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Yale school of public health symposium on
lifetime exposures and human health: the
exposome; summary and future reflections
Caroline H. Johnson1*, Toby J. Athersuch2,3, Gwen W. Collman4, Suraj Dhungana5, David F. Grant6, Dean P. Jones7,
Chirag J. Patel8 and Vasilis Vasiliou1*

Abstract

The exposome is defined as “the totality of environmental exposures encountered from birth to death” and was
developed to address the need for comprehensive environmental exposure assessment to better understand disease
etiology. Due to the complexity of the exposome, significant efforts have been made to develop technologies for
longitudinal, internal and external exposure monitoring, and bioinformatics to integrate and analyze datasets
generated. Our objectives were to bring together leaders in the field of exposomics, at a recent Symposium on
“Lifetime Exposures and Human Health: The Exposome,” held at Yale School of Public Health. Our aim was to highlight
the most recent technological advancements for measurement of the exposome, bioinformatics development, current
limitations, and future needs in environmental health. In the discussions, an emphasis was placed on moving away
from a one-chemical one-health outcome model toward a new paradigm of monitoring the totality of exposures that
individuals may experience over their lifetime. This is critical to better understand the underlying biological impact on
human health, particularly during windows of susceptibility. Recent advancements in metabolomics and bioinformatics
are driving the field forward in biomonitoring and understanding the biological impact, and the technological and
logistical challenges involved in the analyses were highlighted. In conclusion, further developments and support are
needed for large-scale biomonitoring and management of big data, standardization for exposure and data analyses,
bioinformatics tools for co-exposure or mixture analyses, and methods for data sharing.

Background
Since the completion of the Human Genome Project in
2003, it has become apparent that most chronic diseases
are attributable to both genetic and environmental influ-
ences; the environment is, however, the major contributor
to the global disease burden [1–3]. In 2005, Christopher
Wild put forth the concept of the exposome, which
highlighted the need for comprehensive environmental
exposure assessment tools to better delineate causality and
disease [4]. The exposome, originally defined as “the totality
of environmental exposures encountered from birth to
death” [4], has moved from a concept to a reality and was
recently redefined as the “cumulative measure of envir-
onmental influences and associated biological responses

throughout the lifespan, including exposures from the
environment, behavior, diet, and endogenous processes”
[5]. To begin the epic task of attempting to analyze all
exposures that an individual may encounter over their
lifespan and connect those to biological impact, there
have been significant technological advancements to
enable the study of the exposome. Herein, the Department
of Environmental Health Sciences at Yale School of Public
Health (YSPH) brought together leaders in exposome
technology advancements to discuss recent developments,
limitations, and future needs, also with the intention to
bring increased awareness to this growing and important
field.

Findings
The Symposium was initially opened by YSPH Dean
Dr. Sten Vermund and National Institute of Environmental
Health Sciences (NIEHS) Director Dr. Linda Birnbaum (by
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prerecorded video), who expressed the importance and
value of the exposome in environmental health and
epidemiology. The exposome is a highly interdisciplinary
holistic approach that intersects environmental exposure
monitoring with modern technologies such as genomics
and metabolomics. It is a valuable science particularly
important for understanding how environmental factors
affect children’s health and later-life outcomes.
The Symposium discussed some current important

considerations, developments, and future perspectives
for exposome research which are discussed below.

Moving away from a single exposure-disease
approach
Environmental health research has traditionally focused on
how a specific chemical, or class of chemicals, influences a
specific health outcome. This single exposure-disease
approach does not, however, represent the complexity of
exposures encountered throughout life. Environmental
exposures are complex, widespread, and play a role in
human health and the development of disease. Researchers
are now beginning to consider the totality of external and
internal exposures across the life course, a concept called
the exposome. Since the concept was developed, most
efforts have focused on defining the exposome and
challenges to its application into scientific research.
Three studies in Europe—the Health and Environment-
wide Associations based on Large population Surveys
(HEALS), Human Early-Life Exposome (HELIX), and
EXPoSOMICS projects—represent early coordinated efforts
to advance exposome research [6, 7]. To further advance
and promote implementation of the exposome in environ-
mental health research, NIEHS convened a workshop in
2015 to review the state of the science and develop recom-
mendations in key domains. Takeaways from each group
included:

� Biomonitoring: Exploring cumulative exposure
history requires a hybrid of traditional (targeted) and
exposomic (untargeted) biomonitoring approaches
and utilizing advantages of both methods [8].

