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ARTICLE

Increased rise time of electron temperature during
adiabatic plasmon focusing
Olga Lozan1, Ravishankar Sundararaman2, Buntha Ea-Kim3, Jean-Michel Rampnoux1, Prineha Narang4,

Stefan Dilhaire1 & Philippe Lalanne5

Decay of plasmons to hot carriers has recently attracted considerable interest for funda-

mental studies and applications in quantum plasmonics. Although plasmon-assisted hot

carriers in metals have already enabled remarkable physical and chemical phenomena, much

remains to be understood to engineer devices. Here, we present an analysis of the spatio-

temporal dynamics of hot electrons in an emblematic plasmonic device, the adiabatic

nanofocusing surface-plasmon taper. With femtosecond-resolution measurements, we con-

firm the extraordinary capability of plasmonic tapers to generate hot carriers by slowing

down plasmons at the taper apex. The measurements also evidence a substantial increase of

the “lifetime” of the electron gas temperature at the apex. This interesting effect is inter-

preted as resulting from an intricate heat flow at the apex. The ability to harness the “lifetime”

of hot-carrier gases with nanoscale circuits may provide a multitude of applications, such as

hot-spot management, nonequilibrium hot-carrier generation, sensing, and photovoltaics.
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Light incident on metallic nanostructures excites surface-
plasmon polaritons (SPPs), which may decay to hot carriers
through several mechanisms including direct interband

transitions, phonon-assisted intraband transitions, and geometry-
assisted transitions2,3. This rapid decay of SPPs to electron–hole
pairs on femtosecond time scales is detrimental to most plas-
monic applications and devices relying on huge local field
enhancements, since it destroys the coherence of the collective
electron oscillations. Conversely and positively, plasmonic hot
carriers provide new opportunities for nanoelectronic and
nanophotonic applications, such as energy conversion, spectro-
scopy, and sensing. In particular, hot carriers that are generated
in the vicinity of the surfaces of plasmonic nanostructures and
which reach their highest temperature in a few hundreds of
femtoseconds can be extracted before their energy is lost. These
carriers may be useful for a number of applications including
enabling novel optoelectronic device functionality1–4, for loca-
lized heating in medical applications5,6, to boost photocatalytic
activity for chemical synthesis and solar fuel generation7–9, for
high-efficiency gapless photovoltaic energy conversion1,3,4,10–13,
and to enable new high-resolution-imaging instruments14. Con-
sequently, understanding the spatiotemporal dynamics of plas-
monic hot carriers is highly desirable, particularly in devices
capable of generating them with high-efficiency and nanoscale
localization in “hot spots” where they may be extracted easily.

Despite recent significant progress, there are still many open
questions that need to be addressed to enable reliable and wide-
spread application of plasmon-generated hot carriers. A key
challenge that remains is that the generated hot carriers ther-
malize rapidly and lose energy to thermal carriers and phonons in
the material. The possibility of extending hot-carrier lifetimes and
controlling the interfacial spatial and temporal distribution of hot
carriers in nanoscale devices is critical, as this would provide
opportunities to modify charge transfer processes at the nanoscale
and to realize reactive nanostructures for efficient surface
chemistry applications, for example.

So far, the relaxation dynamics of hot-carrier gases has been
studied for simple geometries, mostly metallic nanoparticles or
thin metallic films, and hot-carrier gas lifetimes of typically a few
hundreds of fs have been recorded15. In contrast, here, we study
the SPP-to-hot-electron conversion in a nanofocusing SPP taper
geometry16. This geometry is a standard motif in plasmonic
circuitry for its efficacy to focus electromagnetic fields to a single
hot spot, but surprisingly, its performance for hot-carrier gen-
eration and extraction has not yet been analyzed, either experi-
mentally or theoretically. Additionally, the nanofocusing SPP
taper represents a facile test bed for unambiguously investigating
the impact of confinement on the dynamics of the generated hot
electrons, since it offers a nearly continuous transformation from
an extended metal film to a nanoconfined geometry at the apex of
the taper.

