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Abstract 

Living organisms constantly interact with their surroundings and sustain internal stability 

against perturbations. This dynamic process follows three fundamental strategies 

(restore, explore, and abandon) articulated in historical concepts of physiological 

adaptation such as homeostasis, allostasis, and the general adaptation syndrome. 

These strategies correspond to elementary forms of behavior (ordered, chaotic, and 

static) in complex adaptive systems and invite a network-based analysis of the 

operational characteristics, allowing us to propose an integrated framework of 

physiological adaptation from a complex network perspective. Applicability of this 

concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in 

response to the pervasive challenge of obesity, a chronic condition resulting from 

sustained nutrient excess that prompts chaotic exploration for system stability 

associated with tradeoffs and a risk of adverse outcomes such as diabetes, 

cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise 

of gaining novel insights into physiological adaptation in health and disease.  

 
 

Keywords: homeostasis, allostasis, complex adaptive systems, chaotic exploration, 

phase space, attractor networks 
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1. Introduction 

Living organisms safeguard their integrity and survival against internal and external 

challenges through adaptation. This dynamic process involves monitoring deviations 

from the norm, developing appropriate responses to correct the impact of perturbations, 

and verifying outcomes by sampling internal parameters [1-4]. Adaptation has been 

extensively studied at successive organizational levels of the biosphere, ranging from 

unicellular organisms to human society [5-7]. Adaptation may occur at different time 

scales. Evolutionary adaptation pertains to changes in heritable (i.e., genetic and 

epigenetic) components of a species or population that accumulate and transfer over 

many generations [8, 9], while physiological adaptation describes how individual 

organisms, enabled (and limited) to do so by their unique genome, respond to a variety 

of day-to-day challenges within a lifetime [3, 4]. Thus, the primary goal of evolutionary 

adaptation is to maintain reproductive fitness, while physiological adaptation is more 

concerned with maintaining energy efficiency and finding the best possible answer to 

lifetime encounters. Nevertheless, evolutionary and physiological adaptations share 

many features and complement each other as natural selection acts through individuals. 

 

Since the pioneering work of Claude Bernard [10], our understanding of adaptation in 

biological systems has benefited from a large body of observational and experimental 

work. Physiologists, neuroendocrinologists, and behavioral and social scientists 

developed new theories to interpret the ways by which adaptation may take place in 

individual organisms. However, a century and a half after Bernard introduced his 

groundbreaking concepts, there is still an ongoing dispute about the framework of 

physiological adaptation and how to best apply this knowledge in medicine that primarily 

aims to prevent and cure dysfunction of this process manifesting as disease [11-15].  
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Parallel with these efforts, basic operational principles of life as a dissipative system 

have been defined by mathematical and thermodynamic reasoning [16, 17]. More 

recently, complex network science has provided new tools to study human physiology 

and offered new opportunities on disease definition, outcomes prediction, and 

personalized therapy [18, 19]. Here we aim to integrate the advances in three major 

fields of biomedical research to define a comprehensive framework of physiological 

adaptation. First, we review parallel and competing concepts of physiological adaptation 

providing the fundamental principles of regulating the integrity of living systems. Second, 

we evaluate these theories in the context of life as a complex adaptive system. Third, we 

analyze physiological adaptation from a network perspective to describe common 

structural elements, operational patterns, and regulatory circuitries. Throughout the 

paper, we use obesity as a prototype of chronic complex diseases to demonstrate the 

relevance and utility of this integrative approach.  

 

2. Historical concepts of physiological adaptation 

2.1. Homeostasis 

Claude Bernard was the first to recognize the importance of constant dialogue between 

organism and environment [10]. Bernard’s key legacy is the notion of milieu intérieur or 

internal environment, which is in a dynamic equilibrium that must be preserved in all 

living systems [10]. Based on these principles, Cannon introduced the term homeostasis 

as the ability to sustain various physiological parameters in a steady state (stabilized 

around a set point) amidst wide fluctuations in external conditions [20]. Although Cannon 

illustrated homeostasis by relatively simple examples, such as regulation of thirst and 

acid-base balance, he intended to use the concept in a broader sense [5]. Indeed, the 

paradigm of homeostasis contains many conceptual elements on which we may 

continue to improve our view of physiological integrity and development of disease [12].  
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2.2. Stress and the general adaptation syndrome 

