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Abstract Recent studies posit a role for non-coding RNAs in epithelial ovarian cancer (EOC).

Combining small RNA sequencing from 179 human serum samples with a neural network analysis

produced a miRNA algorithm for diagnosis of EOC (AUC 0.90; 95% CI: 0.81–0.99). The model

significantly outperformed CA125 and functioned well regardless of patient age, histology, or

stage. Among 454 patients with various diagnoses, the miRNA neural network had 100% specificity

for ovarian cancer. After using 325 samples to adapt the neural network to qPCR measurements,

the model was validated using 51 independent clinical samples, with a positive predictive value of

91.3% (95% CI: 73.3–97.6%) and negative predictive value of 78.6% (95% CI: 64.2–88.2%). Finally,

biologic relevance was tested using in situ hybridization on 30 pre-metastatic lesions, showing

intratumoral concentration of relevant miRNAs. These data suggest circulating miRNAs have

potential to develop a non-invasive diagnostic test for ovarian cancer.

DOI: https://doi.org/10.7554/eLife.28932.001

Introduction
Invasive epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic cancer

among women in developed countries (Siegel et al., 2016). Most women with EOC present with

advanced stage disease, where 5 year survival rates average 25–30%, highlighting the need for an

effective screening strategy. Unfortunately, two large-scale randomized clinical trials involving ultra-

sound and CA125, including the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) trial and the
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United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) trial did not demon-

strate a meaningful impact on overall survival from EOC (Zhu et al., 2011; Jacobs et al., 2016).

These and other non-experimental longitudinal studies reaffirm CA125 can detect advanced disease

but with poorer sensitivity for early stage and non-serous cancers. In addition, CA125 has limited

specificity, with the majority of abnormal CA125 values being the result of non-gynecologic malig-

nancies or benign gynecologic conditions (Moss et al., 2005). The hope that adding more bio-

markers to CA125 would improve screening was not realized in a re-analysis of the PLCO data as

well as a recent longitudinal study from the European Prospective Investigation of Nutrition and

Cancer (Zhu et al., 2011; Terry et al., 2016). In a separate strategy to improve EOC outcome, sev-

eral panels (which have CA125 as part of them) have received FDA approval to be used in the differ-

ential diagnosis of EOC to encourage referral of EOC cases to centers with greater expertise in

cancer surgery and chemotherapeutic treatment (Karst and Drapkin, 2010). However, these have

not been effective for early diagnosis.

Among the alternatives to serum proteins for the diagnosis or early detection of EOC, circulating

microRNAs (miRNAs) have shown great potential (Nakamura et al., 2016). miRNAs are short (18–24

nucleotide) non-coding RNAs that regulate gene expression through post-transcriptional modifica-

tion of mRNA transcripts. miRNAs have several advantages over protein measures: (1) PCR amplifies

detection of rare transcripts in blood; (2) all miRNAs use the same units of measure, easing incorpo-

ration into multiplexed panels; and (3) miRNAs play a critical role in ovarian cancer biology, whereas

the function of CA125 is unknown (Deb et al., 2017; Katz et al., 2015). Moreover, non-invasive

sampling of circulating miRNAs has a clear advantage over analytes obtained through biopsy

(Wang et al., 2016).

Preliminary studies have suggested that circulating miRNAs profiles are altered in women with

ovarian cancer (Nakamura et al., 2016; Chung et al., 2013; Langhe et al., 2015; Resnick et al.,

2009; Zuberi et al., 2015; Samuel and Carter, 2016). In addition, miRNAs have prognostic

eLife digest Ovarian cancer is a major cause of cancer death among women. A woman’s

survival often hinges on doctors detecting the tumor before it has spread beyond the ovary.

Unfortunately, most women with ovarian cancer are not diagnosed until they have symptoms – such

as pelvic pain, bloating, swelling of the abdomen or appetite loss. By then, the disease has usually

spread and is difficult to treat. There is currently no reliable test to diagnose ovarian cancer before

symptoms emerge. Some tests measure proteins in the blood or use ultrasound images to identify

ovary tumors. These tests usually still identify the disease too late. Sometimes they produce “false

positive” results, which may cause women without cancer to undergo unnecessary surgery.

Many ovarian cancers have defects in small pieces of genetic information called microRNAs.

These microRNAs impact the tumor in multiple ways, and cells release microRNAs into the blood.

Testing a seemingly healthy women’s blood for the same pattern of altered microRNAs found in

women with ovarian cancer might be one way to detect the disease earlier.

Now, Elias et al. have identified a pattern of seven microRNAs in the blood that appears to

predict ovarian cancer. In the experiments, a computer program searched for microRNA patterns in

women with ovarian cancer. The program sifted through the microRNAs in blood from women with

and without ovarian cancer. Over time, the computer program “learned” to identify a pattern of

microRNAs found only in women with ovarian cancer. It then created a formula for identifying

ovarian cancer based on seven of the microRNAs.

Elias et al. then verified that the formula accurately detected ovarian cancer by testing it on

blood samples from more women with and without cancer. They also found the seven microRNAs in

tiny ovarian cancer tumors collected from women. This suggests the formula might be able to detect

even the smallest tumors. More studies are needed to determine when this cancer-linked pattern

first emerges and confirm that this ovarian cancer-detection formula works. If the test is validated, it

might be used to screen women who are at high risk for ovarian cancer because of mutations in the

BRCA1 and BRCA2 genes.

DOI: https://doi.org/10.7554/eLife.28932.002
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significance for EOC survival (Merritt et al., 2008; Bagnoli et al., 2016; Cramer and Elias, 2016).

However, efforts to develop a diagnostic signature based on circulating miRNAs have been ham-

pered by issues regarding the best statistical approach to develop a model, reproducibility of

miRNA measurement across technology platforms (e.g. qPCR, next generation sequencing, microar-

ray), and the biologic heterogeneity of EOC (Nakamura et al., 2016). In this study, our objective

was to develop a serum-based miRNA model for the diagnosis of ovarian cancer that could address

these concerns and demonstrate the biologic and clinical relevance of this diagnostic tool.

Results
To produce our diagnostic circulating miRNA signature from human sera, we constructed a study

population of pre-treatment (prior to either surgery or chemotherapy) subjects comprising 179

Table 1. Demographics of patients in the model study populations.

ERASMOS
(n = 60) PMP/NECC (n = 119*) p-value

Age, years, median (SD)† 57 (9.8) 56 (7.1) 0.44

CA-125, units/ml, median (SD) † 155 (689.8) 88.1 (1335.5) 0.72

Histology, n (%)‡

Control 0 (0) 15 (12.6) <0.0001

Serous cystadenoma/cystadenofibroma 7 (11.7) 14 (11.8)

Endometrioma 0 (0) 15 (12.6)

Other benign lesion 9 (15.0) 0 (0)

Borderline mucinous tumor 2 (3.3) 0 (0)

Borderline serous tumor 5 (8.3) 15 (12.6)

Stage I/II serous adenocarcinoma 5 (8.3) 20 (16.8)

Stage III/IV serous adenocarcinoma 19 (31.2) 10 (8.4)

Stage I/II clear cell/endometrioid adenocarcinoma 6 (10.0) 20 (16.8)

Stage III/IV clear cell/endometrioid adenocarcinoma 0 (0) 10 (8.4)

Mucinous adenocarcinoma 1 (1.7) 0 (0)

Other ovarian cancer 10 (10.0) 0 (0)

Stage, n (%)‡

Not applicable 16 (26.7) 59 (49.6) <0.0001

I 9 (15.0) 22 (18.5)

II 8 (13.3) 18 (15.1)

III 19 (31.2) 18 (15.1)

IV 8 (13.3) 2 (1.7)

Grade, n (%)‡

Not applicable 16 (26.7) 44 (37.0) 0.07

Borderline 7 (11.7) 15 (12.6)

1 (well-differentiated) 6 (10.0) 12 (10.1)

2 (moderately differentiated) 3 (5.0) 12 (10.1)

3 (poorly differentiated) 28 (46.7) 36 (30.3)

ERASMOS – Effects of Regional Analgesia on Serum miRNA after Oncology Surgery Study

PMP – Pelvic Mass Protocol

NECC – New England Case Control study

*15samples from NECC, 114 samples from PMP
†student’s t-test
‡chi-square test

DOI: https://doi.org/10.7554/eLife.28932.004
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women selected from three independent prospective studies (ERASMOS, PMP, and NECC) (Table 1).

