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CHAPTER 5 
______________________________________________________ 
 
 
Skeletons and ocean chemistry: the long view 
 
 
Andrew H. Knoll and Woodward W. Fischer 
 
 
________________________________________________________________________ 
 

 

5.1 Introduction 

 
 In the present day seas, animals, algae, and protozoans are threatened by ocean 

acidification, amplified in many regions by seawater warming and hypoxia (Doney et al. 

2009). Many species may be affected adversely by 21st century environmental change, 

but a decade of research suggests that the hypercalcifying animals responsible for reef 

accretion may be especially vulnerable to acidity-driven decrease in the saturation state 

(Ω, see Zeebe and Gattuso, Box 1.1, this volume) of surface seawater with respect to 

calcite and aragonite. 

 The geologic record reveals that natural changes in the marine carbonate system 

have impacted the evolution and abundance of calcifying organisms throughout the 

Phanerozoic Eon [542 million years (Myr) ago to the present]. This being the case, we 

can use our understanding of the dynamic behaviour of the carbon cycle and the 
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stratigraphic comings and goings of reef-building organisms to inform what, if any, 

lessons can be drawn from the long-term past and applied to our near term future.   

 

5.2 A record of atmospheric pCO2 and past global change  

 

 If there is one fact that geology makes clear it is that the Earth and its biota are 

continually in a state of change. Because of its relationship to climate, the partial pressure 

of CO2 (pCO2) in the atmosphere has been of particular interest to geologists and 

geochemists, but direct measurement of ancient CO2 levels is impossible for intervals 

older than those recorded in glacial ice preserved today near the poles and at high altitude 

(Petit et al. 1999). Therefore, deep time estimates of pCO2 rely on models, broadly 

constrained by geochemical proxy data. For example, the widely applied models of 

Berner and colleagues (e.g., GEOCARB III; Berner and Kothavala 2001; Berner 2006; 

Fig. 5.1C) estimate fluxes of carbon from one reservoir to another, based on geochemical 

proxies (mainly isotope ratios and abundances of sedimentary carbonate and organic 

carbon), and then calculate successive steady-states of the system through time. 

Additional parameters are considered, including estimates of carbon fluxes due to 

erosion, river runoff, plant evolution, volcanic weathering, global CO2 degassing, and 

land area; these also influence the model results.   

 These models suggest that atmospheric pCO2 was not wildly different from pre-

industrial modern levels back into Miocene time (23 to 5 Myr ago), but was moderately 

higher earlier in the Cenozoic, and higher yet – perhaps five to eight times the present 

atmospheric level (PAL) - during the warmest parts of the largely unglaciated Mesozoic 
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Era (252-65 Myr ago). Modelled pCO2 during the Late Paleozoic ice age is, as might be 

predicted, low, but earlier Paleozoic estimates exceed ten times PAL, with values in some 

iterations (Berner and Kothavala 2001) spiking as high as 25 times PAL during the later 

Cambrian Period (ca. 500 Myr ago; Fig. 5.1). An independent biogeochemical model 

(COPSE; Bergman et al. 2004) suggests a similar history, but with less extreme late 

Paleozoic and Mesozoic values.  Geochemical proxies for ancient pCO2 (the C-isotopic 

composition of alkenones, soil carbonates, and organic matter; the distribution of stomata 

in the epidermis of fossil leaves; and the stable isotope ratios of boron) come with their 

own interpretational challenges (e.g., Royer et al. 2001), but generally support model-

based hypotheses for Phanerozoic environmental history. 

 The amount of CO2 in the atmosphere has clearly varied through geological time, 

and was often considerably higher than values seen in the atmosphere today. However, 

when considered alone, estimates of past atmospheric pCO2 do a poor job in predicting 

the evolutionary history of skeletal biotas (Fig. 5.1). For example, during the Cambrian 

and Ordovician periods, when pCO2 was at its Phanerozoic maximum, skeletal biotas 

were radiating throughout the oceans (e.g., Knoll 2003). Clearly, then, pCO2 is not, in 

and of itself, a parameter that tracks hypercalcifier evolution. To understand the history 

of biomineralization, we must place it in the broader context of the expected behaviour of 

the fluid Earth carbonate system as a whole.   

 Over long timescales (≥10 000 years) the marine carbonate system operates in a 

dynamic equilibrium due to feedbacks among fundamental processes operating in the 

carbon cycle.  The carbonate system has six parameters, but because of interdependencies 

can be reduced to two dimensions (Zeebe and Ridgwell, Chapter 2, this volume); here we 
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consider those processes that affect total alkalinity (AT), total dissolved inorganic carbon 

(CT), or both simultaneously. Figure 5.2 depicts one such solution for the marine 

carbonate system. Given a range of plausible AT and CT values, functions of equal 

saturation state (here calculated for calcite, but a similar reasoning applies to aragonite 

and magnesian calcite) can be drawn.  Three primary processes control the fluid Earth 

carbonate system over long timescales. 1) CO2 produced from solid Earth sources 

(volcanoes and metamorphism) and the weathering of sedimentary rocks increases CT, 

but does not affect AT. This process works to lower Ω in seawater and will slow the rate 

of carbonate precipitation or even begin to promote dissolution of carbonate sediments. 

2) Chemical weathering of silicate minerals consumes protons (derived from CO2 via 

carbonic acid) and increases AT, but not CT.  This process serves to raise Ω in seawater 

and both increases the rate of carbonate precipitation and promotes precipitation and 

preservation of carbonate minerals in areas of the oceans previously undersaturated. 3) 

Finally, carbonate mineral precipitation provides the mathematical complement to CO2 

outgassing and silicate weathering by consuming AT and CT with a slope of -2.   

