Citation

Published Version
doi:10.1093/ofid/ofx163.1831

Accessed
December 24, 2017 12:50:10 PM EST

Citable Link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493296

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)
Disclosures. All authors: No reported disclosures.

2303. Post-Exposure Prophylaxis for Animal Bites: A Low Cost Model for Enhancing Reach and Affordability of Biologicals in High Burden Countries

Yajam Belludi; Yajam Belludi, MD; SHARE India, NA, AZ, India

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Rabies is a preventable fatal zoonotic disease of considerably high burden in low and middle income countries of Asia and Africa. Bites from rabid animals are the cause of human rabies. WHO post-exposure prophylaxis (PEP) guidelines recommends taking both vaccine and rabies immunoglobulin for category-III bites. Strict adherence to complete recommended PEP guidelines is the single most important factor in preventing human deaths. Need to calculate the required dose / quantity of rabies immunoglobulin, a key biological, needed for adherence to WHO PEP guidelines leads to prohibitively high cost of PEP and one key reason for bite victims taking incomplete PEP. An alternate published method to inject bite sites only with rabies immunoglobulin to enhance affordability was evaluated for cost-reduction and affordability.

Methods. 25 bite victims requiring rabies immunoglobulin according to category-III of WHO guidelines were part of the study. All the animal bite sites were injected with adequate quantity of rabies immunoglobulin to cover only the animal bite sites completely as per published alternate method. This is in contrast to WHO PEP guidelines where calculation of immunoglobulin is done as per body weight and, after injecting all the animal bite sites, the remaining quantity of immunoglobulin is injected intra-muscularly. All victims were vaccinated by intra-muscular route only. There was diversity in the profile of the 25 victims in terms of age, sex, number of wounds, and body weight. Analysis was done to determine the cost reduction due to reduced quantity of immunoglobulin required in following an alternate approach to the recommended WHO PEP regimen.

Results. Cost of rabies immunoglobulin was reduced on an average between (50–70)% if the quantity used was enough to cover the wound sites comprehensively instead of the recommended quantity based on body weight. Follow-up was done for 9 months and none showed clinical signs and symptoms of rabies.

Conclusion. An evaluation to check the extent of cost reduction that could make rabies immunoglobulin, a key PEP biological, more affordable was done. The significant cost reduction could be adapted for further studies so as to bring about changes in WHO PEP guidelines which would lead to more affordability for PEP and less deaths due to rabies.

Disclosures. All authors: No reported disclosures.

2304. Validation of a Definition for K-12 Student Absenteeism Due to Influenza-like Illness (ILI) for School-based Influenza Activity Monitoring in Oregon School District, Wisconsin—ORCHARDS (Oregon Child Absenteeism and Respiratory Disease Study)

Jonathan Temte, MD, PhD1; Shari Barlow, BA1; Amber Schemmel, BS2; Emily Temte, BA3; Maureen Landsverk, BS1; Brad Maerz, MS1; Venlik Zhetyeva, MD, MPH4 and Amra Uzicanin, MD, MPH5; 1Family Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; 2Centers for Disease Control and Prevention, Atlanta, Georgia; 3CDC, Atlanta, Georgia

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Syndrome-based absenteeism monitoring is proposed as an approach for early identification of influenza outbreaks in schools and surrounding communities, utilizing routinely collected attendance data. The availability of a simple, valid definition of ILI-related absence (a-ILI) is a prerequisite for monitoring.

Methods. We conducted a prospective study in children aged 4-19 years, between January 5, 2015 and April 11, 2017, which enrolled students with acute respiratory illness (ARI). Via home visits, the study team assessed participating students for symptoms (fever, cough, sore throat, nasal congestion, runny nose), collected nasal swabs for multiplex PCR testing, and ascertained school absence status. For analysis, ILI was defined as the presence of fever and a respiratory tract symptom (cough, sore throat, nasal congestion, or runny nose). We used multivariate binary logistic regression to assess the relationships between pathogens, absence status, and illness category.

Results. Of the total 661 participating students, 622 with ARI onset during school semesters remained in the analysis. Having an ILI was associated with absenteeism ($\chi^2=87.70; P < 0.001$), and with PCR detection of influenza A (FluA) and B (FluB), adenovirus (AD), and rhinovirus/enterovirus (R/E) (Table). While FluA, FluB, and AD were associated with positive likelihoods of a-ILI, the presence of R/E was associated with a negative likelihood of a-ILI. PCR detection of either FluA or Flu B was strongly associated with a-ILI (OR=4.84; 95% CI: 2.80–8.34; P < 0.001).

Conclusion. A simple definition for a-ILI (absent with fever and a respiratory symptom) is strongly associated with laboratory-confirmed influenza. Accordingly, a-ILI may serve as a proxy for influenza-specific absenteeism, thus allowing school-based absenteeism monitoring for influenza outbreaks.

Disclosures. All authors: No reported disclosures.