ERASMOS contributed consecutive cases presenting for evaluation of an adnexal mass, while PMP

allowed enrichment of the population for specific histopathologic diagnoses. NECC added healthy

controls age-matched to PMP. After completing small RNA sequencing on the sera, subjects were

randomly assigned into model training and testing sets (Figure 1). After the randomization, the

training and testing sets were demographically similar, and there were no differences in the distribu-

tion of histopathological diagnoses between the sets (Table 2).

We then deployed a series of statistical tools, including machine-learning approaches to analyze

the miRNA-seq data to create an algorithm with the best performance for discriminating cases of

ovarian cancer from either benign tumors, non-invasive (‘borderline’) tumors, or healthy controls.

This began by using three different potential strategies for selecting miRNA variable inputs to build

the models: significance-based (by t-test), correlation-based feature subset, or expression fold

change (Table 3). Each miRNA variable list method was entered into one of 11 different models,

which were compared both by AUC (Table 4) as well as sensitivity and specificity (Figure 2).

Although many of the models performed well, the neural network model employing miRNA

expression fold changes was the only model to meet our pre-specified statistical objective with an

AUC of 0.90 (95% CI: 0.81–0.99; p=0.03 over a theoretical AUC of 0.75). The network consisted of

14 individual miRNAs with seven neurons in the hidden layer (Source code 1). As the network relied

on complex interactions between miRNA levels we tested whether its performance was not biased

by batch adjustment performed at the initial step of the analysis. The neural network worked equally

well on the adjusted and unadjusted raw datasets with an AUC of 0.93 (95%CI: 0.89–0.98) on the

Figure 1. Flowchart of study design. (a) Protocol for miRNA sequencing, filtering, batch adjustment and separation into the training and testing sets. (b)

Protocol for model development and testing.

DOI: https://doi.org/10.7554/eLife.28932.003
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training and 0.90 (95%CI 0.80–0.99) on the testing set (Figure 3; Supplementary file 1A [by model]

and 1B [by sample]). In post-hoc secondary analyses, the neural network worked equally well for

older and younger patients, serous and non-serous histologies, and early and advanced stage dis-

ease (Supplementary file 2A-C).

Serum CA125 data were available for 120 subjects (Supplementary file 1B and 3A). Among

these, the neural network (AUC 0.93; 95% CI 0.88–0.97) significantly outperformed CA125 (AUC

0.74; 95% CI 0.65–0.83; p=0.001; Figure 4). The primary advantage of the neural network over

CA125 was avoiding false positives (8/43 for the neural network versus 23/43 for CA125; p=0.002)

(Supplementary file 2A). Notably, the neural network and CA125 levels were independent of one

another (Figure 4—figure supplement 1; Supplementary file 3B). We tested using the neural net-

work and CA125 in a tiered testing strategy, subjecting all negative neural network algorithm results

to a second review with CA125, but found this would increase the probability of a false positive test

result from 4.2% (5/120) to 19.2% (23/120) and a false negative rate from 5.8% (7/120) to 13.3% (16/

120) (Figure 4—figure supplement 2). The alternative of initial screening with CA125 followed by

neural network yielded only three additional correctly diagnosed cases of invasive cancer at the

expense of 19 additional false positive results.

Table 2. Demographics of patients after stratified random sampling into training and testing sets.

Training
(n = 135)

Testing
(n = 44) p-value

Age, years, median (SD) * 56 (8.1) 56 (8.3) 1.0

CA-125, units/ml, median (SD) * 126.5 (1193.5) 105.6 (577.8) 0.91

Pathology, n (%)† 1.0

Control 11 (8.1) 4 (9.1)

Benign lesions 34 (25.2) 11 (25.0)

Borderline tumors 16 (11.9) 5 (11.4)

Stage I/II invasive cancers 41 (30.4) 12 (27.3)

Stage III/IV invasive cancers 33 (24.4) 12 (27.3)

*student’s t-test
†chi-square test

DOI: https://doi.org/10.7554/eLife.28932.005

Table 3. miRNA variables used in model building identified through univariate testing

Significance-based selection Correlation-based feature subset selection Expression fold change selection

miR-29a-3p miR-16-2-3p miR-23b-3p

miR-30d-5p miR-200a-3p miR-29a-3p

miR-200a-3p miR-200c-3p miR-32–5 p

miR-200c-3p miR-320b miR-92a-3p

miR-320d miR-320d miR-150–5 p

miR-320c miR-200a-3p

miR-450b-5p miR-200c-3p

miR-203a miR-203a

miR-486–3 p miR-320c

miR-1246 miR-320d

miR-1307–5 p miR-335–5 p

miR-450b-5p

miR-1246

miR-1307–5 p

DOI: https://doi.org/10.7554/eLife.28932.007
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The specificity of the neural network algorithm for the diagnosis of ovarian cancer was tested

using an external, independent, dataset previously published by Keller, et al (Keller et al., 2011).

These data were generated via a third technology platform, probe-based microarray, which fortu-

nately contained all 14 miRNAs from our original signature, allowing for 1:1 mapping without exclu-

sions (Supplementary file 4A and Supplementary file 6). The neural network perfectly classified

Table 4. Performance of the eleven statistical models on the testing set by variable selection method.

Results are shown for the testing set.

Variable selection method

Statistical model

Significance-based variable
subset
AUC (95% CI)

Correlation-based feature selection
subset
AUC (95% CI)

Fold change-based variable
subset
AUC (95% CI)

Linear discriminant analysis 0.80 (0.66–0.93) 0.76 (0.62–0.90) 0.78 (0.64–0.92)

Logistic regression 0.81 (0.68–0.94) 0.75 (0.61–0.90) 0.82 (0.70–0.94)

Neural network 0.84 (0.72–0.96) 0.75 (0.60–0.89) 0.90 (0.81–0.99)

Support vector machine 0.77 (0.63–0.91) 0.73 (0.58–0.87) 0.77 (0.63–0.91)

Multivariate adaptive regression
splines

0.57 (0.40–0.74) 0.66 (0.49–0.82) 0.73 (0.58–0.88)

Naive Bayes classifier 0.75 (0.60–0.89) 0.68 (0.52–0.84) 0.75 (0.60–0.89)

Least Absolute Deviation regression
tree

0.77 (0.63–0.91) 0.61 (0.44–0.78) 0.69 (0.53–0.84)

Functional tree 0.78 (0.64–0.91) 0.77 (0.63–0.91) 0.68 (0.52–0.84)

Bayesian network 0.72 (0.56–0.87) 0.67 (0.52–0.83) 0.72 (0.56–0.87)

Random forest 0.78 (0.64–0.91) 0.71 (0.56–0.86) 0.76 (0.62–0.90)

Elastic net 0.80 (0.67–0.93) 0.76 (0.62–0.90) 0.79 (0.66–0.92)

DOI: https://doi.org/10.7554/eLife.28932.008

Figure 2. Clinical performance characteristics of the tested models. Sensitivity (blue bars) and specificity (orange bars) of the classifiers on the testing

set depending on the method of variable selection. Whiskers denote 95% Confidence Intervals. (a) – Performance of models created on the subset of

miRNAs selected using the significance-based filter. (b) Performance of models created on variables selected using the CFS subset algorithm. (c)

Performance of models created using variables selected by the fold change-based filter. The red arrow denotes the model with the best performance

characteristics, the neural network analysis using the fold change-based filter variable.

DOI: https://doi.org/10.7554/eLife.28932.006
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patients in the training set (AUC 1.00, 95% CI 1.00–1.00) and provided very good discriminatory

power on the testing set (AUC 0.93, 95% CI 0.81–1.00), with an overall sensitivity of 75% and speci-

ficity of 100%. The signature was specific to ovarian cancer compared to all other diagnoses, as it

did not show any clinically-efficient diagnostic capabilities for any of the 12 other morbidities ana-

lysed in the set and showed good performance in distinguishing ovarian cancer samples against all

other diagnoses combined (AUC 0.92, 95% CI 0.82–1.00) (Figure 5).