It is not by chance that these fundamental processes have a ΔAT:ΔCT vector sum 

that equals zero: they do not operate independently of one another. CO2 outgassing and 

silicate weathering are connected via the silicate weathering feedback (e.g. Walker et al. 

1981), and because the global oceans have a finite and stable water volume, they produce 

carbonate minerals to alleviate inputs of dissolved inorganic carbon and total alkalinity. 

This forms the basis for a set of negative, or stabilizing, feedbacks on Ω in seawater (a 

form of ‘carbonate compensation’).  The result is that, over long timescales, the CaCO3 

saturation state of seawater globally is both stable and close to that predicted by 
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thermodynamic equilibrium (Ω ~ 1), despite tropical surface waters being strongly 

supersaturated. For example, if CO2 outgassing were to increase, so too would silicate 

weathering (due to increased temperature). At the same time, the rate of carbonate 

precipitation from seawater would decrease due to carbonate compensation (lowering Ω) 

and the system would arrive at a new steady-state with a higher atmospheric CO2, but a 

similar Ω.   

This thought experiment illustrates two important concepts. One, it explains why, 

in times past, CO2 can have been far higher than today, and yet seawater Ω remained at 

levels adequate for calcification. And two, if we are concerned about ocean acidification 

events in Earth history, we need to look for transient departures from long-term dynamic 

equilibrium. Global deviations in Ω in seawater cannot last long, in geological terms.  

Given enough time (> 10 000 years), carbonate compensation and silicate weathering will 

work to balance CO2 outgassing (and inputs of acidity in general). Zeebe and Ridgwell 

(Chapter 2, this volume) provide a detailed discussion of the mechanisms involved. 

 It is the rapidity of pCO2 increase in present day oceans that is outstripping the 

buffering capacity of the Earth system and, potentially, the genetic ability of populations 

to adapt. Thus, if we seek to understand the lessons of the past for our future, we need to 

identify brief intervals in the past when carbon dioxide is inferred to have risen too 

rapidly for the Earth system to remain in equilibrium (e.g., Hoegh-Guldberg et al. 2007; 

Knoll et al. 2007; Zeebe and Ridgwell, Section 2.5.3, this volume). The geologic record 

does indeed contain several such events, and reveals that perturbations to the marine 

carbonate system can have complex, and in some cases devastating, effects on 

populations of calcifying organisms. In addition to these, however, the rock record 
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contains intervals in which the patterns of biological calcification exhibit signal features 

of stress like those of ocean acidification, but sustained over timescales far longer than 

those expected from our understanding of ocean acidification and the marine carbonate 

system (e.g. Knoll et al. 2007). These observations highlight an important gap in our 

understanding and require an additional class of hypotheses for processes responsible for 

controlling Ω in surface seawater. The mechanisms of interest are discussed in section 

5.3.3. 

 

5.2.1 The Paleocene-Eocene Thermal Maximum 

 Because their calibration depends on assumptions of equilibrium, models such as 

GEOCARB and COPSE integrate over long intervals of time and cannot be used to 

identify times of geologically rapid pCO2 increase in the geologic record. We need to find 

high resolution geologic records in which geochemical data suggest rapid environmental 

change.  Perhaps the best studied example is the so-called Paleocene-Eocene Thermal 

Maximum, or PETM, a brief interval of pronounced global warming about 55 Myr ago 

(Kennett and Stott 1991; Zachos et al. 1993). 

 Warming of 5 to 8°C, with larger increases at high latitudes, has been inferred 

from a sharp excursion of about -1.7‰ in the oxygen isotopic composition of carbonate 

skeletons (Zachos et al. 2003). Other geochemical proxies for sea surface temperature 

(Mg/Ca, the relative abundance of unsaturated alkenones, and the structures of archaeal 

lipids) are consistent with this estimate, as are biogeographic changes among both corals 

and land plants (reviewed by Scheibner and Speijer 2008). A -2.5 to -3‰ shift in the C-

isotopic composition of carbonate skeletons coincides with the temperature excursion, 
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suggesting that increased atmospheric CO2 supplied from an isotopically light source 

drove climate change. It has been hypothesized that catastrophic release of methane from 

shelf/slope clathrate hydrates was involved in the PETM event (Dickens et al. 1995), but 

the inability of clathrate release to supply the quantity of carbon needed to account for 

recorded C-isotopic change (Zachos et al. 2005) suggests that other mechanisms, 

including thermogenic methane release associated with end-Paleocene flood basalts, may 

have played a role (Svensen et al. 2004; Higgins and Schrag 2006). In any event, high-

resolution stratigraphic and geochemical data indicate that the PETM perturbation was 

rapid and transient; the decrease in C-isotope values occurred largely in two bursts, each 

less than 1000 years in duration, and the system returned to its background state within 

about 100 000 years (Rohl et al. 2000; Nunes and Norris 2006). Shoaling of the calcite 

compensation depth by as much as two kilometers provides empirical evidence of ocean 

acidification (Zachos et al. 2005).   

 Parallels to the present prompt the question of how Earth’s biota fared across the 

PETM event. On land, vascular plants record pronounced but transient species 

migrations, with only limited extinction (Wing et al. 2005). Paleocene mammals suffered 

extinctions, but new taxa appeared, including many modern mammalian orders, most at 

initially small size – marking the PETM as a time of pronounced mammalian turnover 

rather than diversity decline (Gingerich 2006). 

