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Abstract 

In the footsteps of groundbreaking achievements made by biomedical research, another 

scientific revolution is unfolding. Systems biology draws from the chaos and complexity 

theory and applies computational models to predict emerging behavior of the interactions 

between genes, gene products, and environmental factors. Adaptation of systems biology 

to translational and clinical sciences has been termed network medicine and is likely to 

change the way we think about preventing, predicting, diagnosing, and treating complex 

human diseases. Network medicine finds gene-disease associations by analyzing the 

unparalleled digital information discovered and created by high-throughput technologies 

(dubbed as ‘omics’ science) and links genetic variance to clinical disease phenotypes 

through intermediate organizational levels of life such as the epigenome, transcriptome, 

proteome, and metabolome. Supported by large reference databases, unprecedented data 

storage capacity, and innovative computational analysis, network medicine is poised to 

find links between conditions that were thought to be distinct, uncover shared disease 

mechanisms and key drivers of the pathogenesis, predict individual disease outcomes and 

trajectories, identify novel therapeutic applications, and help avoid off-target and 

undesirable drug effects. Recent advances indicate that these perspectives are 

increasingly within our reach for understanding and managing complex diseases of the 

digestive system. 
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Ever wondered why it is so difficult to recall a ‘textbook case’ of a patient with 

inflammatory bowel disease (IBD) or nonalcoholic fatty liver disease (NAFLD)? It is 

because while some disorders have distinct etiology and predictable outcomes, IBD and 

NAFLD cannot be attributed to a single cause and their course varies from being a minor 

dysfunction to an occasionally life-threatening illness
1, 2

 (Figure 1a). These conditions 

are determined by interactions between multitudes of genes, gene products, and 

environmental factors (Figure 1b). In other words, complex diseases are the byproducts 

of biological systems in which a large number of intrinsically or extrinsically perturbed 

constituents interact in nonlinear or chaotic ways, span across successive levels of 

organization, and show emergence (i.e., system properties cannot be explained or 

predicted from knowing the parts)
3
. As a result, complex diseases often pose diagnostic 

challenges, defy prognostication, and require a wide repertoire of (often suboptimal) 

therapeutic interventions
1, 2

. 

 

Although biomedical research has provided a wealth of information in the past century, it 

has not resolved the issue of complexity and another revolution was necessary to begin 

the process of organizing and analyzing data in an entirely new way. Systems biology is a 

rapidly evolving field that focuses on the complex interactions between biological 

components and applies mathematical and computational models to predict emerging 

behavior
4-6

. Adaptation of this approach to translational and clinical sciences has been 

termed network medicine
7
. This new discipline aims to improve our understanding of 

complex diseases, including those of the digestive system, marking the beginning of 

systems gastroenterology and systems hepatology. 
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Technological primer: Systems biology strategies for finding gene-disease 

associations 

Big data science: Cataloging the parts 

A number of recent advances in biomedical technologies began to tackle complexity with 

increasing success. A significant challenge is to enumerate the components of various 

biological systems that contribute to the wide variability of complex disease phenotypes. 

For instance, there are over 50 million commonly occurring DNA sequence variants 

(single-nucleotide polymorphisms or SNPs) in the human genome that combine in a 

myriad of ways to affect disease development and outcomes in response to genetic and 

environmental perturbations.  

 

Several methods are available to analyze genotype-phenotype associations in complex 

diseases. Genome-wide association (GWA) studies explore the relationship between 

molecular and clinical phenotypes by comparing frequencies of DNA sequence variants 

between two groups of individuals (usually diseased subjects and healthy controls)
8
. 

Identification of allelic polymorphism near the IL28B gene predicting therapeutic 

responsiveness in chronic hepatitis C was an important example for the utility of GWA 

approach
9-11

. Next generation sequencing (parallel sequencing followed by reassembly of 

genomic DNA fragments) has recently made genomic analysis extremely fast and 

affordable, permitting whole genome sequencing and generating digital information at an 

extraordinary pace
5, 12

. DNA microarrays quantify gene expression simultaneously for 

hundreds of genes and correlate the findings with clinical characteristics such as tumor 
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progression, recurrence, and drug response
13

. The search for disease-associated genes is 

narrowed by computational methods of prioritization such as gene set enrichment 

analysis to identify candidate genes at the top or the bottom of all examined genes ranked 

by expression relative to a reference microarray or published database
14

.  

 

Further complexity results from epigenetic variability (e.g., histone acetylation and DNA 

methylation), post-translational protein modification, and a large number of regulatory 

metabolites that account for intermediate molecular phenotypes and link genetic risk 

variants to clinically manifest disease
12, 15

. These post-genomic organizational scales are 

analyzed by additional high-throughput methodologies, including liquid chromatography, 

mass spectrometry, and proton MR spectrometry (Figure 2a).  

 

Storing and organizing biomedical information amassed by these methods is another 

fundamental task that must be undertaken to realize the vision of systems biology. The 

scale and quality of data require high-power computational tools to model and understand 

complex system behavior in health and disease
16

. After the introduction of terabytes, 

petabytes, and exabytes, digital information created this way is soon to be measured in 

zettabytes (ZB), denoting one sextillion or 10
21

 bytes.  

