in cumulative survival (graph 1, P = 0.05) or incidence of complicated forms for patients with or without immune dysregulation.

Conclusion. Our sample was characterized by a majority of inpatient diagnoses. The 30-day mortality rate was lower than reported in similar studies, but there was a relevant impact of complicated forms in mortality and sequelae.

Disclosures. All authors: No reported disclosures.

May Elsherif, MSc; May Elsherif, MSc; Todd Hatchette, MD FRCP(C); Jason Lobb; PhD; Lingyun Ye, MSc; Melissa K Andrew, MD, PhD; Ardirh Ambrose, RN; Guy Boivin, MD, MSc; William R. Bowie, MD, FRCP(C), FIDSA; Karen Green, MSc, RN; Kevin Kata, MD, CM, MSc, FRCP(C); Mark Loeb, MD, MSc; Donna Mackinnon-Cameron, MMath; Anne McCormthy, MD, MSc; Janet McElhaney, MD, Allison Mgeer, MD, MSc; Michelle Nichols, MSc; Jeff Powis, MD, MSc, FRCP(C); David Richardson, MD, MSc; Makeda Semret, MD; Daniel Smyth, MD, FRCP(C); Sylvie Trottier, MD, PhD; Lorraine Vanette, MD, FRCP(C); Duncan Webster, MD, and Shelly McNeil, MD, FRCP(C), FIDSA; 1Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, NS, Canada, 2Nova Scotia Health Authority, Dalhousie University, Halifax, NS, Canada, 3Centre Hospitalier Universitaire de Québec,魁北克市, QC, Canada, 4Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, 5Mount Sinai Hospital, Toronto, ON, Canada, 6North York General Hospital, Toronto, ON, Canada, 7McMaster University, Hamilton, ON, Canada, 8The Ottawa Hospital, Ottawa, ON, Canada, 9Health Sciences North Research Institute, Sudbury, ON, Canada, 10Michael Garron Hospital, Toronto, ON, Canada, 11William Osler Health System, Brampton, ON, Canada, 12McGill University, Montreal, QC, Canada, 13The Moncton Hospital, Moncton, NB, Canada, 14Microbiology and Infectious Disease, Université de Sherbrooke, Sherbrooke, QC, Canada, 15Saint John Regional Hospital, Dalhousie University, Saint John, NB, Canada

Session: 139. Adult Viral Infection
Friday, October 6, 2017: 12:30 PM

Background. Influenza virus activity varies seasonally and within season. Epidemiology of serious influenza outcomes is contingent on the prevalent circulating strain(s) and susceptible age group(s). Given the strain variability over the last three years through 2013-2014, we examined the clinical and epidemiological profiles of different influenza strains causing adult hospitalizations.

Methods. During these three influenza seasons, the Serious Outcomes Surveillance (SOS) Network of the Canadian Immunization Research Network (CIRN) enrolled adults hospitalized with acute respiratory illness across Canada. Nasopharyngeal swabs (NPS) from influenza cases were tested for strain characterization using real-time reverse transcriptase polymerase chain reaction (rtRT-PCR). A primary assay for H1N1 and B influenza viruses. Subsequently, influenza A viruses were subtyped as H1N1 or H3N2, and influenza B lineages were differentiated as Victoria or Yamagata. Laboratory results were compared with patient demographic data and clinical outcomes.

Results. Over three consecutive influenza seasons, 3,394 cases of hospitalized acute respiratory illness were laboratory-confirmed as influenza. At 72.4%, influenza A was predominant across all seasons, while influenza B caused 27.6%. Most of the influenza A cases were due to H3N2 (58.7%), while H1N1 accounted for 41.3%. For influenza B, the Yamagata lineage was predominant at 88.8% whereas the Victoria lineage accounted for 11.6%. Outcome analyses are presented for each influenza A subtype and influenza B lineage, overall and per season. Considering serious outcomes in patients ≥65, higher proportions of patients hospitalized with the H1N1 strain experienced intensive care unit (ICU) admission and need for mechanical ventilation, while higher proportions of patients hospitalized with B/Yamagata and H3N2 died within 30 days of admission.

Conclusion. Comprehensive collection of surveillance data paired with NP specimens by the CIRN SOS Network was conducive to broader understanding of influenza strain activity and associated outcomes at the subtype and lineage level. This data is important to make informed recommendations for the use of multicomponent influenza vaccines.

1039. Co-circulation of Influenza A and B During the 2016–2017 Influenza Season at Rush University Medical Center
Andrew Simms, MD; Hemil Gonzalez, MD; Nicholas M. Moore, MS; Leslie A. Chapman, BS; Karen Lolans, BS and Gordon M. Trelholm, MD; 1Infectious Disease, Rush University Medical Center, Chicago, Illinois, 2Infectious Diseases, Rush University Medical Center, Chicago, Illinois, 3Medical Laboratory Science, Rush University Medical Center, Chicago, Illinois, 4Illinois Department of Public Health Laboratories, Chicago, Illinois, 5Rush University Medical Center, Chicago, Illinois, 6Rush University Medical Center; Division of Infectious Diseases, Chicago, Illinois