 Many marine taxa also display a pattern of pronounced turnover but limited 

extinction (Scheibner and Speijer 2008), with corals (Kiessling 2001) and various 

microplankton groups (Scheibner and Speijer 2008) showing transient range expansion 

toward the poles. Major extinction depleted the diversity of deep sea benthic 
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foraminiferans (Thomas 2007), but corals – a group considered especially vulnerable to 

present day ocean acidification (Kleypas et al. 1999; Hoegh-Guldberg et al. 2007) – 

show little diversity change. Diversity, however, does not tell the whole story. In a 

comprehensive review of carbonate platforms along the Paleogene margins of the 

Tethyan Ocean, Scheibner and Speijer (2008) demonstrated that shelf margin reefs built 

by colonial corals and calcareous algae declined markedly at the PETM. Solitary (but not 

colonial) scleractinians occur in basal Eocene carbonates, but contribute relatively little to 

carbonate accumulation. Across the same boundary, larger benthic foraminifera expand 

dramatically. 

 Thus, combined warming and ocean acidification 55 Myr ago made only a limited 

long-term mark on the marine biota. While acidification expanded the volume of 

undersaturated deep-sea waters, skeleton formers persisted on the shelves. This 

persistence, however, does not imply strict ecological continuity. Coral reef ecosystems 

declined widely and did not recover for hundreds of thousands of years – a geological 

instant but almost impossibly long by the standards of human civilization. Migration may 

have played an important role in taxonomic persistence on land and in the ocean, but this 

required corridors for migration, no longer unimpeded on land or, perhaps, in the sea. In 

summary, then, the PETM record may be reassuring on an evolutionary timescale, but it 

raises concerns on the ecological scales relevant to humans. Persistence of coral species, 

perhaps in isolated populations with little or no calcification (e.g., Fine and Tchernov 

2007) may not ensure the continual accretion of reefs, with their attendant ecosystem 

services.  
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5.2.2. End-Permian mass extinction 

 An earlier event interpreted in terms of ocean acidification occurred 252 million 

years ago, at the end of the Permian Period. Estimates of pCO2 change and global 

warming coincide broadly with those for the PETM, but the biological consequences 

were starkly different. On land, a poorly resolved record of vertebrate evolution suggests 

migration and increased taxonomic turnover across the Permian-Triassic boundary 

(Smith and Botha 2005), and land plants show both poleward migration and regionally 

distinct patterns of extinction, most pronounced in high southern latitudes (Rees 2002; 

Abu Hamad et al. 2008). Marine ecosystems, however, were devastated – species loss is 

estimated at 90% or more, while metazoan reefs and other ecosystems that had long 

dominated the seafloor disappeared (Erwin 2006). 

 A reasonable scenario for end-Permian mass extinction invokes rapid, massive 

influx of CO2 into the atmosphere and oceans, in association with one of the largest 

eruptions of flood basalts known from the geologic record. At least 1.2×106 km3 of 

basaltic volcanic rocks were deposited over what is now western Siberia, largely 

accumulating in a million years or less (Reichow et al. 2007). Comparison with modern 

volcanoes, such as those in Hawaii, suggests that this event might have released 1017 to 

1019 mol CO2 (equivalent to 10 to 1000 times the amount of carbon dioxide estimated for 

the latest Permian atmosphere; Wignall 2001), although integrated into an active carbon 

cycle over a million years, this would increase atmospheric levels by only two-fold or 

less (Knoll et al. 2007). Comparisons with Hawaiian volcanism, however, probably 

underestimate carbon dioxide release from Siberian trap volcanism, very likely by a wide 

margin. The Siberian magmas ascended through thick carbonate and evaporate deposits, 
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adding CO2 from contact heating and decarbonation (and sulfur dioxide, a second source 

of acidity; e.g., Knoll et al. 2007; Ganino and Arndt 2009; Iacono-Marziano et al. 2009). 

Today, as much as 10% of all CO2 released from mid-ocean ridges, volcanoes, and 

convergent plat margins can be attributed to Mount Etna, a volcano developed on 

extensive platform carbonates (Marty and Tolstikhin 1998). Moreover, Siberian Trap 

magmas and lavas intruded into and extruded onto extensive late Paleozoic peat and 

brown coal deposits, generating large additional fluxes of CO2 and thermogenic methane 

(CH4) to the atmosphere (Retallack and Jahren 2008). Thus, both massive volcanism and 

the geologic context of the volcanism contributed to rapid CO2 (and SO2) increase, 

driving global warming and ocean acidification. 

 End-Permian extinctions in the oceans were extensive but not random. Knoll et al. 

(1996) documented a strong pattern of selectivity with respect to fundamental 

physiological and ecological features of the biota. Hypercalcifiers and other animal and 

algal groups with limited capacity to pump ions across membranes show nearly complete 

extinction, but groups better able to modulate the composition of fluids from which 

carbonate skeletons were precipitated survived differentially well. Further, taxa 

characterized by high rates of exercise metabolism and well developed respiratory and 

circulatory systems survived better than anatomically simple hypometabolic taxa, and 

infauna survived better than epifauna. In 1996, the term ‘ocean acidification’ was not a 

part of paleontology’s vocabulary, but an extensive physiological literature suggested that 

observed patterns of extinction and survival matched predictions made on the basis of 

organismic tolerance to and compensation for hypercapnia (elevated CO2 in internal 

fluids). 
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 Stimulated by environmental concerns, a large body of research on marine 

organisms has accumulated during that past fourteen years, prompting a number of 

general statements about vulnerability to hypercapnia and increasingly acidic seawater.  