 

Systems biology also requires reference libraries that contain validated information, 

allow comparison of experimental data, and follow standardized terminology. A number 

of online repositories are freely accessible such as the Online Mendelian Inheritance in 

Man, listing all diseases with a known genetic component
17

, Gene Ontology, a 
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compendium of controlled vocabulary for describing genes and gene products
18

, or even 

PubMed, which currently includes over 22 million abstracts (‘bibliome’). Digestive 

disease databases are also becoming available: IBDsite includes metagenomic and 

metatranscriptomic data about the commensal bacteria involved in IBD
19

, while the 

Library of Molecular Associations collects information on molecular associations in 

chronic liver disease
20

. 

 

Network-based analysis of complex diseases: mapping the interactions  

Once components of a biological system are identified, the next step is to analyze their 

interactions and understand their emerging role in the development of complex diseases. 

The mathematical graph (network) theory is a convenient framework for visualizing and 

interpreting the structural and functional relationships between genes, gene products, and 

environmental factors
7
. In simplest terms, networks consist of nodes connected with links 

and arranged in a particular physical layout (topology). Nodes in biological networks can 

be genes, coding and non-coding RNAs, proteins, metabolites, cells, individuals, diseases, 

drugs, and so on. Links represent a variety of relationships between these nodes: genes 

regulated by the same microRNA, proteins associated with the same disease, metabolites 

involved in the same pathway, individuals exhibiting the same clinical symptoms, and 

drugs used to treat the same diseases or causing the same adverse reactions.  

 

Networks can be described by scientific formulas and modeled by mechanical circuitries 

to simulate real-life situations in biological systems
21, 22

. Biological networks commonly 

follow a scale-free topology in which most nodes have limited connections, while a few 

nodes (hubs) have a progressively high number of links
23

. Modules in scale-free networks 
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represent clusters of highly interconnected nodes with similar or sequentially arranged 

functions (e.g., metabolic pathways or signaling cascades)
24

.  

 

Networks can be created by using curated databases, computational predictions, or 

systematic experimental strategies
6
 (Figure 2b). A key assumption in these studies is that 

groups of nodes (e.g., genes, miRNAs, proteins, and metabolites) associated with a 

specific disorder represent a disease module and additional, unknown disease 

components may be identified by their topographical position to disease-relevant nodes
5
 

(Figure 2c). A frequently used approach follows the concept of guilt-by-association, in 

which new candidate genes are identified based on their association with genes already 

known to be involved in a given condition. For instance, Goh et al. created a 

comprehensive human disease network in which additional genes implicated in the same 

or similar disease can be identified either via direct links or by being in the same network 

neighborhood
25

. Thus, network-based approaches enhance the search for disease genes 

and give new meaning to clinical syndromes and comorbidities.   

 

The beginnings of systems gastroenterology: Early findings and implications 

Network-based approaches to studying complex diseases of the digestive system are 

rapidly gaining hold. For instance, analyzing gene expression profiles and human-viral 

protein interactions (‘virhostome’) to understand the pathogenesis and identify 

therapeutic targets in chronic infection with the hepatitis C virus (HCV) is a major goal 

of systems hepatology
26

. Systematic expression profiling of microRNAs (miRNAs) in 

HCV-infected and healthy liver tissue identified 38 regulatory modules within a miRNA-
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mRNA network, predicting a number of potential targets for the therapy of chronic 

hepatitis C beyond the already known miR-122
27

. 

 

Zheng et al. analyzed molecular networks during HCV-associated progression of 

hepatocellular carcinoma (HCC) by combining published gene expression profiles and 

high-throughput protein interaction data with gene enrichment analysis
28

. They created 

networks from pairwise comparison of gene expression data corresponding to successive 

pathological stages of hepatocarcinogenesis (normal, cirrhosis, dysplasia, early HCC, and 

advanced HCC) and identified hub proteins in each network (e.g., LCK in normal-to-

cirrhosis, MMP and TIMP in cirrhosis-to-dysplasia, and CDC2 in early-to-advanced 

HCC). The largest change in network topology was seen between dysplasia and early 

cancer, pointing to this transition as a critical step in hepatocarcinogenesis
28

. 

 

To find biomarkers that predict the clinical behavior of HCC more reliably, Zhang et al. 

conducted computational data mining from 3 published sets of microarray analysis on 

HCC and corresponding normal liver tissue
29

. Networks created from up-regulated and 

down-regulated genes common to all 3 sets were analyzed to identify hub genes as 

candidate markers. These hub genes encode key oncogenic signaling pathways (e.g., 

EGFR, FOS, MAPK, and SMAD2) and their use in the HCC classifier improves 

predictive accuracy
29

. This study argues for the utility of combining topological features 

with gene co-expression data to find successful biomarkers and reminds us that high 

connectivity genes are not necessarily expressed at high levels.  
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Network-based approaches to find opportunities for drug repositioning, (i.e., identifying 

new molecular targets for existing drugs by computational methods) is a cost-saving 

strategy for drug discovery
30

. Dudley et al. compared gene expression signatures of IBD 

against reference mRNA expression data of cultured cells exposed to 164 drug 

compounds in the Connectivity Map, a publicly available compendium of drug-gene 

associations
31

. Drugs were scored based on the degree of discordance between disease-

affected and drug-affected gene expression patterns to infer potential therapeutic 

indications. By following this strategy, the anticonvulsant topiramate was identified as a 

‘repurposed’ drug for IBD and its efficacy was experimentally verified in TNBS-induced 

colitis, illustrating the promise of computational drug repositioning through systems 

pharmacology
31

.  