� Biological response and impact: External and
internal exposures interact to alter biological
processes and trigger production of new chemical
intermediates. Exposomic technologies can link
exposures to these downstream effects [9].

� Epidemiology: The exposome is a complement to
environmental epidemiology. Untargeted analyses can
generate findings that need to be investigated using
hypothesis-driven approaches central to epidemiology.
Merging data across cohorts with different life stages
enables characterization of the exposome across the
life course [10].

� Data science: Exposomic approaches generate
extensive data to be stored, managed, analyzed,
integrated, and shared. Development of community-
based data standards and ontologies is critical [3].

While specific challenges exist in each domain, there are
cross-cutting themes and needs, central to implementing
the exposome into scientific research. Infrastructure sup-
port is needed for large-scale untargeted biomonitoring
and managing big data. Advancement and standardization
of technologies and methods for exposomic analyses as
well as data analyses, integration, and sharing are another
area requiring considerable support. Training environ-
mental health scientists in big data and use of exposomic
approaches in human health research is also critical.
Promotion of the concept in research areas that can
benefit from the exposome approach, such as epidemi-
ology, can accelerate its implementation.
The NIEHS Children’s Health Exposure Analysis Resource

(CHEAR) Program addresses many of these challenges.
CHEAR laboratory services span the breadth of the
exposome and offer targeted and untargeted analyses.
The CHEAR Data Center serves as a data repository,
providing statistical analyses, data integration, and inter-
pretation services. This data center is also developing
community-based data standards and ontologies. NIEHS
supports a hybrid approach to investigating the exposome,
which depends upon interactive workshops, established
resources (e.g., CHEAR), and new research initiatives. In
these efforts, NIEHS interacts with other institutes within
the National Institutes of Health, as well as with other
federal agencies and international consortia as mentioned
above. By taking this comprehensive approach, the expo-
some can be implemented into environmental health
research.

Inter- and intraindividual variability and
analytical advancements
Many burdensome diseases are complex and result from
a combination of hereditary and environmental factors.
For example, the heritability, or the phenotypic variation
in the population attributable to inherited factors is on
average 50%, leaving the other 50% of phenotypic variation
to specific influences of the environment [11]. Additional
analytic tools and data are needed to discover exposures to
explain missing phenotypic variation in the population. In
contrast, genomic investigations have accelerated the pace
for discovery of inherited factors in disease, and the same
advances should be applied to discover the influences of
exposures in disease [3]. For exposome studies to deliver
the promised benefits and causal understanding we seek,
and to inform public health policy and chemical risk
assessment, it is important to understand metabolic
(and other) networks in a holistic manner to link toxic
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exposures, responses, and disease endpoints. However,
modeling such networks may be confounded by uncer-
tainty in both the interactions that occur and the variability
of network components; some components of urinary and
blood metabolomes (pool of low molecular weight com-
pounds in the sample) exhibit high variability, whereas,
others appear to be tightly regulated. Contributions of
genetic and environmental factors to metabolic phenotypes
have been identified, alongside differences in stability and
resilience of components of the metabolomes over long
periods in individuals [12, 13].
In addition, inter- and intraindividual variability in

specific subpopulations or strata that are of importance
to exposome studies should be characterized, including
those in critical periods of life (including in utero, early life,
and old age) where susceptibility to adverse consequences
of exposure may be increased. Such subpopulations exist
in the European Union FP7-funded HELIX project. This
project is focused on studying the early life exposome by
combining six mother-child cohorts in Europe: BiB (Born
in Bradford, UK), EDEN (Étude des Déterminants pré-et
postnatals du développement et de la santé de l’Enfant,
France), INMA (INfancia y Medio Ambiente, Spain),
KANC (Kaunus Cohort, Lithuania), MoBa (Norwegian
Mother and Child Cohort Study, Norway), and the
Rhea Mother-Child Cohort Study (Rhea, Greece) [6].
Within these cohorts, a total of 1200 mother-child pairs
were selected for exposome characterization using a
multitude of analytical approaches, including both internal
and external measures. To assess variability in one of the
measured parameters, the metabolome, a panel study
within the INMA component of the subcohort was con-
ducted to investigate the temporal variability of metabolite
concentrations in children’s urine over a week, relative to
the interindividual variation. Variations attributable to
experimental and biological factors (analytics, cohort, etc.)
were assessed, giving a better understanding of the sources
of variability in these metabolic phenotyping data [14].
The study showed that one of the sources of variation was
diurnal and resulted in the recommendation that a pooled
sample should be used made from urine samples collected
at different times of the day, or a 24-h urine collection
for exposome analysis. There was also interindividual
variability in metabolites between males and females
(citric acid) and in dietary metabolites such as N-
methylnicotinic acid, which is derived from coffee, soda
drinks, and chocolate.
An approach called “exposome-wide association studies”