For example, Widdicombe and Spicer (2008, p. 194) wrote: 

 ‘We conclude that there is clear potential for the chemical changes 
associated with ocean acidification to impact on individuals at a physiological 
level particularly through disruption of extracellular acid-base balance. There is 
some weak evidence that the severity of this impact could be related to an 
organism's phylogeny suggesting that both species and taxonomic measures of 
biodiversity could be reduced. However, there is also evidence that potential 
species extinctions will be more strongly governed by factors related to an 
organism's lifestyle and activity (e.g. infaunal v epifaunal, deep v shallow, deposit 
feeder v suspension feeder, large v small) than by its phylogeny. There is also 
huge uncertainty as to what extent organism adaptation or acclimation will 
mitigate the long term effects of ocean acidification.’ 
 

And, in a comparison of marine animals more and less tolerant of hypercapnia, Melzner 

et al. (2009) proposed that ‘All more tolerant taxa are characterized by high (specific) 

metabolic rates and high levels of mobility/activity.’  These conclusions about the present 

recall observed patterns of end-Permian extinction.   

 In light of new experimental results, especially those on ocean acidification and 

calcification, Knoll et al. (2007) returned to the Permian-Triassic data, focusing largely 

on inferred differences in the physiology of skeleton formation. This exercise requires 

physiological inference from fossil remains. From fossils we can establish the lifestyles 

of ancient organisms and, to the extent that phylogeny is a good predictor of anatomy and 

physiology, those can be inferred, as well. Widdicombe and Spicer (2008) reasonably 

stress that strict phylogenetic focus in ocean acidification research may be limiting.  

Nonetheless, in terms of broad physiological attributes important to assessing 

hypercapnia and ocean acidification, many species within marine classes and phyla share 
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fundamental features of metabolism and (key to interpreting fossils) skeletal biosynthesis. 

Thus, while individual species may respond variably to increased CO2 load, groups like 

corals will have a statistical tendency to respond coherently - and differently than, say, 

mollusks. And what the fossil record provides is a statistical digest of extinction and 

survival.    

 Knoll et al.’s (2007) focus on skeletal physiology once again showed evidence of 

dramatic variations in extinction probability (Fig. 5.3). Hypercalcifiers (corals and 

massively calcifying sponges) and other groups with minimal capacity to buffer 

calcifying fluids (e.g., lophophorates and crinoids) lost 86% of their genera during the 

extinction, whereas genera of animals and protists that made skeletons of materials other 

than CaCO3 exhibit extinction rates of only about 5% - comparable to or less than 

background extinction rates for the preceding 50 Myr. Calcifying organisms better able to 

modulate internal fluids (mostly mollusks and arthropods) show intermediate levels of 

genera loss (54%), and within this category, groups predicted to be relatively vulnerable 

to hypercapnic stress based on ecology or anatomy disappeared at rates twice those of 

groups deemed less vulnerable. Also, for a series of animal, protozoan, and algal taxa, 

genera characterized by carbonate skeletons showed much higher rates of extinction than 

close non-calcifying relatives, providing some control on physiological variability among 

taxa. All of these observations are consistent with a prominent role for hypercapnia/ocean 

acidification in generating the selectivity associated with end-Permian mass extinction.    

 

5.2.3 Why the difference? 
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 Clearly, end-Permian fossils record environmental catastrophe more dire than the 

PETM, but why did the marine biota respond so differently in the two events? Possibly, 

end-Permian environmental disruption was simply more pronounced. Certainly, the 

carbon isotopic excursion across the Permian-Triassic boundary is double that at the 

PETM. But there is more to the story. In fact, in our summary of environmental triggers 

for end-Permian mass extinction, we revealed only half the story – the other half may be 

what ensured the unusual severity of this largest mass extinction. 

 In some ways, the late Permian world into which the Siberian traps erupted was 

almost maximally different from the Earth we experience today. Continental masses were 

aggregated into the supercontinent Pangea, resulting in a Panthalassic ocean more than a 

hemisphere in extent. With the mid-Permian decay of late Paleozoic continental ice 

sheets and climate warming, physical circulation in this ocean may have been relatively 

sluggish, promoting extensive subsurface hypoxia (e.g., Meyer et al. 2008). Both deep 

sea black shales, preserved in obducted slivers of late Permian seafloor (Isozaki 1997) 

and biomarker lipids that document anoxygenic photosynthetic bacteria in latest Permian 

seas (Cao et al. 2009) record oxygen depletion in subsurface water masses. Global 

warming associated with volatile release from Siberian volcanism appears to have tipped 

the oceans into a state of widespread anoxia beneath the mixed layer (Wignall and 

Twitchett 1996), generating additional fluxes of CO2 from upwelling waters (Knoll et al. 

1996). In short, as observed at some level today, the end-Permian extinction was not a 

crisis fomented by hypercapnia/ocean acidification, global warming or subsurface 

anoxia, it was a crisis in which all three occurred simultaneously (Knoll et al. 2007).  

Given the interconnected nature of the Earth system, it could hardly be otherwise. 
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 Subsurface anoxia would have impacted the biota in several ways. Most 

obviously, shoaling of the oxycline would have stressed benthic populations, much as it 

does in seafloor ‘dead zones’ today. Secondly, the physiological effects of warming, 

hypercapnia, and hypoxia are not independent, but rather are synergistic, amplifying 

physiological stress (Pörtner 2008; Pörtner et al., Chapter 9, this volume).  Many 

organisms in end-Permian oceans probably died of asphyxiation; nonetheless, end-

Permian skeletons suggest marked selectivity consistent with the physiological effects of 

hypercapnia/ocean acidification. 