An interesting aspect of physiological adaptation was highlighted by the work of Selye, 

who found that experimental animals responded with surprisingly similar clinical 

symptoms to a wide range of acute physical, chemical, biological, or psychological 

stimuli, and this response uniformly included activation of the hypothalamic-pituitary-

adrenal axis [21, 22]. Selye chose the term ‘stress’ for this consistent reaction and 

‘stressors’ for the noxious stimuli. He subsequently observed that patients with different 

diseases exhibited common symptoms of stress and introduced the concept of general 

adaptation syndrome [23]. In his concept, Selye distinguished the stages of alarm, 

resistance, and exhaustion to describe how prolonged stress becomes a major 

challenge to homeostasis with failing adaptation that may culminate in all-consuming 

disease [23].  The ability of each individual to tailor the magnitude and outcome of this 

generic response to stress, however, remained difficult to predict. 

 

2.3. Complementary models of physiological adaptation  

The following decades have seen an expansion of interest in the physiology of 

adaptation and resulted in parallel growth of related concepts. This trend highlighted 

some important aspects that were not fully elaborated within the original homeostasis 

theory [12]. Waddington used the term homeorhesis to describe the goal of physiological 

control as a trajectory rather than a set point [24]. Selye added heterostasis to 

distinguish adaptation that reaches a new equilibrium from one that reestablishes 

original physiological parameters [25]. Moore-Ede proposed a distinction between 

reactive and predictive homeostasis to emphasize the difference between adaptive 

strategies that occur in the wake of perturbations as opposed to those initiated in 

anticipation of predictable changes [26].  
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2.4. Allostasis and allostatic load 

The concept of allostasis was proposed in 1988 as a comprehensive effort to address 

some of the perceived limitations of homeostasis [27]. Allostasis is defined as a way to 

maintain stability through changes by adapting to both predictable and unpredictable 

events [28]. Key elements of allostasis include shifting set points, alternative pathways, 

and coordination across multiple regulatory systems orchestrated by the brain [29, 30]. 

Allostasis has proven to be a useful framework to assess the impact of neurobehavioral 

and psychosocial factors in areas where anticipatory physiological regulation is essential 

such as developmental changes, reproductive cycles, diurnal variations, and in adverse 

situations such as addiction and post-traumatic stress disorder [30-32].  

 

While the utility of allostasis as yet another term of physiological adaptation remains 

debated [11, 12, 14], allostatic load has been introduced to address long-term 

consequences of adaptation, combining relevant elements of homeostasis and chronic 

stress [33]. Allostatic load refers to the aggregate impact of physiological adaptation over 

the lifespan of an individual, corresponding to a summary effect of tradeoffs, 

compromises, and collateral damage [33]. Allostatic load may accumulate faster than 

expected if sustained activation of regulatory networks exceeds optimal operating 

ranges either because of excessive duration, frequency, or intensity of perturbations 

[34]. This accelerated process has been designated as allostatic overload and proposed 

to correlate with increased vulnerability and risk for development of disease [28]. 

However, prediction of an individual’s ability to limit the accumulation of allostatic load 

and identification of the specific components that do so remain difficult. 

 

2.5. Inflammation as an adaptation response  
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An intriguing concept was recently introduced by Okin and Medzhitov to redefine the role 

of inflammation within the context of physiological adaptation [35]. Accordingly, full-scale 

biological performance in specialized tissues depends on accessory cells originating in 

the immune system. Due to their mobility and ability to connect various tissues, these 

accessory cells are the ‘common currency’ that brings similar operational principles to 

these sites [35]. Normally, resident ‘client’ cells successfully cope with perturbations to 

maintain homeostasis. If this level of physiological adaptation becomes insufficient, 

accessory cells are recruited to initiate inflammation for a heightened level of tissue 

adaptation that dominates over homeostasis and involves collateral damage [35]. In this 

sense, inflammation can be defined as a mechanism of allostasis. 