or equivalently “environment-wide association studies”
(EWAS) is another methodology to drive discovery of new
exposures in disease and the missing phenotypic variation
in the population (e.g., [15–18]). EWAS offers a few
advantages, including explicitly mitigating false positive
findings and assessing the entire database of potential

environmental correlates systematically to avoid a frag-
mented literature of associations [19–21]. While far from
causal (and observational), the associations that emerge
are those that can be prioritized to investigate in biological
experiments. For example, Patel and colleagues, after
using an EWAS-like approach to find exposure factors
putatively correlated with telomere length, investigated
how the exposure factors potentially influence changes in
gene expression using publicly available data from the
Gene Expression Omnibus [22]. Exposures must influence
changes in biological function if causal, and gene expres-
sion investigations are among the important approaches
to decipher causal routes to disease.

Recent technological advancements in
metabolomics for exposomics
Exposome studies ultimately promise to help identify
causal pathways that link environmental exposures to
disease endpoints, by combining a range of state-of-the-
art technologies that probe external and internal expo-
sures, and concomitant responses. Central to the task of
implementing human exposome studies is to characterize
the metabolome, a phenotypic measure that encodes a
wealth of information relating to genes, environmental
exposures, and their various interactions [23–25]. Accord-
ingly, high-resolution platforms such as ultraperformance
liquid chromatography-mass spectrometry (UPLC-MS)
and 1H nuclear magnetic resonance (NMR) spectroscopy
for generating metabolic phenotypic data are now com-
monly included in molecular epidemiological studies of
chronic disease [26, 27]. For exposomics, it is essential
that these platforms can (1) capture the diversity of the
chemical space, (2) assign chemical identify to the associ-
ated mass spectral features, and (3) accurately quantify
them. Both mass spectrometry (MS) and NMR spec-
troscopy have been used for analyses of the exposome;
however, MS was a predominant focus of this Symposium
which highlighted advancements in hardware and software
for large-scale exposome analysis.
High-resolution metabolomics (HRM) of plasma has the

potential to be a central platform for affordable, high-
throughput, biomonitoring of environmental chemical
exposures [28, 29]. The platform takes advantage of the
ultra-high mass resolution, mass accuracy, sensitivity,
and improved scan speed of modern Fourier-transform
(FT) mass spectrometers. Improved data extraction
methods support routine measurement of more than
20,000 mass spectral features in microliter volumes
of plasma and other human samples, and advanced
software packages support both knowledge-driven
and data-driven approaches for interpretation of these
data. These developments, listed below in more detail, cre-
ate exciting new opportunities for large-scale, systematic
exposome research.
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Fourier-transform mass spectrometry
Comisarow and Marshall [30] showed that FT of signals
from the free induction decay (FID) of ions responding
to an oscillating electric field that is orthogonal to a
fixed ion cyclotron resonance (ICR) magnetic field could
be used to measure the mass-to-charge ratio (m/z) of an
ionized metabolite. Application of FT-ICR MS to crude
oil showed that 17,000 ions could be detected [31]. These
instruments showed linear response characteristics for
quantification over at least five orders of magnitude [32],
but were limited for high-throughput analyses because of
the slow scan speed required, and thus run times needed
of 10 minutes or longer. Introduction of a new FT in-
strument, termed an Orbitrap [33], supported faster
scan speeds, and scan speed has been further improved
with a high-field version. Importantly, unlike time-of-
flight instruments, the mass resolution and mass accuracy
are preserved at low ion intensities, and this allows quanti-
fication of chemicals over nearly eight orders of magnitude
[34]. This extensive dynamic range is an important cap-
ability for high-throughput exposome research because
environmental chemicals are frequently encountered
three-to-five orders of magnitude lower abundance than
endogenous metabolites [35]. Early results from gas chro-
matography (GC)-Orbitrap analyses provide optimism for
expansion of high-throughput biomonitoring to include
more non-polar, hydrophobic environmental chemicals.
Hundreds of environmental chemicals in different pesti-
cide groups have been detected in single analyses of
human samples (D.I. Walker, unpublished). Thus, a
combination of liquid chromatography (LC) and GC
analyses could provide a standardized central platform
for longitudinal studies to initiate a human exposome
project. Results are already available to show that analyses
can be performed on samples stored for decades [36].
Therefore, rapid progress can be made by analysis of exist-
ing samples for which health outcome data are available.
These high-throughput methods could provide a central
resource on which to build a more extensive exposome
research capability [28, 29].