Having established our miRNAs of interest using next generation sequencing, we next sought to

validate the sequencing data across technology platforms by measuring the miRNAs from the neural

network using qPCR. While small RNA sequencing is a more robust technology for miRNA discovery,

qPCR is a more time efficient and cost-effective diagnostic tool. For this we used 120 samples from

PMP and NECC for which we had excess RNA. We internally validated the 14 miRNAs in the neural

network (plus an additional nine potential reference miRNAs derived from the sequencing data) by

qPCR and recalibrated the algorithm to accept qPCR inputs (Supplementary file 6). We then per-

formed a global sensitivity analysis on the best neural network for qPCR data and iteratively

removed the variables which did the least in terms of improving the classifier’s performance. This

reduced the neural network to only seven miRNAs (miR-29a-3p, miR-92a-3p, miR-200c-3p, miR-

320c, miR-335–5 p, miR-450b-5p, and miR-1307–5 p) plus four normalizers (miR-423–3 p, miR-191–5

p, miR-221–3 p, and miR-103a-3p). To increase the statistical power of this qPCR-based classifier

and create a fully locked-down model for clinical application, we added 205 more samples from

PMP and NECC, including more than 100 additional healthy controls, to create a 325 subject popu-

lation for qPCR model development (Table 5).

These samples were randomized 3:1 into training and testing sets to create a neural network. The

resulting network performed well with an AUC 0.89 on the training set and AUC 0.80 on the testing

set.

Figure 3. ROC curves for the neural network analysis. (a) Performance of the neural network on the training set of raw, non-batch-adjusted data (red

line) and in the batch-adjusted training set (black line) (b) Performance of the neural network on raw (red line) and batch-adjusted (black line) data in the

testing set.

DOI: https://doi.org/10.7554/eLife.28932.009
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We then tested the clinical performance of the final, locked-down diagnostic test on a completely

independent external sample set collected from 51 preoperative patients treated in Lodz, Poland

(Table 6). In this population, the neural network had a positive predictive value of 91.3% (95% CI:

73.3–97.6%) and a negative predictive value of 78.6% (95% CI: 64.2–88.2%) with an AUC of 0.85

(Figure 6).

Ideally, a serum biomarker should have biologic relevance to the clinical disease. To this end, we

returned to the ERASMOS patient set to examine if the expression levels of the miRNAs changed in

the cancer patients after surgical cytoreduction. Among the patients with ovarian cancer in the

study, 27 had both preoperative and postoperative serum miRNAs profiled. These included 4/7 tar-

get miRNAs in the qPCR neural network model. Circulating levels of all three miRNAs decreased

Figure 4. ROC curves for neural network analysis compared to CA-125. The neural network (AUC 0.93; 95% CI 0.88–0.97) significantly outperformed

CA125 (AUC 0.74; 95% CI 0.65–0.83) in terms of overall operating characteristics (p=0.001).

DOI: https://doi.org/10.7554/eLife.28932.010

The following figure supplements are available for figure 4:

Figure supplement 1. Correlations between the miRNAs (vertical axes) of the neural network and CA-125 (horizontal axes) in the cancer (red markers)

and benign/borderline/control (blue markers) groups.

DOI: https://doi.org/10.7554/eLife.28932.011

Figure supplement 2. Performance of a two-tiered algorithm for ovarian cancer diagnosis incorporating both the neural network (NN) and a CA-125

cut-off of 35 U/ml.

DOI: https://doi.org/10.7554/eLife.28932.012
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within 72 hr of tumor removal, with significant changes for miR-200a-3p and miR-200c-3p

(Figure 7A–D).

We also wanted to test if the miRNAs were in fact coming from the earliest lesions of this disease.

For this, we assembled paraffin-embedded tissue sections from independent sets of 15 cases of

serous tubal intraepithelial carcinomas and 15 Stage I high grade (serous or Grade three endome-

trioid) epithelial ovarian cancers. Immunohistochemistry was performed on sequential sections for

TP53 and Ki67 to highlight the lesions. We then performed in situ hybridization for three of the miR-

NAs in our neural network; mir-200c-3p, mir-335–5 p, and mir-92a-3p (Figure 8). In 100% of the

samples, there was complete overlap between lesional cells and the miRNAs crucial for neural net-

work performance, suggesting that the miRNAs detected in the serum are present even in early

lesions in the fallopian tube epithelium and raising the possibility of detection of pre-metastatic

disease.

Finally, we have constructed a web calculator (http://biostat.umed.pl/ovaries) to demonstrate

how to use these models. The calculator accepts various inputs describing on the method of circulat-

ing miRNA quantification (sequencing, qPCR, or microarray) and returns the estimated probability of

ovarian cancer for a given patient.

Figure 5. Specificity of miRNA signature for ovarian cancer compared to other diagnoses. The neural network 14 miRNA signature did not separate any

other diagnoses from the control group in the published dataset by Keller, et al 13. The study also included 70 healthy controls. The number of subjects

(n) denotes the number of cases of the given diagnosis in the Keller, et al dataset. (a) Pancreatic ductal cancer (n = 45); (b) Prostate cancer (n = 23); (c)

Stomach cancer (n = 13); (d) Other pancreatic cancers (n = 48); (e) Melanoma (n = 35); (f) Lung cancer (n = 32); (g) Periodontitis (n = 18); (h) Pancreatitis

(n = 38); (i) Multiple sclerosis (n = 23); (j) Acute MI (n = 20); (k) Chronic obstructive pulmonary disease (n = 24); (l) Sarcoidosis (n = 45). (m) Overall, neural

network was highly specific for ovarian cancer cases against all other diagnoses (i.e. healthy controls or other cancers).

DOI: https://doi.org/10.7554/eLife.28932.013
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Discussion
We have described the development of a diagnostic model for ovarian cancer using sequencing of

circulating miRNA. This is the first study in ovarian cancer to combine next generation sequencing

technology for serum miRNA with machine learning techniques. Not only does sequencing provide

greater sensitivity for miRNA detection than other methods, but expression levels of various miRNAs

are not linearly related and relationships among miRNAs tend to be obscured by more basic statisti-

cal approaches. The neural network as presented has several advantages over a traditional bio-

marker like CA125. The neural network recognized more Stage I/II ovarian cancers and had

significantly fewer false positives. This likely reflects an ability to discriminate relevant biology more

than to quantify tumor burden. For example, the neural network correctly classified 35/43 (81%) bor-

derline tumors as being non-invasive neoplasms, compared to just 20/43 (47%; p=0.002) for CA125.

An additional strength of our study is the incorporation of multiple independent datasets. The ERAS-

MOS specimens were obtained from cases enrolled sequentially, reflecting the natural frequency of

different ovarian tumor subtypes in the clinical population, including the fact that most women with

invasive ovarian cancer present with advanced stage disease. The Pelvic Mass Protocol samples

allowed us to enrich the study population for less common clinical cases that would be expected to

confound a conventional screening algorithm, including benign complex ovarian masses, borderline

tumors, early stage cancers, and non-serous histologic subtypes. NECC provided age-matched

healthy controls. The specificity of our model was tested using a publicly available dataset from Kel-

ler, et al where we showed that the neural network performed well across disease stages, histologic

subtypes, and diagnostic platforms. This ability to specifically identify ovarian cancers and discrimi-

nate ovarian cancer from other diagnoses sets the current work apart from prior miRNA studies

(Nakamura et al., 2016; Chung et al., 2013; Resnick et al., 2009; Zuberi et al., 2015;

Häusler et al., 2010; Zheng et al., 2013). Finally, we tested our signature using a completely

Table 5. Clinical characteristics of the qPCR model set.

Characteristic
qPCR model set
(N = 325)

Age, years, median (SD) 58.0 (10.1)

Grade, n (%)

Borderline 15 (4.6)

1 21 (6.4)

2 27 (8.3)

3 100 (30.8)

unspecified 10 (3.1)

Not applicable 150 (46.2)

FIGO Stage, n (%)

I/II 75 (23.1)

III/IV 83 (25.5)

Not applicable 167 (51.4)

Histology, n (%)

Control 123 (37.8)

Serous cystadenoma/cystadenofibroma 14 (4.3)

Endometrioma 15 (4.6)

Borderline serous tumor 15 (4.6)

Serous adenocarcinoma 100 (30.8)

Endometrioid/clear cell adenocarcinoma 48 (14.8)

Mucinous adenocarcinoma 10 (3.8)
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external, independent set of samples from Poland, showing that in a clinical sample set the test per-

formed well without additional modifications.