The knowledge of the electron gas dynamics in nanometric hot
spots is of crucial importance for hot-carrier technologies, but it
requires the deployment of high temporal and spatial resolution
techniques that reveal absorption losses by probing the electron
temperature at the relevant short time and length scales. We use
the well-known time-domain thermoreflectance technique to
record a temporal sequence of images of the local heat source, or
equivalently of the hot-carrier density generated by plasmon
decays, with 100-fs time and 400-nm spatial resolutions17–20.

Our thermoreflectance measurements find a strong (×30)
enhancement of the absorption as the launched SPPs approach
the tip apex, compared to the extended film. Unexpectedly, they
also reveal a substantial increase of the lifetime of the hot electron
gas temperature at the apex. Using theoretical models, here, we
attribute this increase to two contrasted effects linked to

confinement, a squeezing of the diffusion processes due to the
initial spatial distribution of the generated hot carriers, and a
backward heat flow from the apex toward cooler regions of the
antenna. This interpretation provides basic design clues to create
long-lived hot-electron baths, which are important for applica-
tions where hot electron generation and sustained high carrier
temperatures are beneficial1–4.

Results
Sample design and fabrication. The plasmonic coupler–taper
device used in this study is composed of a laterally tapered metal
stripe waveguide and a slit-array SPP-coupler optimized for
operation with a Gaussian pump-beam (λ0= 800 nm, beam-waist
≈1.6 µm) polarized perpendicularly to the slits (TM polarization),
see Fig. 1. Since some measurements are performed with a high
fluence (≈10 J/m2), the coupler is designed for a weak-absorption
operation with a relatively high SPP-launching efficiency, to lower
the risk of sample damages. For the optimization, we assume that
the Gaussian pump-beam is illuminating the sample at normal
incidence, either from air or from the substrate and that the SPP
is launched at the dielectric/Au interface with a wavelength
λSP � λ0=1:5, since the air/Au SPP is cutoff before reaching the
tip apex20. We also consider regularly spaced arrays of identical
slits for the design, the period a being fixed by the grating
equation a= λSP= 485 nm.

The coupler design is performed by first computing the
electromagnetic field scattered by the pump beam using the Au
permittivity εAu= −26 + i1.8422, and then by rigorously deter-
mining the SPP-launching efficiency with an exact modal overlap
integral23 computed with a near-field to far-field transformation
freeware24. This procedure is then repeated iteratively, varying
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Fig. 1 The plasmonic coupler–taper platform. a A pump pulse is focused
from air onto a slit array, and launches SPPs at the dielectric/Au interface
that propagate toward the tip apex. The SPP damping is probed by a
delayed focused probe beam shown incident from the substrate. b Line
shape of the sample. It shows how an SPP can be generated at the
dielectric/Au interface and focused adiabatically toward the tip apex. c
Scanning electron microscope top view of the device
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the number N of slits, the slit width w, and the Au-film thickness
t, all independently. For the optimization, we use the simplex
search Nelder–Mead method25. We found that much higher
launching efficiencies are achieved when the pump-beam
illuminates the coupler from air, and that a weak coupler-
absorption of only 14% with a reasonably good SPP-launching
efficiency of 30% is achieved for N= 8, w= 100 nm, and t=
140 nm.

We use a laterally tapered metal stripe waveguide with an apex
angle of 28° and a length of L= 8 μm, a value comparable to the
SPP propagation decay length (≈10 μm) at λ0= 800 nm. Similar
geometries have been recently characterized by detecting
upconversion luminescence from erbium ions implanted in the
substrate21. There are two ideas underlying the adiabatic
nanoconcentration of the optical energy in the taper. The
launched SPP is initially focused by the geometrical reduction
of the metal stripe width. This focusing is analogous to that
obtained by a lens with a classical optical beam and provides SPP
confinements down to dimensions ≈λSP limited by diffraction.
Then, as the SPP at the SU-8/Au interface enters the last 100 nm
of the taper apex, it progressively slows down with a group

velocity vg proportional to the separation distance x from the
apex, vg ~ωx15. Since the electric field scales as v�1

g , a very strong
absorption with a universal scaling ∝x−2 close to the apex is
expected. This critical aspect will be documented hereafter with
electromagnetic computations.