Large-scale, systematic exposome research
Humans are thought to experience more than a million
exposures in a lifetime [37], so detailed understanding of
life-stage-specific effects represent an enormous challenge.
Using the Human Genome Project as a reference, one can
focus on several criteria needed for exposome research
explained below. These criteria have already been estab-
lished for HRM, which further supports the use of HRM
for exposome research.
First, assays need to be simple enough that they can be

easily performed in multiple facilities; samples can now
be processed using just a single extraction and centrifu-
gation prior to analysis [38]. Second, assays need to be

high-throughput and automated with extensive coverage;
the extraction and injection workflow for LC-MS can be
fully automated, and run-times can be as short as
2.5 min (to detect more than 20,000 mass spectral features
in batches of samples) [29]. Third, the assays need to be
reproducible; analyzing each sample in triplicate, one can
verify the reproducibility of an individual signal in an indi-
vidual sample; however, a second biological sample set is
always necessary when available. Fourth, standards are
required; reference standardization [34] has been devel-
oped to support creation of cumulative data libraries; a
pooled reference sample is calibrated against a National
Institute of Standards and Technology (NIST) Standard
Reference Material (e.g., SRM1950 containing approxi-
mately 100 metabolites) and concurrently analyzed with
each batch of 20 samples. This analytic structure allows
estimation of the absolute concentration of any known
compound that is measured in the NIST standard. There
are numerous standards available for different environmen-
tal chemical classes such as pesticides, organic contami-
nants from cigarettes, chemicals in drinking water, drugs,
and their online spectral library are for approximately
267,376 chemical compounds. However, we know from a
recent expansion to the METLIN metabolite database that
the number of endogenous and environmental chemical
compounds is at least 1 million, so some standards are still
needed for complete coverage [39]. Finally, fifth, assays
need to be affordable; the use of a dual chromatography
[40], and dual ionization approach [41], provides a very
broad spectrum of chemicals that can be analyzed in
triplicate for about $100/sample [28], with possibilities
to lower this to below $10/sample [36].

Tools for data extraction and analysis
Extraction of ultra-high resolution mass spectral data
can be effectively obtained with software language tools
such as apLCMS [42] and XCMS [43]. A wrapper function
in xMSanalyzer [44] allows re-extraction of the same data
with different parameter settings to improve capture of
signals with different characteristics, and also provides
quality control, batch normalization, and other capabilities.
xMSannotator [45] provides an automated computational
framework using existing databases (ChemSpider, KEGG,
HMDB, T3DB, LipidMaps) and a multistage clustering
algorithm to assign confidence scores for chemical identity
by evaluating intensity profiles, retention time characteris-
tics, mass defect, isotope patterns, adduct patterns, and
correlations with matches to other metabolites in known
metabolic pathways. The resulting annotated data are
compatible with any of the many pathway analysis tools,
e.g., KEGG [46], MetaboAnalyst [47] and MetaCore
[Thomson Reuters (https://portal.genego.com/)]. To
complement these knowledge-based tools, which require
knowledge of chemical identities prior to pathway analysis,
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mummichog is a set of computational algorithms to predict
metabolic pathway effects directly from spectral feature
tables without prior identification of metabolites [48].

