Clinic Characteristics Are not Associated with the Risk of Healthcare-associated Influenza-like Illness (HA-ILI) Among Young Children in Pediatric Primary Care Settings

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.1093/ofid/ofx163.1834

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493285

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Background. Kawasaki disease (KD) is a medium-sized vessel vasculitis with a prediction for coronary arteries and is of unknown etiology. KD is responsible for the majority of acquired pediatric cardiovascular disease in the industrialized world, and is associated with development of coronary artery aneurysms in approximately 25% of untreated patients. Epidemiologic, pathologic, and clinical characteristics of KD display notable overlap with common pediatric viral illnesses, leading some to hypothesize that a viral infection is the inciting agent for KD.

Methods. We investigated viral exposure history in KD patients by utilizing a recently developed technique to profile sera against the known human virome in an unbiased manner. Collected sera during acute phases of illness from 35 patients meeting clinical diagnostic criteria for KD, preferentially selecting patients with coronary involvement and/or late presentation. Control samples included healthy children and patients with known viral infections. Using phage immunoprecipitation sequencing (PIPS-seq), the sera were screened against a phage display library expressing epitopes that cover the complete reference protein sequences of the known 206 viruses with human tropism.

Results. The mean patient age was 4.6 years (range 0.4–16.9) and mean day of illness at acute sample collection was 14.5 days (range 5 to 32). A majority of patients demonstrated coronary artery changes during the course of their illness (22/35, 62%). Sera from patients with KD demonstrated patterns of viral infection to common pediatric viruses with similar signal intensity and distribution to healthy control children.

Conclusion. Although sera obtained early in the disease course could have missed a titer rise, we conclude that patients with KD do not exhibit unique serologic evidence of infection to known viruses or a viral exposure history that differs from age-similar healthy children.

Disclosures. All authors: No reported disclosures.

2306. Familial and Environmental Impact on Colonization with Antibiotic-Resistant Organisms in the Neonatal Intensive Care Unit

Jennifer Duchon, MDCM, MPH1; Ryley Thompson, MCSE1; Mary Boyle, MSN1; Melanie Sullivan, BS, MT2; Patrick H. Gogan, MPH1; Ryley Thompson, MCSE1; Carol Muenks, BA1; Colleen Kennedy, BA, BS1; Megan Wallace, BS1; Carey-An D. Burnham, PhD1 and Stephanie Fritz, MD, MSC1; Pediatric Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri; Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Colonization with antibiotic-resistant organisms (AROs), including methicillin-resistant S. aureus (MRSA), places neonatal intensive care unit (NICU) patients at increased risk for infection. Infants are routinely screened for MRSA colonization, but reservoirs for ARO acquisition in the NICU are poorly understood.

Methods. Infants with known MRSA nasal colonization and a control group of infants with negative MRSA screening swabs, and their parents, were enrolled in a prospective cohort study. Weekly swabs were obtained to identify AROs from 4 infant body sites, 3 parental body sites, and 5 high-touch environmental surfaces in the NICU. These sites were used to identify AROs.

Results. Samples were collected 1–14 times (median 7) from 11 MRSA-colonized infants, 7 control infants, 11 mothers, and 9 fathers. Of MRSA-colonized infants, 9 (82%) were colonized with MRSA in the nares, 6 (55%) in the umbilicus, 8 (73%) in the inguinal folds, and 6 (55%) in the rectum over the study period. Six (55%) MRSA-colonized infants had persistent colonization (i.e., 3 consecutive positive samplings) over time were assessed using negative binomial regression. Site 1 elected not to adopt the change in surveillance policy, and thus was used as a control.

Conclusion. These data continue to support the rationale for our change in surveillance policy. Further studies should evaluate the effect of this strategy on ARO transmission in the general NICU population.

Disclosures. All authors: No reported disclosures.

2308. Clinicopathologic Analysis of Herpes Simplex Virus Infections in Neonates

Jennifer Duchon, MDCM, MPH1; Philip Maykowski, MPH2; Pamela Good, MD3; Sonjaya Tasa, MD1; Andrea DeLaMora, MD3 and Lisa Saiman, MD, MPH2; 1Epidemiology, Mailman School of Public Health, New York, New York; 2Pediatrics, Columbia Presbyterian Medical Center, New York, New York; 3Pediatrics, Weill Cornell Medical College, New York, New York; 4Infection Prevention and Control, New York Presbyterian Hospital, New York, New York; 5Columbia Presbyterian Medical Center, New York, New York

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Infections with antibiotic-resistant organisms (AROs), i.e., methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and multi-drug-resistant Gram-negative rods (MDR-GNR) among infants hospitalized in the Neonatal Intensive Care Unit (NICU) are associated with mortality and serious morbidities. Implementing appropriate infection control policies may help prevent transmission of AROs. However, the most effective strategies for surveillance of AROs in the NICU are unclear. Prior data collected from infants transferred from outside hospitals to NICUs affiliated with New York- Presbyterian (NYP) Hospital detected low rates of ARO colonization in the first week of life. Thus, in 2013 the strategy of performing targeted surveillance on infants transferred to NICU from other hospitals was changed to performing targeted surveillance on infants transferred at 7 days of age (DOL). The purpose of this study was to assess this change in surveillance strategy and monitor ARO colonization trends in the NICU.

Methods. Data from all infants transported to the NICUs at NYP from 2007 to 2016 were used. Risk factors for colonization with AROs including demographics and admitting diagnoses were explored using a multivariable binomial mixed model clustered by transferring hospital and controlled for NYP NICU. Trends in ARO colonization over time were assessed using negative binomial regression. Site 1 elected not to adopt the change in surveillance policy, and thus was used as a control.

Results. From 2007 to 2016, 2925 infants were transferred to the NYP NICUs, 1101 at Site 1 and 1824 at Site 2; 2571 (88%) had surveillance for at least 1 ARO. There were 226 positive surveillance cultures in 204 infants (8%): 94 (3.7%) for MRSA, 78 (3%) for VRE and 54 (2%) for MDR-GNR. In the final models, transfer DOL remained a highly significant predictor of colonization with any ARO. There was no significant increase in the incidence of transferred infants colonized with AROs over time in either NICU; this remained true in infants who were < 7 days of age at Site 1.

Conclusion. These data continue to support the rationale for our change in surveillance policy. Further studies should evaluate the effect of this strategy on ARO transmission in the general NICU population.

Disclosures. All authors: No reported disclosures.