 

The utility of creating networks by using arbitrary free-text resources has recently been 

demonstrated by Sookoian et al., who have set out to find molecular mechanisms shared 

between alcoholic and nonalcoholic fatty liver disease
32

. The authors searched for co-

occurrences of genes and proteins in PubMed abstracts and used computational gene 

prioritization (ranking based on similarity scores of known genes involved in these 

conditions) to create functional molecular maps for shared disease pathways. This 

entirely in silico analysis concluded that insulin signaling is impaired in both conditions, 

but only NAFLD is linked to cardiovascular disease. Moreover, both conditions are 

strongly associated with cancer-related pathways, indicating that fatty liver, regardless of 

the cause, is an emerging mechanism of oncogenic activation
32

.  
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Conclusions 

Rooted in the mathematical graph theory and supported by the philosophy of chaos and 

complexity, network medicine may seem at first a challenging and intimidating concept. 

However, this rapidly evolving field holds a number or promises and is likely to change 

the way we think about preventing, predicting, diagnosing, and treating human disease. 

As in other fields of network medicine, systems gastroenterology is poised to find links 

between conditions that were thought to be distinct, uncover common underlying disease 

mechanisms and key drivers of the pathogenesis, predict individual disease outcomes and 

trajectories, identify novel therapeutic applications, and help avoid off-target and 

undesirable drug effects.  

 

Unmistakably, network medicine has several limitations. Computational analysis may 

only be as good as the data on which it is based. Big data statistics may become too 

inclusive with false positive discoveries and the resulting gene lists do not always result 

in useful biological insights. Thus, observational or experimental validation of in silico 

findings remains an important step of the network-based discovery process. Analyzing 

perturbed genetic networks compared to their normal counterparts could reveal important 

elements of the pathomechanism, but may not readily identify the environmental 

challenge.  

 

Despite these and other concerns and cautions, network medicine has generated 

tremendous excitement. Improved biomarker discovery may reduce the cost of 

surveillance programs by filtering at-risk populations before undertaking expensive 



 11 

testing. With the recent progress of next generation sequencing technologies, analysis of 

entire microbial communities is becoming a routine exercise and the human microbiome 

– outnumbering our own genome by more than 2 magnitudes – may soon become part of 

routine network analysis as outlined above. Some experts envision a world of network-

enabled wisdom in which every individual is provided with a DNA profile early in life, 

updated from time to time to recalibrate the risk of disease
16

. The road of network 

medicine is increasingly traveled and we should buckle up for an exhilarating ride. 
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Figure legends 

 

Figure 1. Phenotype distribution and determinants in complex disease 

A. Disease course is usually predictable in cases of self-limiting (e.g., viral rhinitis), 

uniformly fatal (e.g., Huntington chorea), or chronic conditions with no significant 

consequences (e.g., skin tags). By contrast, complex diseases have a wide spectrum of 

severity that remains difficult to predict. B. Phenotypes in complex diseases are 

determined by interactions between genes (genotypes) and gene products (intermediate 

phenotypes) in response to intrinsic (genetic) and extrinsic (environmental) perturbations. 

Specific groups of genes (circles) are associated with specific disease phenotypes 

(squares) that may both overlap, indicating pleiotropy (same genes associated with 

various diseases) or ‘metadisease’ (various gene disorders associated with same disease). 

Studies of gene-disease associations in complex disease may elucidate shared etiology 

and pathogenesis of disparate disease phenotypes involving multiple organs (syndrome). 

 

Figure 2. Network-based discovery of gene-disease associations in complex disease 

A. Dysfunction of complex biological systems entailing hierarchical organizational scales, 

each with a large number of various components interacting in an unpredictable (chaotic) 

manner, is difficult to analyze. Big data or ‘omics’ research aims to enumerate 

components at successive system levels such as genes (genome), heritable non-DNA 

elements (epigenome), coding and non-coding RNA (transcriptome), native and post-

translationally modified proteins (proteome), metabolites (metabolome), clinical 

phenotypes (phenome), and environmental factors (exposome). B. Studies of gene-
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disease associations commonly compare interacting system components between affected 

populations (or experimentally perturbed systems) and healthy controls or previously 

established reference via experimental or in silico strategies, followed by standard steps 

of network-based analysis. C. Network topology may predict disease genes (candidate 

genes) based on the relationship of a known disease gene (filled circle) to candidate genes 

(open circles) that are directly linked, map within the same module, or occur in the 

network neighborhood.  
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