The sample is made of a glass substrate coated with a
polymerized 1-µm-thick SU-8 photoresist film used for better
adhesion of gold. The 140-nm-thick Au film is deposited by Ar-
magnetron plasma sputtering, and then coated with an electro-
sensitive resist layer used for writing the taper and coupler
patterns with electron beam lithography. The resist pattern is
transferred in the Au layer by argon-ion beam etching.

SPP propagation and decay in the taper. In the experiment
sketched in Fig. 2a, the tiny variations ΔR of the reflectivity are
related to tiny changes of the dielectric function that results from
electron–hole pairs generated by the ultrafast decay of the laun-
ched SPPs and by the change of the occupancy of electronic states
close to the Fermi level. The variations are recorded by a time-
domain thermoreflectance setup based on two delayed pump-
and probe-focused beams delivered by an amplified Ti-sapphire
laser system seeding an optical parametric amplifier18. The pump
pulse (150-fs FWHM, 250-kHz repetition rate, λ0= 800 nm, 200-
μW average power, 1 nJ per pulse, and 40 GW/cm2 peak inten-
sity) is TM polarized. The circularly polarized probe pulse is
delayed with two retroreflectors mounted on a translation stage.
Its photon energy is chosen to be slightly lower than the transi-
tion energy from the d-band to the Fermi energy (λ= 532 nm, 30-
μW average power), which guarantees a good sensitivity and a
proportionality between ΔR and the temperature variations of the
electron gas26. In the experiment, the probe beam can be focused
on the taper from either the air cladding or the substrate. A fast-
steering mirror allows to raster scan the sample and to record
images with a ≈400-nm spatial resolution limited by the probe
waist.

Figure 2b shows a set of raw ΔR images recorded at the SU-8/
Au interface for eight values of the pump−probe delay, Δt= 0.05,
… 1.8 ps. The sign of ΔR is negative in our measurements, since
smearing the state occupancy causes an increase of absorption at
our probe wavelength27, but we conveniently plot the absolute
value throughout the paper. A movie of the SPP launching and
nanofocusing with a 67-fs time step is available in Supplementary
Movie 1. First of all, we note that the typical time scales (~500 fs)
for which the thermoreflectance dynamics is markedly impacted
are much larger than the delay (~45 fs) related to the SPP transit
time over the 8-µm taper length. Indeed, the dynamics of the hot-
carrier generation and relaxation, including electron–electron,
electron–phonon, and electron–surface interactions, is revealed
by the thermoreflectance records.

Three other important observations can be made. First, large
ΔR values are observed at the lateral edges of the taper. This
absorption, which significantly varies with the focusing position
of the pump beam on the coupler and is systematically observed
in all our measurements, is due to additional decay channels for
the SPPs at the etched edges. Second, a bright spot at the tip apex,
which is particularly intense for the frame recorded at Δt= 1 ps,
is observed at the tip apex. Finally, inside the taper away from the
edges, ΔR is much weaker than at the lateral edge and at the tip
apex, suggesting that the SPP decay occurring during the
propagation along the taper is not the dominant mechanism for
the absorption.