Chemical identification
One of the major issues for metabolomics in studies of the
exposome has been chemical/structural identification.
Less than half of the ions detected by mass spectrometry
are associated with known chemicals and essentially the
rest are the “dark matter of the exposome.” Of critical
importance for exposome research, about half of the mass
spectral features associated with disease are currently
unidentified [37]. It was recognized early on that the
structural identification of detected metabolites might
be problematic [49]. However, this was considered a
temporary problem, easily solved by constructing data-
bases containing all known mammalian metabolites. At
the time, the mammalian metabolome was estimated to
contain ≤ 5000 compounds, so the assertion that a
complete metabolite database would be readily available
seemed reasonable. Thanks to the diligent work of
many individuals, there are now several excellent and
freely available metabolite databases (METLIN, HMDB,
KEGG, HumanCyc, and others) that contain these 5000
compounds, and many more [50–53]. Unfortunately,
despite the availability of databases, high-throughput
instrumentation, ophisticated statistical, and cheminfor-
matics tools, the “structure identification” problem has
not been solved. What has replaced the initial expectation
of identifying the structures of hundreds or thousands of
metabolites is the disappointing realization that most dis-
covery metabolomics studies report the chemical structure
of fewer than 100 compounds, and very often less than 50
[54]. Thus, the most significant barrier to progress and
a seemingly intractable limitation of the field of meta-
bolomics is the inability to identify the structures of
most detected compounds.
A novel approach to help overcome this problem is the

development of algorithms that predict physical/chemical
properties of compounds contained in chemical databases.
The properties chosen are those that can be experimen-
tally measured for any unknown compound by LC-MS.
These include retention indices, precursor ion survival
curves, collision-induced dissociation fragmentation spec-
tra, biological relevance, and collisional cross-sectional area.
Compounds in databases (for example PubChem) whose
predicted properties most closely match experimentally
measured properties are returned as the most likely candi-
dates for the unknown peak. This system is currently being
validated in an in vivo model of acute trauma and could be
of value for exposome studies. In addition, a multilevel
framework to include unidentified signals in cumulative
databases has been proposed in which ion characteristics

are defined in multivector space, which will aid in overcom-
ing this problem [37].
Orthogonal technologies in MS can also separate and

capture the chemical complexity of the samples, aiding
structural identification. LC is a proven technology that
is orthogonal to MS, and it can be adequately optimized
to target the chemical space of interest, for example,
hydrophilic interaction liquid chromatography is appro-
priate for hydrophilic molecules while a reversed-phase
method provides optimal separation for lipophilic mole-
cules. The correct chromatography allows separation of
isomers and removes isobaric interference in a mass
spectrometer and makes identification of unknowns easier.
Similar to LC, ion mobility, a gas phase separation of ions
based on their mobility, has been shown to be very useful
in separating and capturing the components of a complex
sample and providing with clean mass spectra needed for
identification [55]. It has been recognized that appropriate
fractionation of samples at the sample preparation step
as well as on-line separations (chromatography and ion
mobility) all assist in capturing the chemical complexity
of a matrix, such as blood, by decoupling the overlap-
ping interferences. Accurate quantification is the next
logical step following detection and identification of
exposure-associated molecular species. Molecular species
originating from food and drugs fall in the same concen-
tration regime as endogenous metabolites, while the blood
concentration levels of environmental pollutants are 1000
times lower. Modern mass spectrometers have a dynamic
range of six orders of magnitude, therefore assessment
and validation of the dynamic range of the analytical assay
used to measure these molecular species are critical [56].
Dynamic range of an analytical method is defined as the
concentration range over which a signal response is linear
to the concentration. It is important that the dynamic
range in exposure analysis be defined in the context of
a molecule, especially in MS-based analysis where the
ionization of molecular ions can be vastly different.
Furthermore, interference in the samples can easily result
in ion suppression or enhancement, which can result in
inaccurate quantification. Use of hyphenated technologies
such as LC-MS is even more important in quantification
since chromatography can separate out the interfering
ions and alleviate ion suppression or enhancement
challenges.

Integrated omics methodologies
An important need is to link external exposures to internal
body burden, and internal body burden to biologic re-
sponses and disease outcomes. A recent example of this
analysis continuum was presented in an HRM study of
occupational exposure to trichloroethylene (TCE) [57].
This study showed that TCE exposure was associated
with known TCE metabolites in the blood and urine
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and that other halogenated compounds were correlated
both with TCE metabolites and disease biomarkers.
Thus, the results showed the use of HRM to connect
external exposures, internal body burden, biologic response,
and biomarkers of disease outcome. These analyses used a
new R script, xMWAS [https://sourceforge.net/projects/
xmwas/] [58], which advances capabilities to integrate
HRM data with any other omics data, as already shown
for transcriptome x metabolome [59], microbiome x
metabolome [60], cytokine x metabolome [61], and suitable
for genome, epigenome, proteome, and other integrated
omics analyses that will be essential for mechanistic under-
standing of the exposome.