 Recently, Higgins et al. (2009) explored the consequences of widespread 

subsurface anoxia for the carbonate system. As discussed in more detail below, anaerobic 

heterotrophs generate total alkalinity as they remineralize organic matter.  Thus, in 

oceans with widespread subsurface anoxia, subsurface water masses should be expected 

to have higher Ω than at present, while the Ω of overlying surface waters should be 

reduced. Reduction of surface water Ω should, in turn, make skeleton formation by 

hypercalcifiers more difficult (e.g., Gattuso et al. 1999), increasing the physiological 

stress on latest Permian corals, hypercalcifying sponges, and other organisms with 

limited ability to modulate internal fluid composition.   

 The punchline for end-Permian extinction, then, is that the ability of marine 

organisms to precipitate calcium carbonate skeletons was impeded by two circumstances. 

Expanding subsurface anoxia and rapidly rising pCO2 would both have lowered Ω in the 

surface ocean; operating in tandem, they appear to have depressed Ω strongly for a 

biologically protracted interval of time. To the extent that this is correct, it suggests that 

the end-Permian extinction can inform current research in terms of taxonomic, 
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ecological, and physiological vulnerability to 21st century global change. Perhaps 

mercifully, however, the extent of the end-Permian catastrophe appears to rely on 

concatenated factors only partially in play today. 

 

5.3 Is there a more general historical pattern?   

 Reefs are a striking component of the carbonate sediments through geologic time, 

and the record of biological calcification is well written in the fossil composition of 

ancient reefs. The preceding sections examined two historical events wherein ocean 

acidification occurred due to rapid influx of CO2 from the solid Earth; the effects of these 

events on the biota were variable, but in one case, at least, devastating for marine 

hypercalcifiers. Using historical metrics, one can ask a set of broader questions about the 

processes that have controlled the abundance and diversity of reef-building organisms 

through time. What conditions are responsible for observed long-term patterns in the 

evolution of hypercalcifiers? And how might these trends reflect long-term changes in the 

nature and behaviour of the marine carbonate system that extend beyond short-term 

ocean acidification events? 

 

5.3.1 Skeletons and surface water Ω 

 A large body of experimental research supports the hypothesis that the cost and 

effectiveness of carbonate skeleton formation vary inversely with Ω (Gattuso et al. 1999; 

Langdon and Atkinson 2005, and references therein). Skeletal responses to ocean 

acidification, however, vary across taxa, as might be predicted from basic features of 

skeletal physiology. Because hypercalcifiers have only limited physiological capacity to 
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pump ions across membranes to modify the composition of fluids from which skeletal 

minerals are precipitated, they are particularly vulnerable to decreasing Ω in ambient 

waters. Ries et al. (2009) grew a variety of skeletal invertebrates and algae at a range of 

Ω. Not surprisingly, a majority of the experimental species showed a decline in skeleton 

formation with decreasing Ω. Three arthropods, however, actually increased skeletal 

mass with decreasing Ω, and red and green algae, as well as a limpet and a sea urchin 

showed initial increase in calcification followed by decline as Ω decreased beyond a 

threshold value. Gooding et al. (2009) also observed an increase in skeletal mass in the 

sea urchin Pisaster ochraceus grown at elevated pCO2 and temperature. These responses 

are consistent with the pattern of extinction and survival across the Permian-Triassic 

boundary, and expectations for vulnerability to decreasing Ω. We note, however, that 

changing calcification rate is only one of many potential physiological responses to ocean 

acidification – in some cases, skeletal compensation is accompanied by decreased 

performance in other important aspects of growth or metabolism (Pörtner 2008, Barry et 

al., Chapter 10, this volume).   

 

5. 3.2 Hypercalcification through time 

 Paleontologists have long understood that neither the abundance nor the 

taxonomic composition of reefs has remained constant through time, prompting the 

generalization that six to eight successive reef biotas have flourished in Phanerozoic 

oceans, separated by stratigraphic gaps during which metazoans contributed little to reef 

accretion (e.g., Wood 1999; Copper 2002a; Kiessling 2002; Ezaki 2009). In a recent 

compilation of reef abundance and diversity, Kiessling (2009) has refined this view.  
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Perhaps surprisingly, Kiessling’s data show that widespread reef development, common 

from early Neogene time through today, is not generally characteristic of Phanerozoic 

oceans (Fig. 5.1A).   

Reefs can be defined as discrete rigid carbonate structures formed by in situ or 

bound components that develop topographic relief upon the sea floor (Wood 1999). 

Structures that fit this definition have existed since the evolution of benthic microbial 

communities more than three billion years ago (Grotzinger and Knoll 1999; Allwood et 

al. 2009). With the late Neoproterozoic emergence of complex multicellularity, both 

animals and algae began to participate in reef accretion, and through the Phanerozoic Eon 

(the past 542 Myr), a number of major taxa have contributed to reef formation.  

Kiessling’s (2009) compilation highlights several first order stratigraphic patterns in the 

composition of reef biotas (Fig. 5.1B). First, microbial accretion did not cease with the 

evolution of hypercalcifying metazoans, but rather declined slowly and fitfully through 

time, ceasing to be quantitatively important only in the Cretaceous Period. Second, 

bryozoans, bivalves, calcareous algae, and other groups have contributed a moderate 

volume of reef carbonate through time, with calcareous algae peaking in the late 

Carboniferous and early Permian periods and again in the Neogene, and rudist bivalves 

playing a major role in Cretaceous reefs (to the extent that rudist deposits fit Wood’s 

definition of a reef; Gili et al. 1995). Throughout the Phanerozoic Eon, however, peaks in 

reef abundance correspond to times of widespread and diverse hypercalcifying animals, 

mainly massively calcifying sponges and cnidarians, and calcareous algae. It is 

principally the episodic waxing and waning of these organisms that gives rise to the 

widely applied concept of successive reef biotas. Insofar as hypercalcifiers should be 
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sensitive to factors that control Ω, we can ask whether these factors were in play when 

successive reef biotas expanded and collapsed.   