Note that the present measurements strongly differ from direct
steady-state temperature mapping of nanofocusing tapers
recently reported with classical low temporal-resolution techni-
ques28. In Fig. 2b, it is the local heat source term in the thermal
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Fig. 2 Thermoreflectance measurements. a Sketch of the time-domain
thermoreflectance setup: PBS polarizing beam splitter, λ/4 and λ/2
quarter- and half-waveplates, BPD balanced photodiode, DM dichroic
mirror, FSM fast-steering mirror, L lens, LIA lock-in amplifier. b Reflectance-
variation (ΔR) images recorded at different pump–probe delay times, Δt=
0.05, 0.25… and 1.8 ps. The image series shows the initial SPP launching
followed by propagation along the taper, and eventually the formation and
disappearance of a bright spot at the apex. The 16 × 6 μm2 saturated
images are presented using the same color scale. A movie is available in
Supplementary Movie 1
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diffusion equation which is revealed, and not temporally- and
spatially broadened versions at time scales larger than the phonon
relaxation time in the metal. This source term is of crucial
importance for characterizing plasmonic devices, since it is
weakly predictable with electromagnetic calculations without
neglecting grain roughness or crevasse, which are crucial in
absorption processes especially for highly confined SPPs19.

Hot-spot absorption at the taper apex. To further analyze the
hot spot at the apex, we focus our attention on thermoreflectance
signals recorded at Δt= 1 ps (Fig. 3a), just after the initial SPP
decay via the creation of electron–hole pairs and before phonon
relaxation takes place. Figure 3a additionally shows two compa-
nion records obtained for a 90° rotation of the pump-beam
polarization (uppermost inset) and for a probe beam incident
from air and focused at the air/Au surface (lowermost inset).
Predictably, the signal is null for a TE-polarized pump with an
electric field parallel to the slits. More interesting is the response
obtained in the lowermost inset. No signal is visible at the lateral
edges, whereas the hot spot, albeit weak, is again observed at the
apex. This is intuitively understood by considering the spatial
distribution of absorption. The SPP launched at the SU-8/Au
interface is dominantly absorbed at the lateral edges, the SPP-
mode profile broadens at the apex, and absorption takes place
through the entire thickness of the gold film. This point will be
discussed later.

Until now, we have displayed raw data of ΔR. However, the ΔR
variations recorded at the apex are induced by permittivity
changes dominantly occuring within a localized area (≈30 ×
30 nm2), significantly smaller than the probe waist (≈400 ×

400 nm2). Quite the contrary, the ΔR variations away from the
taper edges are due to permittivity changes that cover the entire
probe beam. In other words, since the effective taper surface
intersected by the probe beam reduces as the probe is scanned
toward the apex, raw ΔR data cannot faithfully represent the
actual hot-carrier generation enhancement at the apex. This leads
us to consider relative reflectivity variation signals ΔR/R for a
fairer representation.

The red dots in Fig. 3b show ΔR/R data recorded as the probe
beam is scanned along the taper longitudinal x-axis of symmetry.
Consistently with previous results, which reported a large
plasmon-to-hot-electron conversion efficiency in a conical
nanofocusing gold structure14, a large ≈10-fold enhancement of
the thermoreflectance signal is observed at the apex.

The full-width at half-maximum of the measured hot spot
(≈800 nm) corresponds to the size of the probe beam, rather than
the actual SPP decay hot spot size at the apex. Clearly, the finite
spatial resolution of the probe prevents us from observing the
actual hot-carrier generation enhancement at the apex. By
assuming that 50% of the SPP absorption occurs along the lateral
edges of the taper (as deduced from the thermoreflectance data)
and that the tip curvature radius is 25 nm, simple geometrical
considerations based on a spatial overlap between the tip and the
Gaussian probe beam lead us to estimate a more realistic value of
30 for the local absorption enhancement, which is about three
times larger than the measured one. The SPP-field enhancement
at the taper apex is well known and understood as resulting from
a progressive slowdown of the SPP in the last 10s of nanometers
of the apex16. The added significance of the recorded thermo-
reflectance images is to directly evidence that the slowdown is
accompanied by an SPP absorption enhancement.