 

Inflammation is particularly relevant to obesity and its associated adverse health 

conditions, such as type 2 diabetes, cardiovascular disease, and cancer [36-38]. Aimed 

at accommodating sustained nutrient excess, adipose tissue growth and remodeling is 

central to the pathogenesis of obesity, featuring macrophage infiltration and secretion of 

pro-inflammatory adipokines such as leptin, resistin, tumor necrosis factor [TNF]-alpha, 

and interleukin [IL]-6 [36]. The ensuing systemic low-grade inflammation promotes a 

multitude of pathological and self-perpetuating events, such as insulin resistance, 

endothelial dysfunction, and activation of oncogenic pathways [36, 39]. As discussed 

further below, obesity is an important example of how environmental factors can create 

unprecedented challenges for physiological adaptation.  

 

2.6. Strategies of physiological adaptation in historical concepts 

Three distinct strategies of physiological adaptation can be inferred from the concepts 

discussed above.  First, when the status quo is indispensable or remains preferable over 

change, biological systems restore current parameters to values that preceded the 



 8 

perturbation. This is the dominant strategy of homeostasis. Second, biological systems 

may explore alternative states to find a new balance (set point) with the environment, in 

particular if the perturbation has excessive duration, frequency, or intensity. There may 

be anticipatory elements in this process as living organisms tend to track variations or 

even alter the environment (e.g., niche construction) to secure physiological integrity and 

survival [4]. In many situations, this may be a preferable strategy (e.g., inflammation) 

even if there are compromises and collateral damage involved, as outlined in the 

concepts of general adaptation syndrome and allostasis. Third, physiological adaptation 

may require the organism to abandon some of its functions or components (e.g., 

removing a group of cells by apoptosis) and avoid the spread of system disruption, 

which may ultimately result in death. Essentially all concepts related to physiological 

integrity are based on one or more of these distinct adaptation strategies (Table 1). 

 

3. Chaos and complexity in physiological adaptation 

Biological systems acquire free energy and substances from the environment that are 

subsequently returned in a degraded form. This exchange allows living organisms to 

adapt to the surrounding world and protect their inner order despite an endless string of 

disruptive events (i.e., chronic stress) [34, 40]. Accordingly, the primary role of 

physiological adaptation is to find the energetically most efficient system configuration 

that may best guarantee the survival of an individual in a given situation. In this sense, 

aging and disease indicate a system-wide deterioration with declining efficiency of 

energy capture and utilization in biological systems until they invariably fail and succumb 

to death [41].  

 

There is now evidence that basic operational rules of living systems follow some 

relatively simple mathematical principles, which apply to all levels of the biosphere, 
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ranging from genetic blueprints to protein-protein interactions to social networks [42, 43]. 

Life reflects all the key characteristics of complex systems: living organisms have a large 

number of interdependent constituents that often behave chaotically, span across 

several organizational scales, show collectivity and emergence, and maintain a balance 

between cooperation and competition [44]. As discussed below, each of these attributes 

has profound implications for physiological adaptation.  

 

3.1. Chaos and entropy 

Chaos theory provides a framework for the analysis of nonlinear changes in space and 

time. Chaos in space refers to a structure that does not become simpler when analyzed 

with deeper and deeper resolution (e.g., fractals of a rugged shoreline). Space-chaos 

renders reductionist analysis of biological systems a virtually endless quest. Chaos in 

time refers to the trajectory of a changing system that cannot be accurately predicted. 

Time-chaos results from sensitivity to initial conditions, indicating that even the smallest 

uncertainties in a changing system may grow exponentially with time and make current 

knowledge obsolete [44]. Notable examples of this behavior include the weather and the 

economy. Since dynamical systems may take alternative paths at every step of the 

change, chaotic behavior occurs even if each action follows predetermined rules. 

Chaotic features of living systems can be illustrated by the difficult task of predicting 

disease outcome in an individual or tracking the whereabouts of a clever fugitive. 

