Background. Brucellosis is still endemic in many developing countries and frequently leads to misdiagnosis and treatment delays. Indirect inflammatory markers such as mean platelet volume (MPV), platelet distribution width (PDW), red cell distribution width (RDW), neutrophil to lymphocyte ratio (NLR), and platelet to lymphocyte ratio (PLR) have been identified as markers of inflammation. The present study aimed to evaluate and compare the levels of these markers for prognostic purposes and to assess the correlation of C-reactive protein (CRP) with brucellosis in adults and children.

Methods. The study included 137 adults and 41 age- and gender-matched healthy controls, as well as 71 children and 81 age- and gender-matched healthy controls. Hematological parameters and CRP were retrospectively recorded and compared between the adult and pediatric patients.

Results. The mean age of the adult patients (54% female) was 43.1 ± 15.4 years, whereas the mean age of the pediatric patients (50.0% male) was 9.2 ± 3.3 years.

Conclusions. On the basis of our findings, we consider that the use of complementary indirect markers such as MPV, NLR, PLR, and RDW together with the CRP test—which is used concomitantly with serological diagnostic tests in situations where brucellosis is suspected—might be helpful in the diagnosis and follow-up of brucellosis, as well as in the evaluation of complications and response to therapy, in both adult and pediatric brucellosis patients.

Disclosures. All authors: No reported disclosures.

1148. Impact of Procalcitonin (PCT)-Guided Antibiotic Therapy on Mortality in Critically Ill Patients: A Systematic Review and Meta-Analysis of 18 Randomized Controlled Trials
Dominique Pepper, MD MBChB1; Dunjeng Sun, PhD1; Chau Rhue, MD, MPH1; Judith Welsh, BSN2; John H. Powers III, MD3; Robert L. Danner, MD4; and Sameer Kadi, MD5
1Critical Care Medicine Department, National Institutes of Health, Bethesda, MD
2Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
3National Institutes of Health Library, National Institutes of Health, Bethesda, Maryland
4Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick
5Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Procalcitonin (PCT)-guided antibiotic therapy has been shown to reduce antibiotic use in critically ill patients with suspected or proven infection, but its impact on mortality remains uncertain. Our meta-analysis examines the effect of PCT-guided antibiotic therapy on survival in critically ill patients.

Methods. We conducted a systematic review and meta-analysis of PCT-guided antibiotic therapy through a comprehensive strategy. Scopus, Web of Science, EMBASE, and clinicaltrials.gov electronic databases up to October 2016. The meta-analysis was restricted to randomized controlled trials (RCTs) of critically ill patients receiving PCT-guided antibiotic treatment and reporting survival or antibiotic duration. Study quality was assessed using the Cochrane risk of bias tool. Two reviewers conducted all review stages independently, and a third reviewer adjudicated any differences.

Results. Of the 18 RCTs selected (n = 5183 patients; Table), 17 assessed mortality, and 10 assessed antibiotic duration. NLR; it scored ≥3 and 10 scored ≥2 out of 6 on the risk of bias assessment. Compared with controls, PCT-guided antibiotic treatment was associated with a significant reduction in mortality (20.7% vs. 23.0%; risk ratio [RR] 0.90 [95% CI, 0.81-0.99], I²=0%; Figure 1). Survival benefit was retained in the RCT subset with a lower risk of bias (score ≥ 3; RR 0.87 [95% CI, 0.77-0.98], I²=0%; Figure 2) but not with higher risk of score (score ≤ 2; RR 0.98 [95% CI, 0.80-1.20], I²=30%). Our analysis of the effect of PCT-guided antibiotic therapy on antibiotic duration displayed significant heterogeneity (I²=61.2%, P = 0.004), which precluded reporting on aggregate effect. Important limitations were: single previously conducted study (n = 21), lack of double blinding (all studies) and variable protocol non-adherence and timeframes examined for mortality.

Conclusions. In a meta-analysis of RCTs of critically ill patients with suspected or proven infection, PCT-guided antibiotic treatment was associated with a significant reduction in mortality. The observed survival benefit was weighted towards RCTs of relatively higher quality. However, the plausibility of this finding, as well as the impact of protocol non-adherence on outcome needs further study.

Disclosure. All authors: No reported disclosures.

1149. Serial Procalcitonin Levels Correlate with Microbial Etiology in Hospitalized Patients with Pneumonia
Pierre Ankomah, MD, PhD1; Suzanne McLuskey, MD1; Michael Abers, MD1; Benjamin Bearntz, MD2; Shrey Patel, MD, MPH3; Philipp Schuetz, MD, MPH4; Victor Chiappa, MD5; Kent Lewandowski, MD6; Jain Vyas, MD, PhD, FIDSA7 and Michael Mansour, MD, PhD7
1Massachusetts General Hospital, Boston, Massachusetts
2Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
3Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
4UCSF, San Francisco, California
5Medical University Clinic, Kantonsspital Aarau, Aarau, Switzerland
6Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
7Medicine, Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Procalcitonin (PCT) is a biomarker that is finding increasing diagnostic and prognostic utility in lower respiratory infections. It remains unclear, however, when this information can be helpful in predicting the bacterial etiology of pneumonia, with a view to informing antibiotic choice and duration. This study examines the relationship between serial PCT measurements and microbial etiology in patients hospitalized for pneumonia to determine whether changes in PCT levels provide discriminatory information on microbial etiology.