Hot-carrier relaxation dynamics. Let us now consider the hot-
carrier relaxation during SPP focusing. Figure 4 shows the time-
resolved responses recorded at the SU-8/Au interface for six
focusing positions, x= 3, 4, … 8 µm, of the probe beam along the
taper x-axis. The responses share the same general behavior27,29.
First, ΔR/R rises up, due to intraband excitation of conduction
electrons by absorption of SPPs of 1.55 eV (λ0= 800 nm). The
hot-carrier distribution, initially highly nonthermal, relaxes and
part of the energy is absorbed by the free electron gas through
electron–electron collisions, with a typical mean-free time
between collisions for each electron ranging from 10 to 100 fs
depending on the energy of the electron relative to the Fermi
level. Scattering with phonons in the noble metals also occurs
with a mean-free time from 10 to 30 fs, but the energy transferred
in each collision is limited by the small phonon Debye energies,
so that the net energy transfer to the lattice occurs at much
smaller time scales at ~1 ps. Finally, a classical heat diffusion
transport takes place with a much longer characteristic time.

The responses result from a rich variety of classical and
quantum effects that govern the SPP hot-carrier generation and
relaxation27,30. Interestingly, we note that the rising time tD of
ΔR/R varies with the position of the probe. For probes focused
away from the apex, x= 3–5 µm, tD is approximately equal to
500 fs, consistently with previous observations17, and recent ones
are made with the same setup for gold thin films fabricated with
the same process and with the same grating without a taper19. As
the probe is focused at the apex, for x= 8 µm, the rising time is
markedly larger, tD≈ 1.5 ps, suggesting that confinement causes
the generation of a much stronger and longer-lived hot-electron
bath, as confirmed by computational results hereafter.

Intuitively, the increase in rising time may have two main
origins. The first one is a strong increase of the effective electron
temperature at the apex, which causes a change of the electron
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and phonon thermal properties and of the electron–phonon
coupling constant31. Several recent observations and predic-
tions32,33 seem to promote drastic modifications of the ultrafast
temporal responses of electron gas induced by changes in the
energetic distribution of hot carriers generated in hot
spots20,34–37. The second source is related to an increase of the
SPP confinement at the apex, which modifies the initial spatial
distribution of hot carriers before any electron–electron or
electron–phonon relaxation processes take place, giving rise to
carrier diffusion processes close to the apex.

Two-temperature model. To better understand and distinguish
the respective impact of the energetic and spatial distributions of
the SPP-generated hot carriers on the anomalous rising time
increase, we adopt, like in conventional analyses of thermore-
flectance measurements, the two-temperature model (TTM). By
assuming a local thermal equilibrium, the TTM tracks the
dynamics of the temperatures of the electronic and lattice sys-
tems, Te and T1, with a simple system of coupled nonlinear dif-
fusion equations29

∂N
∂t

¼ �N
τel

� N
τel�ph

þ Pw x; y; tð Þ; ð2aÞ

Ce Teð Þ ∂Te
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¼ ∂

∂x
Kxx;e

∂
∂x

Te

� �
þ ∂
∂y
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∂
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� �

�gðTeÞ Te � Tlð Þ þ N
τel

;

ð2bÞ

Cl
∂Tl
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Kxx;l

∂
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Tl

� �
þ ∂
∂y

Kyy;l
∂
∂y

Tl

� �

þg Teð Þ Te � Tlð Þ þ N
τel�ph

:

ð2cÞ

Instead of a brute-force numeric approach coupling the model to
time-dependent Maxwell equation solutions in 3D, we adopt a

simpler 2D approach neglecting the gradients in the short vertical
direction and highlighting confinement and power-flow effects in
the plane of the antenna. Briefly, Eq. 2a–c describe the transfer of
absorbed SPP power density Pw(x, y, t), to a nonthermal hot-
electron energy N, which subsequently thermalizes with the
electrons and the lattice, thereby changing Te and T1; all these
quantities vary with x, y, and t. We describe the various terms in
detail below.