There appears to be biologic relevance to the serum miRNAs in the neural network. The rapid

change in circulating levels after surgical cytoreduction for mir-200a and mir-200c suggests these are

being produced actively by tumors. Although other miRNAs did not have as great of a decrease,

this may reflect differing half-lives for different miRNA species. In future work, it would be interesting

to measure changes over a longer time frame than 72 hr, but that was the endpoint for ERASMOS,

which is an anesthesia-focused study. We also demonstrated expression of several miRNAs from the

neural network in pre-metastatic lesions. This both confirms prior work suggesting that these miR-

NAs are detectable in advanced ovarian cancers specimens and adds the new finding that these

miRNAs are expressed in very early stage and even pre-invasive lesions (Bagnoli et al., 2016).

Future work will examine the kinetics of these miRNA changes in tumor pathogenesis.

The phase II specimens used in this study are like those used to support development of assay

panels subsequently approved for the differential diagnosis of ovarian cancer vs. a benign pelvic

mass. The first panel, named OVA1, was approved by the FDA in 2009 and consisted of 5 analytes

including CA125 (Zhang et al., 2004; Ueland et al., 2011). While those authors emphasized the

assay’s negative predictive value of 95% (when combined with physician assessment), the assay had

an AUC of only 0.80 (95% CI: 0.73–0.88) for pre-menopausal women and 0.82 (95% CI: 0.77–0.87)

for post-menopausal women. The second panel was approved in 2011 and consisted of just two

Table 6. Clinical characteristics of the external validation set.

Characteristic
Polish external validation set
(N = 51)

Age, years, median (SD) 55.5 (16.1)

Grade, n (%)

Borderline 4 (7.8)

1 2 (3.9)

2 7 (13.7)

3 13 (25.5)

unspecified 3 (5.9)

Benign 22 (43.1)

FIGO Stage, n (%)

I 7 (13.7)

II 3 (5.9)

III 18 (35.3)

IV 1 (2.0)

Benign 22 (43.1)

Histology, n (%)

Serous cystadenoma/cystadenofibroma 6 (11.8)

Endometrioma/endometriosis 10 (19.6)

Mature teratoma 6 (11.8)

Borderline serous tumor 2 (3.9)

Borderline seromucinous tumor 2 (3.9)

Serous adenocarcinoma 4 (7.8)

Mucinous adenocarcinoma 1 (2.0)

Endometrioid adenocarcinoma 1 (2.0)

Clear Cell Adenocarcinoma 9 (17.6)

Mixed adenocarcinoma 3 (5.9)

Adenocarcinoma unspecified 7 (13.7)
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markers, CA125 and HE4, combined with menopausal status (Moore et al., 2010). While the ROMA

algorithm had an overall AUC for discriminating cancer from benign tumors of 0.91 (95% CI: 0.88–

0.94), this was in the setting of including borderline tumors as malignancies. Moreover, the positive

predictive value of the test for distinguishing benign masses from Stage I/II EOC was only 0.27. In

2016, the FDA approved an updated version of the OVA1 test which retained CA125 but replaced 2

of the markers with HE4 and FSH (Coleman et al., 2016). This improved the overall AUC to 0.92

(95% CI: 0.89–0.96) for the assay alone and 0.94 (95% CI: 0.91–0.97) when combined with physician

assessment, although 80% of the tumors in this study were benign. Although the above panels

included some clinical information and therefore are not equivalent to our panel, we point out that

the AUC of our panel to distinguish a malignant from benign pelvic mass was similar, while not

including borderline tumors as positive results and agnostic to clinical or imaging information. As

timely referral to a gynecologic oncologist is a strong predictor of ovarian cancer survival, we believe

that there is a role for a test based on blood markers alone (Earle et al., 2006).

FDA approval of the various panels for use in the differential diagnosis of pelvic masses did not

extend to their use in the general population. Based upon the results of the PLCO and UKCTOCS

randomized clinical trials (or so called ‘phase 4’) the US Preventive Services Task Force and the Soci-

ety of Gynecologic Oncology (SGO) have not recommended routine screening for ovarian cancer

Figure 6. ROC curve for neural network analysis using qPCR inputs from the clinical test set.
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(Zhu et al., 2011; Skates et al., 2001). However, screening with CA125 and transvaginal ultrasound

is recommended by the National Comprehensive Cancer Network guidelines and the SGO for

women with known hereditary syndromes of ovarian cancer (such as women with germline BRCA1/2

mutations), even though there is currently no evidence that this screening strategy improves survival

in elevated risk populations (Schorge et al., 2010).

Recent studies (Chung et al., 2013; Langhe et al., 2015; Resnick et al., 2009; Zuberi et al.,

2015) have identified circulating (serum/plasma) miRNAs that are altered in ovarian carcinomas, and

there is limited overlap with miRNAs that emerged from our analysis. One possible cause of this dif-

ference is the limited number of samples examined in these studies. For example, in Langhe et al, a

training set of 5 serous ovarian carcinomas and five benign serous cystadenomas were selected for

the initial experiments. The validation set was 20 serous ovarian carcinomas and 20 benign serous

cystadenomas. In Resnick et al, 28 ovarian carcinoma patients and 15 healthy controls were used to

identify to differential expression of circulating miRNAs. Such limited numbers diminish the statistical

robustness of the results. Another possible cause for the differences is the miRNA expression profil-

ing platform. Recently a study (Mestdagh et al., 2014) systematically compared 12 different miRNA

expression platforms. Specifically, for serum miRNAs there was a 12-fold difference between the

highest and lowest number of detected miRNA when identical samples were profiled by different

Figure 7. Change in miRNA expression from preop to post-operative day three after surgical cytoreduction. n = 27.
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platforms. According to this report the LNA-based platform from Exiqon has the highest specificity

but maybe limited for sensitivity thereby for detection. To circumvent both these concerns we

started with next-generation sequencing of 179 samples which captures all small RNAs and

addresses any issues of detection or specificity due to limitations of platforms. Next, we did valida-

tion using the Exiqon qRT-PCR platform on 325 local samples, and a further validation using an addi-

tional cohort of 51 samples from Poland. The large number of samples along with the

methodologies used for identification and validation of the circulating miRNAs in our study provides

strong support for our conclusions and distinguishes our work from prior reports.

Our study does have several limitations. Whether our miRNA panel will prove useful in the differ-

ential diagnosis of early detection will require further study in the following areas. First, additional

study is necessary to determine whether integrating clinical risk factors could further improve its per-

formance. Second, confirmation in other phase II data sets are necessary to validate our study results

and demonstrate its generalizability. Third, specimens collected and stored months or years prior to

a clinical diagnosis (so called phase III specimens) are necessary to demonstrate the model’s poten-

tial in the early detection of EOC in a general population or elevated risk setting. For the former, we

have access to PLCO specimens; and for the latter, we plan to apply for specimens to the National

Clinical Trials Network. Fourth, a logical extension of our work is to determine whether our current

miRNA panel (or a new one) would be useful in predicting survival after EOC. A tissue-based MiRO-

vaR signature involving 35 miRNAs for predicting EOC prognosis has recently been described

(Bagnoli et al., 2016). Although several miRNAs appear in the tissue signature and our model

(Supplementary file 4B), full concordance is unlikely since the tissue model was built to predict

prognosis whereas our model was built to predict diagnosis. In addition, about two-thirds of the

miRNAs in the tissue signature are not reliably detectable in circulation, which can be attributed to

the fact that relatively few miRNAs circulate in serum (Mestdagh et al., 2014; Dinh et al., 2016).