Current limitations in exposomics
Mixtures of exposure profiles
One major limitation of approaching exposure-disease
associations is the number, diversity, and mixture of
environmental exposure profiles at the individual level;
such an array of exposures is a challenge for both measure-
ment science and in efforts to identify components or
combinations that are associated with adverse outcomes.
Several publications have shown how perturbations in
metabolic networks (and others such as those of gene
regulation and protein-protein interactions) can help
describe complex phenomena such as multimorbidity;
nodes in the underlying biochemical networks connect
disease phenotypes [62, 63]. It may, therefore, be useful
to consider a set of these network perturbations as end-
point proxies when identifying the effects of exposure.
Similarly, the conceptual framework for defining adverse
outcome pathways (AOPs), i.e., making causal links from
molecular initiating events (MIEs) to subsequent key
events (KEs), may help reduce the complexity through
identifying common MIEs for multiple environmental
stressors [64].

False-positives
With big data come big analytical challenges. EWASs
are observational studies and prone to biases such as
confounding and reverse causality (e.g., disease coming
before the exposure) [65]. While there are analytic and
epidemiological study designs that attempt to mitigate these
biases, they have yet to be harnessed in high-throughput
exposure investigations. Yet another issue includes multiple
significant associations (low p values) with small effect sizes.
A recent “prescription-wide association study” on time-to-
cancer in a large and comprehensive Swedish database [66]
found that when examining > 500 drugs prescribed, almost
a quarter of them were associated with cancer with small
effect. Furthermore, these effects changed as a function of
analytic method chosen (e.g., case-crossover vs. Cox propor-
tional hazard), leaving an investigator with many potential
false positives to sift through. This may be the norm in

exposome-wide analytics, where correlations may be small
but seemingly correlated with everything else and it will be a
challenge to ascertain causality [67, 68].

Future perspectives
With respect to the future, the thirst for metabolic
phenotype data, to complement other available omics,
personal monitoring, and activity data, is only likely to
increase, as the concept of the human exposome is
developed and deployed around the world. As mentioned
previously, methods that can integrate metabolomic data
with other system-level data can provide valuable insight
for exposomics and provide a way to link these datasets
together in a meaningful way. It is therefore timely that
several national and international initiatives have been
started to provide high-throughput, multiplatform analyses
with the capacity to serve the wider scientific community.
These initiatives will benefit from a renewed commitment
to analytical and data standards harmonization, and
opportunities for wider access through open data agree-
ments. If the recent efforts to make large, well-curated,
EWAS datasets available alongside tools for their inter-
rogation (e.g., Patel et al. [69]) can be mirrored for
MWAS, then progress in exposome studies is likely to
move forward at pace.
While recent advances in MS have been enabling, we

still need to take advantage of the orthogonally comple-
menting technologies to separate and capture the chemical
complexity of the samples. In addition, standardization
needs to be addressed, as more exposome studies are
developed, reproducibility across sample cohorts will
inevitably become an issue. As biobanks are being
amassed, there is no current standardization for sample
collection, thus data generated will be biased to collec-
tion procedure and quality of sample during long-term
storage. Currently, data repositories exist for metabolo-
mics and genomics but are missing important additional
detailed information such as the type of sample collection
tube, time between collection and freezing, number of
freeze-thaw cycles, and analytical platform used (vendor/
model). Thus, these important points need to be consid-
ered for widespread integration of the exposome.

Conclusions
In a new era of high-throughput environmental exposure
assessment, there is an urgent need for new analytic
approaches to drive discovery of new exposures associated
with disease and phenotype [70]. Herein, the Symposium
provided increased awareness of the utility of the expo-
some in environmental health research, as well as recent
updates on technological innovation and challenges
that still need to be overcome to enable the study of
the exposome, particularly in metabolomics. Despite these
challenges, the exposome paradigm may bear fruit in
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enhancing discoveries to identify exogenous factors that
have up to now been elusive in disease risk. Moving
forward, new technologies to measure environmental
exposures in large populations in a cost-effective manner
are needed, along with harnessing sound epidemiological
designs to extract potential signals from noise, with data
deposited in the public domain for investigators of all ilk
to analyze results.
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