First, we compute the SPP modes of the taper with an accurate
Maxwell’s mode solver38. For every width, we normalize the
modes so that their power flow is one. Since the z-dependence of
the absorption-distribution profiles weakly depends on the taper
width, we further average the absorbed power density
�ω
2 Im εAuð ÞE2

SP along the vertical z-direction. We get Pw(x, y, t)
by multiplying this density at each time t by the instantaneous
power density coupled into the SPP from the pump pulse,
assuming the same illumination conditions as in the experiment
(1-nJ Gaussian pulse, 150-fs FWHM). Figure 5a displays the
corresponding absorbed energy density, Uabsðx; yÞ ¼R
dt Pwðx; y; tÞ for four widths, while Fig. 5b shows the same

over the entire area. As expected, the confinement impacts both
the energy-density magnitude and shape, starting from nonuni-
form profiles localized near the edges for large w’s to nearly
uniform profiles with substantially higher energy densities for w
< 50 nm.

Then, Eq. 2a describes the evolution of the nonthermal energy
density N, which is fed by the absorbed power density.
Electron–electron scattering internally thermalizes the electrons,
transferring energy from N to thermal electrons at temperature Te
with time constant τel. Similarly, electron–phonon scattering
transfers energy directly from N to the lattices at temperature T1
with time constant τel−ph. We assume typical values τel= 0.5 ps
and τel−ph= 1 ps for these time constants27. Equation 2b and c
describe the evolution of the electron and lattice temperatures,
respectively, due to thermal conductivities Ke and K1, and
electron–phonon coupling g. In reality, the x and y conductivities
are equal, Kxx;e ¼ Kyy;e ¼ Ke (and similarly for K1), but below, we
consider the effect of turning off one of the directions to isolate
the cause of the rising-time enhancement at the apex. We use
temperature-dependent electronic heat capacities Ce(Te),
electron–phonon coupling g(Te), and electronic thermal con-
ductivities Ke Teð Þ ¼ Ce Teð Þv2Fτe Teð Þ=3 (νF is the Fermi velocity)
derived from ab initio calculations32, which fully account for the
band structure and the density of states and have recently been
shown to provide quantitative agreement with spectral and
temporal features in transient-absorption measurements33. We
assume constant values based on an experiment for the lattice
thermal conductivity K1= 20W/(mK) and heat capacity
Cl ¼ 2:4 ´ 106 J/(m3K), which play a much smaller role in the
observed dynamics. We solve the coupled differential Eq. 2a–c
using a finite-difference time-domain discretization scheme with
5-nm spatial resolution and an adaptive step-size embedded
Runge–Kutta integrator for time evolution.

Figure 5d shows the simulated electron temperature profiles
along the propagation x-axis for various widths, accounting only
for heat conduction in the transverse y-direction, but not in the
longitudinal x-direction by setting Kxx;e ¼ Kxx;l ¼ 0 in the TTM.
Note the monotonic increase in the peak temperature with
reducing width due to the increasing absorbed energy density.
Correspondingly, the electron–phonon relaxation slows down
due to the increased electron heat capacity at high temperatures,
as is well known. This slowdown of the relaxation leads to a
slightly longer rising time (by ~300 fs) for the narrowest widths.

Figure 5e shows the simulated temperature profiles accounting
for conduction in both directions. The behavior is similar to the
previous case for large widths, but fundamentally different for
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widths w≤ 400 nm. The profiles first develop a shoulder at long
times for w ~ 40 nm, which appears at earlier times with
decreasing widths, until it becomes a single broader peak for
200-nm widths and below. This shoulder is caused by heat flow
from the hotter apex toward the colder regions of the taper.
Therefore, it appears at later times for larger widths (further from
the apex). It also becomes weaker with increasing distance from
the apex until it is no longer important beyond 400-nm widths.
The result is a nonmonotonic increase followed by a decrease of
the time to reach peak temperature, with reducing widths. This
heat flow away from the apex also reduces the peak temperatures
reached near the apex, thereby limiting the artificial increase in
electron–phonon relaxation predicted in Fig. 5d with y-
conductivity alone. Additionally, this heat flow makes the peak
electron temperature shown in Fig. 5c more uniform spatially
compared to the absorption profile in Fig. 5b.