Our serum panel is reliant on a smaller number of miRNAs simply because the neural model priori-

tizes ones that provide novel information. If miRNAs are correlated (for example within the same

chromosomal cluster), they will be invariant and knowing one will convey sufficient information about

the rest for them to be excluded from model building. Finally, more is to be learned about the basic

Figure 8. In situ expression of selected miRNAs from the serum signature. Sections of fallopian tubes showing serous tubal intraepithelial carcinoma

(STIC) lesions and Stage I high grade serous ovariancancer (HGSOC). Lesional cells are indicated by TP53 and Ki-67 staining. (top) STIC lesion in

continuity with normal fallopian tube. 20x. (middle) STIC lesion in continuity with normal fallopian tube and invasive cancer with p53-null lesion. 10x.

(bottom) HGSOC intraluminal to the fallopian tube. 10x.
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biology of serum miRNA. Are they all coming from cancer cells or also other cells in the tumor micro-

environment? (Likely, both are included in the signature). It is noteworthy that two of the miRNAs

are members of the mir-200 family, confirming prior reports identifying these miRNAs as overex-

pressed in ovarian cancer (Zuberi et al., 2015; Pecot et al., 2013). Some of the miRNAs incorpo-

rated into the neural network algorithm have connections to other disease types. For example, miR-

1246 has been identified in the serum of ovarian cancer, lung cancer, prostate cancer, and stroke

patients (Todeschini et al., 2017; Zhang et al., 2016; Alhasan et al., 2016; Li et al., 2015). How-

ever, as noted in Figure 5, the network as a whole was specific to ovarian cancer, again emphasizing

the importance of multimarker panels.

In conclusion, serum miRNA adds to the toolbox of options to diagnose ovarian cancer. We plan

several future studies to characterize the miRNA neural network. Whether serum miRNA offers a

lead time advantage over other putative biomarkers remains to be proven. We need to study the

performance characteristics of the miRNA neural network in high risk and low risk populations.

Finally, we are performing laboratory investigations to elucidate the biologic function of these miR-

NAs and to understand the kinetics of miRNA expression in ovarian cancer pathogenesis. With our

improved understanding of miRNA analytic approaches, we can develop better models for this and

other diseases.

Materials and methods

Reporting guidelines
Results have been reported according to the Transparent reporting of a multivariable prediction

model for individual prognosis or diagnosis (TRIPOD) guidelines (Reporting Standards Document)

(Collins et al., 2015). The checklist appears in the Supplement.

Study subjects for model development
Our model was developed from two ‘phase II’ specimen sets (i.e. samples collected from women

prior to surgery or chemotherapy) - Effects of Regional Analgesia on Serum microRNAs after Oncol-

ogy Surgery (ERASMOS) and the Pelvic Mass Protocol (Cramer et al., 2010; Elias et al., 2015). To

these, healthy controls were selected from subjects who participated in the New England Case-Con-

trol (NECC) study, a large epidemiologic study matching cases of ovarian cancer to geographically

situated controls (Rice et al., 2013). These studies were approved by the Dana-Farber Cancer Insti-

tute Institutional Review Board Protocol 05–060 (NECC study), Brigham and Women’s Hospital Insti-

tutional Review Board Protocol 2000-P-001678 (Pelvic Mass Protocol), and Dana-Farber/Harvard

Cancer Center Institutional Review Board Protocol 12–532 (ERASMOS). All subjects were enrolled

after signing informed consent, and samples were collected fresh in 13 � 75 mm BD Vacutainer Plus

Plastic Serum tubes (BD Life Sciences, Franklin Lakes, NJ) with spray-coated silica. Samples were

allowed to clot 1 hr at room temperature before processing, then spun down by centrifugation at

1300 x g x 10 min, aliquoted into 1.5 ml vials and stored at – 80 C. Samples from the other studies

were thawed and aliquoted for the current study and then refrozen.

ERASMOS enrolled 60 patients from 03/2013 – 05/2015 from the Gynecologic Oncology service

at DFCI and BWH. Patients were approached consecutively for enrollment. Eligible patients were

scheduled to undergo exploratory laparotomy for a pelvic mass suspicious for invasive epithelial

ovarian cancer. Serum blood samples were collected preoperatively and postoperatively for each

patient and then stratified for analysis by anesthetic and analgesic exposure. The primary endpoint

of the study is overall survival; study results have not been published to date as the final data are not

mature.

The Pelvic Mass Protocol (PMP) enrolled women referred to the DFCI/BWH Gynecologic Oncol-

ogy service over the period 1992 to 2013 (Williams et al., 2014). Of some 455 women with a pelvic

mass enrolled, we selected a total of 120 samples from the following categories: serous cystade-

noma (Samuel and Carter, 2016), serous borderline tumor (Samuel and Carter, 2016), Stage I/II

invasive serous adenocarcinoma (Häusler et al., 2010), and Stage III/IV invasive serous adenocarci-

noma (Wang et al., 2016), endometrioma (Samuel and Carter, 2016), Stage I/II invasive clear cell

or endometrioid adenocarcinoma (Häusler et al., 2010), or Stage III/IV invasive clear cell or endome-

trioid adenocarcinoma (Wang et al., 2016). Overall, 37% of the subjects had benign disease, 12.6%
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had borderline tumors, 10.1% had low grade carcinomas, and 40.4% had high grade carcinomas.

One sample of serous cystadenoma was excluded as an outlier due to a recent cardiovascular event

as evidenced by extreme elevation of myocardial ischemia-associated miRNAs. From the most

recent phase (2004–2008) of the NECC study, we selected fifteen age and race matched healthy

controls matched to the demographics of the EOC cases and benign disease controls from the PMP

study. There was no overlap of subjects between the two studies. The samples sizes were based on

a plan for a 2:1 ratio of early stage (Stage I/II) cancer cases to advanced stage (Stage III/IV) cases, a

1:1 ratio of invasive cancer cases: benign/borderline/control subjects, and for balanced numbers of

healthy control: benign serous: benign endometrioid: borderline serous subjects. Borderline endo-

metrioid or clear cell tumors were exceedingly rare and thus not included. For the qPCR model, we

added 113 epithelial ovarian cancer cases and 113 healthy controls, matched for age and collection

year. 20 failed quality control, leaving 206 additional samples to add to the 119 samples originally

profiled from PMP and creating a 325 sample set for qPCR-based model building and cut-off

calibration.

Study subjects for external validation
Serum samples were collected from consecutive women undergoing surgical evaluation at the Medi-

cal University of Lodz, Poland, for a pelvic mass in association with an IRB-approved tumor collection

protocol. All subjects were enrolled after signing informed consent, and samples were collected

fresh in 13 � 75 mm BD Vacutainer Plus Plastic Serum tubes (BD Life Sciences, Franklin Lakes, NJ)

with spray-coated silica. Samples were allowed to clot 1 hr at room temperature before processing,

then spun down by centrifugation at 1300 x g x 10 min, aliquoted into 1.5 ml vials and stored at – 80

C. Samples were thawed only for the present study.

Outcome
Samples were classified as either invasive cancer or benign/borderline/controls. Although borderline

tumors are not strictly benign, they are clinically indolent and seldom fatal, thus we grouped them

with benign lesions as our goal was to diagnose the tumors most contributing to mortality. For each

patient, an estimated probability of >0.5 was classified as predicting invasive ovarian cancer.

Next generation sequencing
For next generation sequencing (NGS), sample preparation, library construction, and miRNA

sequencing were performed by Exiqon, Inc. (Vedbæk, Denmark). 500 ml of human serum from each

sample were analyzed in duplicate. RNA from each serum sample was isolated using the miRCURYTM

RNA isolation kit (Exiqon, Vedbæk, Denmark) per the manufacturer’s protocol optimized for serum.

The quality of the isolated RNA was checked using qPCR. Total RNA was converted into microRNA

NGS libraries using the NEBNEXT library generation kit (New England Biolabs Inc., Ipswich, MA) per

the manufacturer’s instructions. Each individual RNA sample had adaptors ligated to its 3’ and 5’

ends and converted into cDNA. Then the cDNA was pre-amplified with specific primers containing

sample-specific indices. After 18 cycles of pre-PCR the libraries were purified on QiaQuick columns

and the insert efficiency evaluated by a Bioanalyzer 2100 instrument on a high sensitivity DNA chip

(Agilent Inc., Lexington, MA). The microRNA cDNA libraries were size fractionated on a LabChip XT

(PerkinElmer Waltham, MA) and a band representing adaptors and 15–40 bp insert excised using

the manufacturer’s instructions. Samples were then quantified using qPCR and concentration stand-

ards. Based on the quality of the inserts and the concentration measurements, the libraries were

pooled in equimolar concentrations (all concentrations of libraries to be pooled were of the same

concentration). The library pools were finally quantified again with qPCR and the optimal concentra-

tion of the library pool used to generate the clusters on the surface of a flowcell before sequencing

using v3 sequencing methodology according to the manufacturer instructions (Illumina Inc., Dedham,

MA). Samples were sequenced on the Illumina NextSeq 500 system (Illumina Inc., Dedham, MA)

using a single-end read length of 50 nucleotides at an average of 10 million reads per sample.