2305. Unbiased Screening of Kawasaki Disease Sera for Viral Antigen Exposure

Daniel Quiat, MD, PhD1; Tomasz Kula, PhD2; Chisato Shimizu, MD3; Stephen Elledge, PhD2; 1Pediatrics / Rheumatology, Boston Children’s Hospital, Boston, Massachusetts; 2University of California, San Diego, La Jolla, California; 3Rady Children’s Hospital San Diego, San Diego, California; 4University of California, San Diego, La Jolla, California; 5Pediatrics / Rheumatology, Boston Children’s Hospital, Boston, Massachusetts

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Kawasaki disease (KD) is a systemic vasculitis of childhood characterized by inflammation of small and medium-sized vessels throughout the body. The majority of KD cases are associated with infection by a specific strain of Coxsackie A-21 virus. Despite the increasing use of viral antigen-based screening, the prevalence of KD viral antigen exposure is unknown. We hypothesized that KD patients may have prevalent infections with viruses other than Coxsackie A-21, using an unbiased screening approach.

Methods. KD sera were screened by a multiplex antigen-lateral flow immunoassay (LFA) for 22 viral antigens, including Coxsackie A-21. Each antigen was independently tested in KD sera (n=1418) and control sera (n=783). Sensitivity, specificity, positive and negative predictive values (PPV and NPV) were calculated, and receiver operating characteristic (ROC) curves were generated for each antigen.

Results. KD sera had significantly higher odds of testing positive for adenovirus (AD) (OR=4.72), influenza B (FluB) (OR=4.46), and respiratory syncytial virus (RSV) (OR=4.39) compared to control sera. ROC curves showed high sensitivity and specificity for detecting positive samples for all antigens except RSV. The area under the curve (AUC) for AD was 0.93, for FluB 0.92, and for RSV 0.85.

Conclusion. Unbiased screening of KD sera for viral antigens using LFA detected common respiratory pathogens, suggesting prevalent viral antigen exposure in KD patients. This approach offers a potential method for detecting non-Coxsackie A-21 viral pathogens associated with KD.

Disclosures. All authors: No reported disclosures.
Background. Kawasaki disease (KD) is a medium-vessel vasculitis with a predilection for coronary arteries and is of unknown etiology. KD is responsible for the majority of acquired pediatric cardiovascular disease in the industrialized world, and is associated with development of coronary artery aneurysms in approximately 25% of untreated patients. Epidemiologic, pathologic, and clinical characteristics of KD display notable overlap with common pediatric viral illnesses, leading some to hypothesize that a viral infection is the inciting agent for KD.

Methods. We investigated viral exposure history in KD patients by utilizing a recently developed technique to profile sera against the known human virome in an unbiased fashion. We sequenced sera from KD patients during the acute phase of illness from 35 patients meeting clinical diagnostic criteria for KD, preferentially selecting patients with coronary involvement and/or late presentation. Control samples included healthy children and patients with known viral infections. Using phage immunoprecipitation sequencing (PhIP-seq), the sera were screened against phage display library expressing epitopes that cover the complete reference protein sequences of the known 206 viruses with human tropism.

Results. The median patient age was 4.6 years (range 0.4–16.9) and mean day of illness at acute sample collection was 14.5 days (range 5 to 32). A majority of patients demonstrated coronary artery changes during the course of their illness (22/35, 62%). Sera from patients with KD demonstrated patterns of viral infection to common pediatric viruses with similar signal intensity and distribution to healthy control children.

Conclusion. Although sera obtained early in the disease course could have missed a titer rise, we conclude that patients with KD do not exhibit unique serologic evidence of infection to known viruses or a viral exposure history that differs from age-similar healthy children.

Disclosures. All authors: No reported disclosures.

2306. Familial and Environmental Impact on Colonization with Antibiotic-resistant Organisms in the Neonatal Intensive Care Unit

Jennifer Duchon, MD, MPH; Michael Dolan, MPH, CHES; Patricia M. Topp, MS; Patrick G. Hogan, MPH; Ryley Thompson, MCSE; Carol Muenks, BA; Colleen Kennedy, BA, BS; Meghan Wallace, BS; Carey-An D. Burnham, PhD and Stephanie Fritz, MD, MSC; Pediatrics, Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri; Pediatrics and Immunology, Washington University School of Medicine, Saint Louis, Missouri

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Colonization with antibiotic-resistant organisms (AROs), including methicillin-resistant S. aureus (MRSA), places neonatal intensive care unit (NICU) patients at increased risk for infection. Infants are routinely screened for MRSA colonization, but reservoirs for ARO acquisition in the NICU are poorly understood.

Methods. Infants with known MRSA nasal colonization and a control group of infants with negative MRSA screening swabs, and their parents, were enrolled in a prospective cohort study. Weekly swabs were obtained to identify AROs from 4 infant body sites, 3 parental body sites, and 5 high-touch environmental surfaces in the NICU. Culture-based methods were used to identify AROs.