 Archaeocyathids, an extinct group of calcareous sponges, were major contributors 

to reef accretion in Early Cambrian oceans, but a major extinction event near the 

Cambrian Stage 3-4 (Botomian-Toyonian) boundary essentially wiped out the group, 

beginning a nearly 50 Myr interval during which metazoans played only a minor role in 

reef accretion (Rowland and Shapiro 2002). As part of a broader radiation of well-

skeletonized animals, sponges, rugose and tabulate corals, and bryozoans renewed 

metazoan reef accretion during the Ordovician Period (Harper 2006), and reefs 

constructed by these organisms persisted with varying abundance until the Frasnian-

Famennian boundary in the late Devonian Period, some 370 Myr ago. At this time, 

hypercalcifying animals collapsed again, ushering in a brief interval of animal-poor 

microbial reefs (Copper 2002b). Animal-algal reefs occurred throughout the later 

Carboniferous and Permian periods, with hypercalcifying sponges once again playing a 

particularly important role in later Permian build-ups. Then, as discussed above, 

hypercalcifiers suffered differentially severe losses during end-Permian mass extinction.   

 Early Triassic reefs were microbial. Beginning in the Middle Triassic, however, 

reef abundance increased with the radiation of scleractinian corals and sponges. Many 

hypercalcifiers disappeared, once again, at the end of the Triassic, although enough 

species survived to fuel renewed reef expansion during the Jurassic Period (Lathuilière 

and Marchal 2009). Another decline toward the end of the Jurassic was followed by an 

extended interval dominated by rudist bivalves. Only after the end-Cretaceous mass 

extinction did modern reef ecosystems began to take shape. 
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5. 3.3 Mechanisms to explain the pattern of hypercalcification in reefs 

 Canonically recognized mass extinctions do not fully explain the stratigraphic 

pattern of hypercalcifier evolution (Kiessling 2009, Kiessling and Simpson 2010). 

Hypercalcifiers disappear completely during end-Permian mass extinction and decline 

markedly in diversity and extent during Late Devonian and Late Triassic extinctions. On 

the other hand, mass extinctions at the end of the Ordovician (Sheehan 2001) and 

Cretaceous periods do not show the preferential loss of hypercalcifiers observed for end-

Permian collapse (Knoll et al. 2007); the proportional extinction of hypercalcifiers was 

modest during the end-Ordovician and end-Cretaceous mass extinctions, and the loss of 

metazoan-built reefs was transient.   

 Although there is good physiological reason to connect the abundance and 

evolutionary history of hypercalcifiers to state changes in Ω in ambient seawater (e.g. 

Veron 2008), the long (>105 years) timescales on which reef organisms have waxed and 

waned introduces a new class of problem. As discussed above, variables such as pCO2 

and temperature do not appear to explain the stratigraphic pattern of hypercalcifier 

evolution (Kiessling 2009). This should not be surprising, given the flexibility of these 

parameters within the dynamic equilibrium described in section 5.2. What we require is a 

mechanism that is congruent with this dynamic equilibrium, and yet can impact marine 

carbonate chemistry with a characteristic timescale greater than that expected for ocean 

acidification, bearing in mind the ever-present stabilizing feedbacks.   

 Hypercalcifying organisms residing in reefs experience the Ω of regional surface 

seawater. Global Ω is set by the overall marine carbonate system, but this value (which is 
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close to thermodynamic equilibrium) represents a cumulative parameter integrated over 

the entire volume of global seawater. There are, in spite of this, large gradients in Ω. 

These gradients result in part from the hydrologic cycle (controlling salinity) and 

inorganic factors controlling the solubility of carbonate polymorphs (e.g. temperature and 

pressure). An underappreciated process promoting these gradients is the effect of the 

biological pump (Higgins et al. 2009). CO2 fixed by primary producers in the surface 

ocean is aerobically respired in the deep, setting up a gradient in CT that pushes Ω higher 

in surface seawater and lower in deep seawater (Fig. 5.4).   

We can imagine how the geobiological behaviour of the biological pump differed 

in times past. The pump could be stronger or weaker. A stronger biological pump means 

larger gradients in CT, and would translate into a world characterized by even larger 

gradients and a higher Ω in surface seawater than we observe today. We can also imagine 

a world with a reduced depth gradient in Ω, including lower surface seawater Ω, due to 

the impact of anaerobic metabolisms.  In contrast to aerobic respiration, all anaerobic 

metabolisms significantly affect AT in addition to CT (Soetaert et al. 2007; Higgins et al. 

2009). Anoxic environments characterized by anaerobic respiration tend to ameliorate 

depth gradients in Ω, while aerobic metabolisms tend to promote them. This means that a 

world in which a significant proportion of biological pump electrons pass through 

anaerobic metabolisms will tend to have subdued gradients in Ω, even though global 

seawater may not vary (Fig. 5.4). The ability of the marine carbonate system to 

accommodate this reorganization is, in principle, intimately tied to the processes that 

control the long-term and large-scale development of marine anoxia.   
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 It is now possible to develop the logic for hypotheses to explain the abundance 

and diversity of marine hypercalcifying organisms through time, making reference to 

both short-term events of rapid CO2 influx that cause Ω to deviate briefly (in geologic 

terms) from a dynamic equilibrium, and also long-term transitions due to the waxing and 

waning of ocean basin anoxia. Might multiple ancient reef crises be related to rapid 

decreases in Ω associated with ocean acidification, the expansion of subsurface anoxia, or 

both? 