Sequence tags were mapped to miRbase 20 (http://www.mirbase.org/). After sequencing adapters

were trimmed off as part of the base calling, trimming of adapters from the dataset revealed distinct

peaks representing microRNA (~18–22 nt). Putative microRNAs not in standard miRBase or Rfam

classification were identified based on the prediction algorithm miRPara and are included with the
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sequencing data in the GEO file (Wu et al., 2011). Expression levels were quantified in tags per mil-

lion (TPM) (unadjusted data and batch-adjusted data available in Supplementary file 6). TPM is a

unit used to measure expression in NGS experiments. The number of reads for a particular miRNA is

divided by the total number of mapped reads and multiplied by 1 million. Raw sequencing data are

accessible as. fastq files through the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.

gov/geo Accession GSE94533. The most stable miRNAs from the sequencing data were selected as

normalizers using the NormFinder algorithm (Andersen et al., 2004).

qPCR
miRNAs incorporated into the final neural network model were confirmed using qPCR with Exiqon

(Vedbæk, Denmark) LNA-containing miRNA-specific probes. We selected nine potential reference

miRNAs (hsa-miR-423–3 p, hsa-miR-103a-3p, hsa-miR-222–3 p, hsa-miR-221–3 p, hsa-miR-191–5 p,

hsa-miR-181a-5p, hsa-miR-148b-3p, hsa-miR-146b-5p, and hsa-let-7c-5p) from the miRNA sequenc-

ing data using the NormFinder algorithm (Andersen et al., 2004). Both the 14 miRNAs from the

test set and nine potential reference miRNAs were profiled using Exiqon’s pick-and-mix array with

LNA-containing miRNA-specific probes. Small RNA from each serum sample was isolated using the

miRCURY RNA isolation kit (Exiqon, Vedbæk, Denmark) per the manufacturer’s protocol optimized

for serum. The quality of the isolated RNA was checked using qPCR. All miRNAs were polyadeny-

lated and reverse transcribed into cDNA in a single reaction step. cDNA and ExiLENT SYBR Green

master mix were transferred to qPCR panels pre-loaded with primers using a pipetting robot. Ampli-

fication was performed using a Roche Lightcycler 480 (Roche, Basel, Switzerland). Amplification qual-

ity was determined by generating melting curves. Raw Cq values and melting points, detected by

the Lightcycler software, were exported. Assays with several melting points or with melting points

deviating from assay specifications were flagged and removed from the dataset. Reactions with

amplification efficiency below 1.6 were also removed. Assays giving Cq values within 5 Cq values of

the negative control sample were also removed from the dataset.

Spike-in positive controls and no template negative controls were included. Minimum detection

values for qPCR were established at 37 cycles; miRNAs with no amplification before that number of

qPCR cycles were assumed to have their expression undetectable, and a quantification cycle (Cq)

value of 37 was imputed as a substitute value. Raw, background filtered, and normalized data

appear in the supplement (Supplementary file 6) in accordance with Minimum Information for Publi-

cation of Quantitative Real-Time PCR Experiments (MIQE) Guidelines (Bustin et al., 2009). Data

were normalized to the average of the assays detected in all samples (n = 120 samples). The nine

selected reference miRNAs were reevaluated after profiling for their stability across the arrays and

the average Cq of the two best ones (miR-423–3 p and miR-103a-3p) was selected as the reference

for dCq calculations of the 14-miRNA and the 7-miRNA diagnostic sets using the NormFinder

method.

Comparison of preoperative and postoperative samples
Individual miRNAs measurements from preoperative and postoperative serum samples from the

ERASMOS study had been measured previously using multiplexed miRNA hydrogel probes (Fire-

Plex, Abcam, Cambridge, MA) on a flow cytometer. Samples were profiled in duplicate, then repli-

cates were merged. Fluorescence intensity values across all samples were normalized with Firefly

Analysis Workbench (Abcam, Cambridge, MA) using the geNorm algorithm to identify appropriate

normalizers (Vandesompele et al., 2002).

Sample size estimation
We sought a testing set showing a superiority of 0.1 in the area under the receiver operating charac-

teristic curve (AUC) against a value of 0.75 (assumed as a null hypothesis for a clinically useful bio-

marker) with a statistical power of 80% and a type 1 error probability <0.05 (Hanley and McNeil,

1982). For statistical power estimation purposes we assumed that the model predictions would be

moderately correlated with CA-125 levels (r > 0.3). The calculation yielded a required testing set of

44 patients (22 with invasive cancer and 22 without invasive cancer). To train the classifiers, we

assumed the training set would require 3-fold more patients (N = 132) bringing the total number of
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required patient samples to 176 samples. We increased the sample size to 180 to account for poten-

tial clinical or technical outliers.

Model development
Variable selection
miRNAs were filtered for miRNAs present in at least 50% of both datasets at a detection threshold

of 10 tags per million reads (tpm), leaving 192 miRNAs to test in our models. The data were batch-

adjusted using ComBat to account for the different study populations (Figure 9; Supplementary file

6) (Johnson et al., 2007). Subject samples were then randomized into ‘training’ and ‘testing’ sets in

an approximate 70:30 ratio.

As the dataset included more variables than cases, direct model development on the full dataset

would have resulted in overfitted results. Hence, typically for such data mining problems we prese-

lected the variables for classification model development using three methods – a significance filter

(using a student’s t-test – Supplementary file 6), a group-stratified fold change filter, and a correla-

tion-based feature selection (CFS) (Witten, 2016). For the significance filter, we assumed miRNAs

with p<0.05 and false discovery rate (FDR) < 0.05 for cancer vs benign/borderline/controls as signifi-

cant. For the fold change filter, we selected miRNAs that showed fold changes < 0.8 or>1.2 for can-

cer vs benign/borderline/control comparisons convergent in both the PMP/NECC and ERASMOS

datasets. Correlation-based Feature Subset Selection (CFS) is a wrapper feature selection method

that evaluates the worth of a subset of attributes by considering the individual predictive ability of

each feature along with the degree of redundancy between them. Subsets of features that were

highly correlated with the class while having low intercorrelation were preferred in the process

(Hall, 1998). Search of the space of attribute subsets was performed by greedy hillclimbing

Figure 9. Principal component analysis identified a prominent batch effect among the study populations. (Left) Before batch effect removal. (Right)

After batch effect removal using ComBat . ERASMOS – Effects of Regional Analgesia on Serum miRNA after Oncology Surgery Study. PMP – Pelvic

Mass Protocol. NECC – New England Case Control study.
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augmented with a backtracking facility. This method of searching, called ‘Best First’, started with the

empty set of attributes and searched the set forward.

Classification models
All three sets of variables were analyzed using 11 different classification models for a total of 33 dif-

ferent algorithms. Six models (linear discriminant analysis, logistic regression, multivariate adaptive

regression splines, naive Bayes, neural network, and support vector machine) were developed using

STATISTICA Data Miner 12.5 (StatSoft, Tulsa, OK, USA). The remaining five models (functional tree,

LAD tree, Bayesian network, elastic net regression, and random forest) were created using Weka

3.9.0 (University of Waikato, New Zealand). Detailed descriptions of the classification models appear

below. Interestingly, relationships among individual miRNA species were non-linear, so these rela-

tionships would likely have been obscured as evidenced by a simple hierarchical clustering of the sta-

tistically significant miRNAs from univariate analysis (Figure 10).