Methods. We performed a subgroup analysis of data from a prospective cohort study of 505 patients admitted to a tertiary care center with findings concerning for pneumonia. Microbial etiology of pneumonia was determined from high quality respiratory samples, blood cultures or other relevant diagnostic tests according to standard protocols. Pneumococcal levels were measured serially during the first four days of hospitalization. We compared procalcitonin levels between different bacterial etiologies over the first four days of admission, using the Mann–Whitney U test to assess for statistical significance.

Results. Out of 505 patients, the diagnosis of pneumonia was adjudicated in 317, and bacterial etiology determined in 62 cases. The predominant pathogens were Staphylococcus aureus (N = 18), Streptococcus pneumoniae (N = 6), Pseudomonas aeruginosa (N = 11) and Haemophilus influenzae (N = 5). Admission levels of PCT were lower in S. pneumoniae infections, but a higher peak level was observed in Pseudomonas, with peak levels not reaching statistical significance. On hospital days two and three, pneumococcal procalcitonin levels were significantly higher than all other etiologies, but on day four, there was no statistically significant difference in PCT values for different microbial etiologies.

Conclusion. Serial procalcitonin levels during the early course of bacterial pneumonia reveal a difference between pneumococcal and other bacterial etiologies, and may have an adjunct role in guiding antibiotic choice and duration.

Disclosure. All authors: No reported disclosures.

1150. A Novel Host-protein Assay Accurately Distinguishes Bacterial From Viral Upper Respiratory Tract Infections
Kfir Oved, PhD1; Eran Eden, PhD1; Chantal Van Houten, MD, Tanya Gottlieb, PhD2; Roy Navon, MSc3; Asi Cohen, PhD1; Olga Boico, PhD1; Metal Paz, BSc1; Liat Zehktein, MD1; Gali Kronenfeld, MS2; Tomin Friedman, MD1; Ellen Bamberger, MD1,3; Irina Chistyakova, MD1; Israel Potasman, MD; FDINSA1; Michal Stein, MD1; Adi Klein1; Alain Gervaix, MD10; Isaac Sruge, MD11; and Louis Bont, MD/PhD12
1MeD Diagnostics, Tirat Carmel, Israel
2Division of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
3Rambam Health Care Campus, Haifa, Israel
4Bnai Zion Medical Center, Haifa, Israel
5Rapaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
6Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel
7Internal Medicine, Bnai Zion Medical Center, Haifa, Israel
8Infectious Disease, Bnai Zion Med. Ctr., Haifa, Israel
9Infectious Disease Unit, Hilversum Medical Center, Hilversum, The Netherlands
10Department of Pediatrics, Medical Center, Hadera, Israel
11Pediatric Emergency Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Bacterial and viral infections are often clinically indistinguishable, particularly in upper respiratory tract infections (URTIs), which leads to antibiotic misuse. A novel assay (ImmunoXpert™) that integrates measurements of three host-response proteins (TRAIL, IP-10, CRP) was recently developed to assist in differentiation between bacterial and viral infections. We evaluated the assay performance in URTI patients and compared it with standard laboratory measures.

Methods. We performed a sub-analysis of 461 patients with clinical suspicion of URTI enrolled in three multi-center clinical studies that evaluated the assay performance in patients with acute infections: ‘Curiosity’ study (NCT01917461), ‘Opportunity’ study (NCT01912154), and ‘Pathfinder’ study (NCT01911143). Comparator method was predetermined criteria combined with report panel adjudication, while the ImmunoXpert™ diagnostic performance was evaluated by comparing test and comparator method outcomes.

Results. A unanimous panel adjudication was obtained for 61 bacterial (33%) and 241 viral (52%) patients (162 patients (35%) had an indeterminate diagnosis). The assay distinguished between bacterial and viral infected patients with a sensitivity of 92% (95% CI: 82%–98%) and specificity of 93% (88%–96%) with 11 equivocal test results. Overall the assay outperformed other routine laboratory tests (FIG 1), including: white blood cell count (WBC; cutoff 15,000 cells/µL, sensitivity 48% (35%–60%), P = 0.005), CRP (cutoff 5 mg/L, sensitivity 62% (41%–82%) vs. 29% (14%–48%), P = 0.005), absolute neutrophil count (ANC; cutoff 10,000 cells/µL, sensitivity 58% (45%–71%) vs. 5% (0–6%), specificity 94% (91%–97%) vs. 0.7).

Disclosure. All authors: No reported disclosures.