 Recent radiometric determinations suggest that the Cambrian extinction of 

archaeocyathids may coincide with emplacement of the Kalkarindji Large Igneous 

Province, Australian flood basalts comparable in scale to the end-Permian Siberian traps 

(Evins et al. 2009). Citing the extensive deposition of black shales, Zhuravlev and Wood 

(1996) linked Cambrian hypercalcifer extinctions to the expansion of anoxic subsurface 

waters.  In turn, Glass and Phillips (2006) and Hough et al. (2006) related anoxia and 

extinction to the Kalkarindji eruptions. In fact, the paleobiological particulars of this 

extinction suggest that we should focus on the modulation of Ω discussed in the previous 

section. Early Cambrian hypercalcifiers were widespread in shallow shelf and platform 

environments, and they disappeared despite the limited incursion of anoxic water masses 

into shallow marine environments. Trilobites, the dominant organisms recorded in 

Cambrian strata, suffered major extinctions, but because first appearances kept pace, the 

overall pattern is one of marked turnover, not diversity loss (Bambach et al. 2004). Small 

shelly fossils of phylogenetically diverse origins declined across this interval, but as their 

record is closely tied to preservational circumstances that also change, it is difficult to 

quantify their evolutionary pattern (Porter 2004). The renowned Burgess Shale in British 
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Columbia documents the persistence of diverse animal groups into mid-Cambrian oceans, 

but few of these made robust carbonate skeletons. In fact, in later Cambrian carbonates, 

skeletons account for only a few percent of known carbonate volume – more like the 

Early Triassic than any other time of Phanerozoic history (Pruss et al. 2010). As in the 

end-Permian example, massive basaltic volcanism appears to have been visited on a 

planet whose oceans were already characterized by subsurface hypoxia. Volcano-driven 

warming and expansion of subsurface anoxia caused mass mortality in deeper marine 

environments, but it may have been the associated decline in surface water Ω that 

selectively removed hypercalcifiers from shallow shelves and platforms.   

 Rapidly accumulating geochemical data (Hurtgen et al., 2009; Gill et al. 2010) 

suggest that the ensuing later Cambrian to earliest Ordovician oceans experienced 

persistent or recurring subsurface hypoxia, at least episodically expanding to widespread 

anoxia. Thus, the protracted post-extinction interval marked by limited skeletal 

contributions to accumulating carbonates, a dearth of hypercalcifiers, and few metazoan 

contributions to reefs may have been governed, at least in part, by the redox-modulated 

depression of Ω in surface seawater.  

 Depression of surface Ω may also explain hypercalcifier loss at the boundary 

between the Frasnian and Famennian stages of the Devonian Period. Although commonly 

included as one of the ‘big five’ mass extinctions, extinction rates are not unusually high 

during this event. Rather origination rates declined, resulting in a ‘mass depletion’ of 

standing diversity (Bambach et al. 2004). In fact, the Frasnian-Fammenian loss of reef 

building hypercalcifers, especially calcareous sponges, sits in the middle of a protracted 

interval of diversity decline. As discussed earlier for Permian and Cambrian 
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hypercalcifier extinctions, this entire mid-Devonian to basal Carboniferous interval is 

characterized by widespread black shales as well as high taxonomic turnover. Once 

again, then, anoxia at depth may have influenced diversity through a protracted interval, 

with the Fransian-Famennian boundary representing an extreme perturbation that 

exceeded the capacity of hypercalcifiers to respond.   

  Thus, a case can be made that the three Paleozoic intervals marked by 

hypercalcifer extinction and subsequent gaps in metazoan reef accretion may share the 

environmental circumstance of marked reduction of Ω in surface waters. Although in 

need of geochemical testing, this hypothesis can account for both the timing and 

taxonomic/physiological selectivity of extinctions at these moments in time. 

 Transient ocean acidification triggered by eruption of the Central Atlantic 

Magmatic Province has been also argued as the trigger mechanism for pronounced 

extinctions at the end of the Triassic Period (200 Myr ago; Hautmann 2004; Hautmann et 

al. 2008a). Coral diversity declined strongly (Lathuilière and Marchal 2009), but not 

completely (Kiessling et al. 2009), so that relatively diverse communities, including 

reefs, became reestablished on a million year timescale (Hautmann et al. 2008b). 

Interestingly, flood basalts and transient subsurface anoxia recur about 17 million years 

later, at the Pliensbachian-Toarcian boundary of the early Jurassic Period; in this case, 

corals show elevated turnover rates, but not strong diversity decline (Lathuilière and 

Marchal 2009). Ocean acidification has been proposed to explain both Mesozoic events 

(Kiessling and Simpson 2010, and references therein). These events make it clear that 

while several episodes of hypercalcifier extinction coincide with large igneous eruptions 

(e.g., Courtillot and Olson 2007), large igneous provinces do not invariably result in mass 
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extinction of reef-building metazoans (Wignall 2001). The hypothesis entertained here 

suggests that massive volcanism impacted hypercalcifiers most strongly when the redox 

state of the oceans was prone to subsurface anoxia (Fig. 5.1), facilitating a combined 

influence of ocean acidification and redox-driven redistribution of total alkalinity on 

surface water Ω. Of individually moderate effect, ocean acidification and subsurface 

anoxia in tandem provide a lethal cocktail for organisms with limited physiological 

capacity to buffer the fluids from which they precipitate carbonate skeletons. 