Results. There were 226 positive surveillance cultures in 204 infants (8%): 94 (3.7%) for MRSA, 78 (3.4%) for other enterococci (VRE), and multi-drug resistant Gram-negative rods (MDR-GNR) among infants hospitalized in the Neonatal Intensive Care Unit (NICU) are associated with mortality and serious morbidities. Implementing appropriate infection control policies may help prevent transmission of AROs. However, the most effective strategies for surveillance of AROs in the NICU are unclear. Prior data collected from infants transferred from outside hospitals to 2 NICUs affiliated with New York Presbyterian (NYP) Hospital detected low rates of ARO colonization in the first week of life. Thus, in 2013 the strategy of performing targeted surveillance on infants transferred to NICU was changed to performing targeted surveillance on infants transferred >7 days of life (DOL). The purpose of this study was to assess this change in surveillance strategy and monitor ARO colonization trends in the NICU.

Methods. Data from all infants transported to the NICUs at NYP from 2007 to 2016 were used. Risk factors for colonization with AROs including demographics and admitting diagnoses were explored using a multivariable binomial mixed model clustered by transferring hospital and controlled for NYP NICU. Trends in ARO colonization over time were assessed among infants evaluated using negative binomial regression. Site 1 elected not to adopt the change in surveillance policy, and thus was used as a control.

Results. From 2007 to 2016, 2925 infants were transferred to the NYP NICUs, 1101 at Site 1 and 1824 at Site 2; 2571 (86%) had surveillance for at least 1 ARO. There were 226 positive surveillance cultures in 204 infants (8%): 94 (3.7%) for MRSA, 78 (3%) for VRE and 54 (2%) for MDR-GNR. In the final models, transfer DOL remained a highly significant (OR per day = 1.018, CI 1.014, 1.022, P < 0.001) predictor of colonization with any ARO. There was no significant increase in the incidence of transferred infants colonized with AROs over time in either NICU; this remained true in infants who were < 7 days of life at Site 1.

Conclusion. These data continue to support the rationale for our change in surveillance policy. Further studies should evaluate the effect of this strategy on ARO transmission in the general NICU population.

Disclosures. All authors: No reported disclosures.

2308. Clinic Characteristics Are Not Associated with the Risk of Healthcare-associated Influenza-like Illness (HA-ILI) Among Young Children in Pediatric Primary Care Settings

Cogan Frengster, MD, MPH, MSHp; Russell Locatello, PhD; Heather Griffiths, PhD; Tolasode Odenyi, MPH; Robert Grundmeier, MD; Susan Coffin, MD, MPH, FSHEA, FPIDS; and Joshua Metlay, MD, PhD.

Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; PolicyLab and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Center for Pediatric Clinical Effectiveness, Pediatric Infectious Diseases Epidemiology and Antimicrobial Stewardship Research Group, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Medicine, Harvard Medical School, Boston, Massachusetts.

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. The majority of pediatric healthcare encounters for influenza-like illness (ILI) take place in ambulatory settings where there may be multiple opportunities for respiratory virus transmission. Recent evidence shows that a prior clinic visit increases the risk of ILI among young children. We hypothesized that clinic factors would be associated with the risk of HA-ILI among children < 6 years old after a primary care encounter.

Methods. We conducted a prospective cohort study of a sample of 1308 children presenting to any of the 31 primary care clinics in a large pediatric healthcare network for a non-ILI clinic visit during three consecutive respiratory seasons (2012/13 – 2014/15). HA-ILI cases were defined as any ILI encounter within 8 days after a non-ILI visit. Clinic factors (waiting room patient density or number of ILI encounters at a given appointment time, time in waiting room, clinic location), sociodemographic and clinical data were obtained electronically and from parent interviews. School attendance (daycare, school or parent) and age (≤2 years and >2 years) were combined to create 5 category composite variable. Logistic regression models after applying sampling weights were evaluated associated with HA-ILI risk and patient daycare/ school attendance, gender, influenza vaccine receipt and waiting room patient density.

Results. Our cohort included 367 HA-ILI cases and 941 non-cases. The majority (48.6%) were ≤2 years and did not attend school, 52.8% were male, and 18.9% received the influenza vaccine. Mean clinic patient density was 44.2 patients/1,000 square feet. In multivariable models, only the young age/daycare attendance composite variable was significantly associated with increased HA-ILI risk (OR 2.06, 95% CI 1.48–2.88). No clinic characteristics were associated with HA-ILI risk and risk did not vary by site.

Conclusion. In our cohort of young children, HA-ILI was not associated with the measured clinic characteristics that we hypothesized may increase respiratory virus transmission risk. Instead HA-ILI risk was highest in young daycare attendees who may be more likely to engage in behaviors that increase respiratory virus exposure risk or seek out healthcare services when sick. This suggests that HA-ILI may be more strongly influenced by factors other than clinic factors.