All three sets of variables were analyzed using 11 different classification models for a total of 33

different algorithms. Six models (linear discriminant analysis, logistic regression, multivariate adap-

tive regression splines, naive Bayes, neural network, and support vector machine) were developed

using STATISTICA Data Miner 12.5 (StatSoft, Tulsa, OK, USA). The remaining five models (functional

tree, LAD tree, Bayesian network, elastic net regression, and random forest) were created using

Weka 3.9.0 (University of Waikato, New Zealand). Interestingly, relationships among individual

miRNA species were non-linear, so these relationships would likely have been obscured as evi-

denced by a simple hierarchical clustering of the statistically significant miRNAs from univariate anal-

ysis (Figure 7).

Neural network
For the neural network, we built 5000 neural networks for each variable selection method (15000

networks in total) and retained the best one in terms of performance in properly assigning cases to

classes in the test set. The networks were built in a semi-automated way. Their structure was of a

multilayer perceptron with a number of neurons in the hidden layer iteratively optimized from (n vari-

ables)/3 to (n variables)*1.5 to avoid overfitting. Admissible linking functions between the neuron

layers were linear, logistic, hyperbolic tangential, and exponential. Neuron weights were calculated

using the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm and the network was trained in each

Figure 10. Hierarchical clustering of the eleven statistically significant miRNAs identified using univariate analysis. While most of the patients with

cancer clustered together, considerable heterogeneity was evident, and no clear separation of the groups could be achieved using any single miRNA.

DOI: https://doi.org/10.7554/eLife.28932.020
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epoch using an error back-propagation algorithm to optimize weights in each pass (Broyden, 1970;

Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Shanno and Kettler, 1970).

Linear discriminant analysis
The method creates a new set of spatial coordinates that allow for linear separation of the groups.

The most discriminative features were extracted on the basis of their correlations and the model

used a backward stepwise variable selection algorithm only retaining in the model variables that

showed final F values > 5. This two-step filtering (variable selection after one of the three initial vari-

able filtering algorithms) of the variables used in sample classification was aimed at the reduction of

the number of miRNAs required for the model to work. Depending on the number of variables

selected by the filters, the discriminatory function of the LDA was based on a reduced set of miRNAs

that passed the F value threshold and were retained in the model. For the subset of miRNAs filtered

by statistical significance, the model used three miRNAs: miR-30d-5p, miR-200c-3p and miR-320d.

For CFS variable selection the model used three miRNAs: miR-320d, miR-200a-3p and miR-16-2-3p.

The variable selection method based on stratified fold change used a yet another different set of

miRNAs: miR-200c-3p, miR-320d and miR-150–5 p.

Logistic regression
As above, the logistic regression model was built using a backward stepwise variable selection pro-

cedure, with variables showing p<0.15 being retained in the final model. The procedure allowed for

second order interactions between the variables to detect potential subgroup-specific effects. A

standard quasi-Newton estimation procedure was performed in model development. After exclusion

of variables with p values > 0.15 in the multivariate model, the miRNAs remaining in the classifier

were miR-30d-5p, miR-320d, miR-200c-3p, miR-1246, and an interaction of miR-200c-30p*miR-1246.

A logistic regression model based on miRNAs selected by the CFS variable algorithm required only

two miRNAs to work: miR-200c-3p and miR-320d. A logistic regression classifier built on the fold

change filter-selected miRNAs used three miRNAs: miR-150–5 p, miR-320d, miR-1246, and an inter-

action between miR-200c-30p*miR-1246. Results of all three models were convergent and the crucial

role of miR-200c/miR-320d was confirmed by all models. The logistic regression model was very sim-

ilar in terms of performance to the neural net in the CFS-selected variable subset. This was a logical

consequence of a strong variable filtering leaving too few input variables for the network to identify

subtle patterns.

Multivariate adaptive regression splines
An alternative approach to modeling of the classification function was the MARS model – a modifica-

tion of a multivariate joint-point regression which estimates a number of basal function most appro-

priate for data from specific fragments of the multidimensional dataset. The method is used in

complex function modeling of non-monotonous or non-linear associations. Within our analysis we

used a MARS model that allowed for up to third degree interactions between the variables, allowing

for up to 1.5*(n variables) basal function in each model and penalizing the introduction of additional

basal functions by a factor of 2. Interactions between variables were tested for improvement of

model performance up to the degree of three. During the model building procedure we iteratively

removed variables absent in any of the basal functions until only miRNAs used in at least one basal

function remained in the MARS model. Using 11 miRNAs filtered on the basis of significance we cre-

ated a MARS model composed of 14 basal functions. All functions were transformation of five, single

miRNAs: miR-30d-5p, miR-200c-3p, miR-450b-5p, miR-200a-3p, and miR-1307–3 p. The MARS

model built on CFS-filtered variables consisted of 7 basal functions based on four miRNAs: miR-

200c-3p, miR-320d, miR-16-2-3p, and miR-320b. The final MARS model built on 14 miRNAs filtered

by the stratified fold change threshold was optimized at 10 basal functions based on 5 miRNAs:

miR-200c-3p, miR-150–5 p, miR-200a-3p, miR-92–3 p, miR-203a, and miR-320c. All MARS models

showed relatively poor performance hinting at issues with model overfitting and low specificity (for

example, the ROC AUC for the significance-based and CFS variable selection inputs did not meet

statistical significance).
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Elastic net regression
An elastic-net regularized generalized linear model is a linear regression using coordinate descent.

In order to train this model we have used Java implementation of a component of the R package

‘glmnet’ in WEKA software. As we wanted to use a regression method for classification, class was

binarized and one regression model was built for each class value (i.e. meta-scheme classification via

regression). The alpha elastic-net mixing parameter was chosen to be 0.001 while the epsilon value

for generating the lambda sequence was set to 10�4. Additionally, a covariance update method was

used. This resulted in the following formula: weka.classifiers.meta.ClassificationViaRegression -W

weka.classifiers.functions.ElasticNet – -m2 y -alpha 0.001 -lambda_seq -thr 1.0E-7 -mxit 10000000 -

numModels 100 -infolds 10 -eps 1.0E-4 -sparse n -stderr_rule n -addStats n. Please note that repro-

duction of model induction may require installing additional packages from WEKA package

manager.

Elastic net is a type of linear modeling. As so, application of classification via regression resulted

in construction of 2 linear functions equations and as the class was binary – those equations had

equally opposite coefficients. For example, classifier for class cancer in CFS-based dataset was based

on the equation:

Pð17Þ ¼�0:110hsa�miR� 16� 2� 3pþ 0:050hsa�miR� 200a� 3pþ 0:275hsa�miR� 200c� 3p

þ0:043hsa�miR� 320bþ 0:261hsa�miR� 320d� 0:031

Model files can be loaded in WEKA for further evaluation.

Support vector machine
This classifier was built with a set of different entry parameters: kernel function types, function

parameters, and hinge loss function. Admissible kernel functions were linear, polynomial (2nd and 3rd

order) and radial basis function (gamma from 0.1 to 1 tested in 0.1 increments).All possible combina-

tions were tested and the resulting best model was selected on the basis of classifier performance in

the test set. All SVM models codes for significance, CFS and stratified fold change-based variable

selection algorithms are available as pmml files. The models performed worse than simpler classifica-

tion tools (logistic regression/linear discriminant analysis), possibly due to a small number of cases

available for testing.

Naı̈ve bayes classifier
A priori class probabilities were estimated empirically on the basis of class frequencies in the data-

set, normal distribution was assumed for all log-10 transformed miRNA expression values quantified

as transcripts per million. The exact probability estimator of the naı̈ve Bayes classifier showed similar

performance on all three variable subsets, achieving accuracy comparable to that of the SVM model

LAD tree
Multi-class alternating decision tree using the LogitBoost strategy (LAD Tree [http://www.cs.waikato.

ac.nz/~bernhard/papers/ecml2002.pdf]). The number of boosting iterations to use, which deter-

mined the size of the trees, was set to be 10.

Formula: weka.classifiers.trees.LADTree -B 10. Please note that reproduction of model induction

may require installing additional packages from WEKA package manager.

LADTree is a completely deterministic tree that allows decision making by counting respective

probabilities on the pathway though the tree. Those trees and probabilities are available as buffer

text files and WEKA model files. It is notable, that our configuration allowed the algorithm to con-

sider a maximum of 10 miRNAs in the final schema.