 Earth scientists commonly argue the merits of factors X vs. Y in affecting life’s 

history; more realistic approximations may occur when we discuss the affects of X and 

Y, occurring together or in series. The point here is not to argue that saturation level was 

the sole influence on hypercalcifier evolution through time. Additional aspects of 

seawater chemistry (e.g. Mg/Ca), biological interactions, and other influences may well 

have affected hypercalcifier evolution (Kiessling 2009). But we do argue that emerging 

geochemical tools provide a means of exploring both short- and long-term changes in Ω 

through time and that results to date support the hypothesis that episodic declines in Ω 

have played a major role in governing the stratigraphic distribution of hypercalcifiers 

and, hence, metazoan reefs.   

 

5.4 Summary, with lessons for the future 

 Several events in Earth history bear the fingerprints of ocean acidification.  The 

two examples discussed here in detail (the Paleocene-Eocene Thermal Maximum and P-T 

mass extinction) reveal a complex, and sometimes devastating impact on the abundance, 

diversity, and evolution of calcifying organisms. More broadly, the geologic record 
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indicates that calcifying organisms have been subject to episodically changing Ω 

throughout the past 542 Myr. Volcanism and associated thermal decomposition of 

organic matter have generated ocean acidification over intervals that were biologically 

long if geologically brief. Decreases in surface seawater Ω sustained for millions of years 

have also been associated with the expansion of anoxic subsurface waters and, hence, 

anaerobic heterotrophy. When ocean acidification and the expansion of anoxic waters 

occur in tandem, the result can be mass extinction that is differentially severe for 

hypercalcifiers and other animals with limited capacity to modulate the ionic composition 

of internal fluids. Our understanding of these events remains imperfect, but the 

perspective they offer can be used to better inform our expectations for the future of reefs 

during our current anthropogenic experiment.   

 Several generalities about the past seem relevant to our environmental future: 

 

1.  In assessing the vulnerability of the biota to decreasing Ω, rate is key. When rate of 

environmental change is fast, the probability of extinction is increased. Times of 

biological crisis in the past were times, like today, when pCO2 increased rapidly, not 

when pCO2 was high (see also Zeebe and Ridgwell, Chapter 2, this volume). 

 

2.  There is no clear reason to expect that the coming century will see a ‘sixth extinction’ 

comparable to those at the end of the Permian and Cretaceous periods. Nonetheless, the 

loss of vulnerable taxa from ocean ecosystems could affect ecological function for many 

millennia. The past tells us that there will be winners and losers in a changing ocean. 
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Corals, and therefore the coral reef communities that harbour so much of marine 

diversity, may well be among the losers. 

 

3.  In the past, extinction was more pronounced when several biological challenges were 

imposed at once. In similar fashion, the consequences of ocean acidification will be 

amplified by global warming, declining levels of dissolved oxygen (Brewer and Peltzer 

2009), habitat loss, overfishing, and the impedance of routes for migration.  

 

4.  The timescale for recovery from ocean acidification is measured in geologic time.  

Thus, even assuming that inputs of CO2 into the atmosphere and oceans are ameliorated, 

diversity loss will appear permanent on timescales relevant to the human population.   

 

5.  Physiological experiments and geologic history are mutually illuminating.  Studies of 

the past can suggest relative biological vulnerabilities, highlighting candidates for 

physiological research.  Physiology, in turn, provides an important lens through which 

paleontological research can be focused.   
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Figure Captions 
 
Figure 5.1. Phanerozoic distribution of reefs, reef builders, and environmental variables. 
A: Reef abundance through time, with intervals of widespread subsurface anoxia in 
yellow. B: Proportional contribution of reef building organisms to total reef mass as a 
function of time. The data are coloured to highlight to comings and going of 
hypercalcifying taxa (in red). C: Atmospheric pCO2 estimates and intervals marked by 
continental ice sheets, as inferred from geological observations, geochemical data, and 
numerical models. Initials indicate the periods of the Phanerozoic Eon: Cm = Cambrian, 
O = Ordovician, S = Silurian, D = Devonian, C = Carboniferous, P = Permian, Tr = 
Triassic, J = Jurassic, K = Cretaceous, Pg = Paleogene, and N = Neogene. Data in A and 
B from Kiessling (2009).   
 
Figure 5.2. Three fundamental processes that control the marine carbonate system and 
influence the saturation state of calcite (Ωc) of seawater on geological timescales. See text 
for details. 
 
Figure 5.3. Selective extinction during the end-Permian crisis (data from Knoll et al. 
2007). Hypercalcifers and other animals that have a limited capacity to buffer internal 
fluids lost 86% of known genera; groups with carbonate skeletons but well developed 
physiological mechanisms for buffering internal fluids lost 54% of genera; and groups 
that use carbonate minerals sparingly or not at all in skeleton formation lost 5% of 
genera. Grey-scale coding for individual taxa shows how they align along a gradient of 
increasing extinction severity. The distribution of taxa along this gradient can be 
predicted from expected variations in vulnerability of these different groups to 
hypercapnia and ocean acidification as deduced from physiological experiments. See text 
for discussion and references. 
 
Figure 5.4. Schematic cross-section of gradients in Ω in seawater under different 
scenarios. Global seawater tends to arrange gradients around a mean value controlled by 
carbonate compensation (Ω ~ 1). Today, large gradients exist with depth due to the 
biological pump and aerobic respiration.  Surface seawater is strongly supersaturated and 
deep seawater is undersaturated. A world without a biological pump would still have 
gradients in Ω in seawater due to the effects of temperature, pressure, and salinity.  An 
idealized world with a biological pump, but anaerobic metabolisms at depth, will have 
subdued gradients in Ω, due to metabolic gradients in total alkalinity.   
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