The measurements do not show the nonmonotonicity in rising
times discussed above because the width of the probe pulse results
in averaging over the entire region containing the reverse heat
flow. Figure 5f, g show the temperature profiles spatially averaged
over ranges of widths, for the y only and both direction cases of
conduction. Conduction in y alone shows the aforementioned
small increase in rising time, while including the x conduction
now exhibits the much larger increases in rising time, ~1 ps seen
in an experiment.

The simple model of SPP absorption and electron thermaliza-
tion already captures the key physics observed in our

experiments: increased absorption at the apex due to SPP
slowdown and heat flow toward regions of lower absorption
over hundreds of nanometers and picosecond time scales. All
TTM model parameters here are derived ab initio except the time
scales τel and τel−ph of energy transfer from nonthermal electrons
to thermal electrons and the lattice, respectively. In Supplemen-
tary Note 1, we show by solving the Boltzmann equation with ab
initio collision integrals that these time scales do not increase with
increasing absorbed energy density Uabs, but rather decrease
slightly. This may partly account for the TTM overestimating the
increase in rising time due to power flow. Other effects not
captured by the present model include further details of the
electromagnetic field distributions, nonlocality of internal
electron thermalization (electrons travel ~10–100 nm between
the collisions that thermalize them), and modification of
optical absorption due to the nonthermal electron distribution
functions.

Discussion
The understanding of how hot-carrier generation and relaxation
are impacted by geometrical and physical effects, e.g., plasmon
focusing, sharp apex, distribution function evolution, and
electron–electron scattering processes, is critical. The electron
dynamics and the associated lifetimes are important not just for
SPP-induced hot-carrier technologies1–4, but for other modern
prospects in plasmonics as well, e.g., ultrafast control of
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Fig. 5 Impact of spatial confinement and heat flow on the rising time. Computed absorbed energy-density profile for an SPP at λ0= 800 nm assuming 1-nJ
pump pulse energy (a) for four taper widths and b over an area of the taper close to the apex. c shows the corresponding peak electron temperature
predicted by TTM simulations. d, e show the simulated temperature profiles at various widths accounting only for heat flow along y in d and fully
accounting for both directions in e. f, g show the corresponding temperatures averaged over ranges of widths, to account for the finite size of the probe
beam. To show the rise and fall times clearly, the temperature profiles in d–g are normalized to their peak temperatures, which are indicated in parenthesis
in the legends. Comparing g–f shows that heat flow from the apex with enhanced absorption due to SPP slowdown is responsible for the observed increase
in rising time
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nanoantennas and molecules39, nonlinear generation of hot car-
riers, and nonlocal effects in plasmonic dimers40.

However, the time and length scales of carrier transport in
metallic nanostructures are not well understood28 and have been
the subject of recent debate41,42. Experimental studies of the
electron–electron interaction dynamics in noble metal nano-
particles43 have shown that the electron collision rate increases
with the hot-carrier density, which is in agreement with Fermi
liquid theory, resulting in a faster internal electron thermalization.
On the contrary, it has also been suggested2 that the lifetime of the
initially generated nonthermal hot electrons can be substantially
longer in nanostructures with respect to bulk because high non-
thermal carrier density reduces electron–electron interactions44–46.

Because they are performed rigorously under the same
experimental conditions with a device that offers a continuous
transformation from an extended metal film to a nanoscale
confinement at the apex, the present measurements unambigu-
ously reveal any effect induced by confinement. They additionally
confirm the extraordinary capability of adiabatic SPP tapers to
effectively generate hot carriers14 at the apex and substantially
modify the hot-carrier relaxation dynamics due to strong spatial
inhomogeneity. The 1.5-ps rising time measured in the present
work is much longer than the electron thermalization time and is
also longer than those generally observed in small Au nano-
particles15. Additionally, adiabatic tapers may collect and funnel
energy much more efficiently than isolated particles with the
potential to boost quantum and nonequilibrium effects. In future
work, carefully designed taper geometries could therefore gen-
erate even longer-lived hot carriers, essential for applications
requiring carriers to survive long enough for charge transfer
processes to occur8,10,47,48.

Data availability. All data generated or analyzed during this
study are available from the authors.
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