Functional tree
Functional trees are logistic classification decision trees that have logistic regression functions at the

inner nodes or leaves. Training of models was performed again by WEKA software. As in default set-

tings, the minimum number of instances at which a node is considered for splitting was 15, number

of iterations for LogitBoost was also 15 and no weight trimming was applied.

Formula: weka.classifiers.trees.FT -I 15 F 0 -M 15 -W 0.0. Please note that reproduction of model

induction may require installing additional packages from WEKA package manager.
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All functional trees were models with one node. In order to infer how this model works, evalua-

tion of values for linear combination function at each node for every class has to be done. For exam-

ple, for cancer in the CFS-processed dataset the formula is:

F1 ¼�1:75þ½hsa�miR� 16� 2� 3p� ��0:29þ ½hsa�miR� 200a� 3p� � 0:08þ ½hsa�miR� 200c� 3p�
�1:07þ ½hsa�miR� 320b� ��0:21þ½hsa�miR� 320d� � 1:29

F1 = �1.75 + [hsa-miR-320d] * 1.29

As our classifiers are binary, the result for the second class (F2) should be an opposite number (F1

= -F2). In the next step the value of the following formula should be calculated and compared to

threshold of the node:

eF1

eF1 þ eF2

Model files can be loaded in WEKA for further evaluation.

Bayesian network
A Bayes Network was trained using a K2 search algorithm, which is a hill climbing algorithm

restricted by an order on the variables. The initial network used for structure learning was a Naive

Bayes Network and there could be only one parent a node. Conditional probability tables of a Bayes

network were driven directly from data once the structure has been learned (with alpha value equal

to 0.5). Formula: weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.local.K2 –

-P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5. Please note that

reproduction of model induction may require installing additional packages from WEKA package

manager. Structures of networks as well as LogScores are available as buffer text files. Model files

can be loaded in WEKA for further evaluation.

Random forest
Random forest is a technique of random decision forests that considers K randomly chosen attrib-

utes at each node. K was calculated as integer of 1 plus binary logarithm of number of predictors.

Minimum proportion of the variance needed at a node in order for splitting to be performed was set

to 0.001. No backfitting was performed.

Formula: weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1.

Please note that reproduction of model induction may require installing additional packages from

WEKA package manager. Random forest is a form of bagging with 100 iterations and base learner.

Model files can be loaded in WEKA for further evaluation.

Basic statistical analysis
Differences in the distribution of histopathologic diagnoses, grade, and stage between the study

populations were calculated using chi-square tests. Differences in false-positive and false-negative

assignment were compared using Fisher’s exact test. Differences in age and CA125 levels between

the study populations were calculated using a Mann-Whitney U test. For all tests, a two-tailed

p-value<0.05 was considered significant. For the ROC curves, cut-off values for prediction with the

best diagnostic performance were established using the Youden index (sensitivityc + specificityc – 1)

(Youden, 1950). Preoperative and postoperative serum samples from patients enrolled in ERASMOS

were compared using a Wilcoxon matched pairs sign rank test.

Code availability
Computer codes are available as raw pmml files in the supplement.

Public dataset
The neural network approach was applied to an independent, publicly available published dataset

by Keller, et al. GEO Accession GSE31568 (Keller et al., 2011) In that study, the authors collected

blood samples from 454 individuals, including 15 women with ovarian cancer and 70 healthy con-

trols. Further clinical annotation of the samples was not provided. The samples include a variety of

other diagnoses (stomach cancer, sarcoidosis, prostate cancer, periodontitis, pancreatitis, pancreatic
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cancer, multiple sclerosis, melanoma, lung cancer, chronic obstructive pulmonary disease, Wilms

tumor, and acute myocardial infarction). Circulating miRNAs were quantified using a highly specific

primer extension–based microarray that shows a very small degree of cross-hybridization

(Supplementary file 6) (Vorwerk et al., 2008).

Pathology samples
Paraffin blocks were selected from the surgical pathology files of the Brigham and Women’s Hospital

per BWH IRB Protocol #2016P002742. Hematoxylin and eosin sections of the cases were reviewed

by a gynecologic pathologist (CC). The tissues had been routinely fixed in 10% neutral formalin and

embedded in paraffin. Immunohistochemistry for TP53 and Ki-67 were performed using commer-

cially available antibodies as previously described (Perets et al., 2013). Appropriate positive and

negative (without primary antibodies) controls were used simultaneously for each antibody. In situ

hybridization was performed using commercially available RNA probes from Exiqon (Vedbæk, Den-

mark) according to the manufacturer’s instructions. All probe concentrations were 1 nM. A probe for

the small nuclear RNA U6 served as a positive control while a non-targeting scramble RNA probe

served as negative control.
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project version 1
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Publicly available at
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Expression Omnibus
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GSE31568)

References
Alhasan AH, Scott AW, Wu JJ, Feng G, Meeks JJ, Thaxton CS, Mirkin CA. 2016. Circulating microRNA signature
for the diagnosis of very high-risk prostate cancer. PNAS 113:10655–10660. DOI: https://doi.org/10.1073/pnas.
1611596113, PMID: 27601638

Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR
data: a model-based variance estimation approach to identify genes suited for normalization, applied to
bladder and colon cancer data sets. Cancer Research 64:5245–5250. DOI: https://doi.org/10.1158/0008-5472.
CAN-04-0496, PMID: 15289330

Bagnoli M, Canevari S, Califano D, Losito S, Maio MD, Raspagliesi F, Carcangiu ML, Toffoli G, Cecchin E, Sorio R,
Canzonieri V, Russo D, Scognamiglio G, Chiappetta G, Baldassarre G, Lorusso D, Scambia G, Zannoni GF,
Savarese A, Carosi M, et al. 2016. Development and validation of a microRNA-based signature (MiROvaR) to
predict early relapse or progression of epithelial ovarian cancer: a cohort study. The Lancet Oncology 17:1137–
1146. DOI: https://doi.org/10.1016/S1470-2045(16)30108-5, PMID: 27402147

Broyden CG. 1970. The convergence of a class of double-rank minimization algorithms 1. general considerations.
IMA Journal of Applied Mathematics 6:76–90. DOI: https://doi.org/10.1093/imamat/6.1.76

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL,
Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative
real-time PCR experiments. Clinical Chemistry 55:611–622. DOI: https://doi.org/10.1373/clinchem.2008.
112797, PMID: 19246619

Chung YW, Bae HS, Song JY, Lee JK, Lee NW, Kim T, Lee KW. 2013. Detection of microRNA as novel
biomarkers of epithelial ovarian cancer from the serum of ovarian cancer patients. International Journal of
Gynecological Cancer 23:673–679. DOI: https://doi.org/10.1097/IGC.0b013e31828c166d, PMID: 23542579

Coleman RL, Herzog TJ, Chan DW, Munroe DG, Pappas TC, Smith A, Zhang Z, Wolf J. 2016. Validation of a
second-generation multivariate index assay for malignancy risk of adnexal masses. American Journal of
Obstetrics and Gynecology 215:82.e1–8282. DOI: https://doi.org/10.1016/j.ajog.2016.03.003, PMID: 26970494

Collins GS, Reitsma JB, Altman DG, Moons KG. 2015. Transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Annals of Internal Medicine 162:55–63.
DOI: https://doi.org/10.7326/M14-0697, PMID: 25560714

Cramer DW, Vitonis AF, Welch WR, Terry KL, Goodman A, Rueda BR, Berkowitz RS. 2010. Correlates of the
preoperative level of CA125 at presentation of ovarian cancer. Gynecologic Oncology 119:462–468.
DOI: https://doi.org/10.1016/j.ygyno.2010.08.028, PMID: 20850174

Cramer DW, Elias KM. 2016. A prognostically relevant miRNA signature for epithelial ovarian cancer. The Lancet
Oncology 17:1032–1033. DOI: https://doi.org/10.1016/S1470-2045(16)30149-8, PMID: 27402146

Deb B, Uddin A, Chakraborty S. 2017. miRNAs and ovarian cancer: An overview. Journal of Cellular Physiology.
DOI: https://doi.org/10.1002/jcp.26095, PMID: 28703277
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