 

Any given state of a dynamical system can be assigned to a single point in a multi-

dimensional phase space, which includes all possible conditions. With time, dynamical 

systems move from one point to another, and a growing area of probability distribution 

will represent the cumulative effect of choices between multiple possible states (Figure 

1). Following the examples above, meteorologists apply this principle when they forecast 
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the trajectory of a hurricane by mapping an ever-widening swath to mark its future 

position, while stock market predictions are based on a similar process. We have also 

witnessed growing (rather than shrinking) lists of differential diagnoses and extended 

search maps to find runaway renegades.  

 

With the lapse of time, the configuration of a dynamic system may assume any point in 

the phase space, eventually making prediction a useless exercise. Uniform distribution 

carries minimal information and maximized entropy, which in this case can be 

mathematically defined as both lack of order and lack of knowledge [44]. Entropy in 

chaotically behaving systems is proportional to the number of choices that exponentially 

accumulate through successive steps [44]. In complex adaptive systems, chaotic 

exploration is geared toward finding the energetically most efficient state [45]. Thus, 

perturbations prompt a chaotic search in the phase space for alternative solutions from 

which the system may benefit, and this is exactly the goal of physiological adaptation.  

 

3.2. Structure, emergence, and self-organization  

The biosphere consists of hierarchical scales with constituents, such as elementary 

particles, molecules, cells, tissues, organs, individuals, and ecosystems, which interact 

and acquire specialized functions. These complex structures show emergence, 

indicating that knowing the individual components is insufficient to understand the result 

of their collective behavior [42]. For instance, inflammation, consciousness, or legislation 

cannot be simply deciphered from even the most detailed knowledge of individual 

macrophages, brain cells, or politicians respectively. Through an iterative process of 

chaotic search, perturbations may prompt system constituents to interact globally and 

find an emergent response, which is more than the sum of its parts and becomes 

regulated at a higher scale. This mechanism is the basis of self-organization [46].  
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Self-organization indicates an ability to create order from disorder without the need of an 

external organizing force. This ability is fundamental to living organisms that constantly 

remain in non-equilibrium and aim to keep inner entropy at low levels [46]. In complex 

adaptive systems, spontaneous emergence of an alternative order may provide the best 

response to a new situation. Environmental fluctuations encouraging phase space 

exploration are critical to the process of adaptation. For instance, increasingly rich 

environments (e.g., through niche construction) enhance behavioral learning and 

evolutionary complexity [47]. Thus, structure and function can improve by going through 

cycles of adaptation that involve chaotic search and uncertainty before reaching a new 

level of self-organization. In this sense, self-organization complements natural selection 

in the evolutionary process [48-50]. 

 

3.3. Cooperation and competition 

Cooperation is working together for a common purpose, while competition is seeking 

control over the same or overlapping resources. Cooperation is associated with actions, 

such as communication, synergy, recognition, tolerance, and altruism, while competition 

is associated with isolation, antagonism, rejection, intolerance, and selfishness [51, 52]. 

Yet, competition has important benefits by leading to innovative and more efficient 

solutions. These opposing forms of behavior coexist in complex systems where 

components often compete on one scale (n) and cooperate on the coarser scale (n - 1) 

above it. Competition is often intransitive (e.g., A fights B and B fights C, but A does not 

fight C) and localized in physical space (segregated), which may make overall system 

behavior more complex and chaotic [52]. Competition and cooperation may also occur 

within one organizational scale when competing constituents employ coordinated rather 

than individual effort to reach their goal (e.g., gang-like behavior). 
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3.4. Strategies of physiological adaptation in complex systems 

Motion of a single point or trajectory, representing an elementary functional unit of a 

biological system in phase space, may follow ordered dynamics and exhibit change in a 

linear (predictable) way and proportional to the perturbations. In many cases, this 

controlled change is transient and serves restoration of a critical parameter to its original 

value (Figure 1A). Subsets of the phase space in which a dynamic system may find 

stability and tends to return over time are called attractors [53]. Returning to the original 

attractor or set point is the preferred response of homeostasis as originally defined by 

Cannon [20]. In other cases, perturbed elementary functional units may find alternative 

attractors by following nonlinear dynamics through chaotic exploration (Figure 1B). This 

response is unpredictable and could be disproportionate, a scenario aptly described by 

the allostasis theory [54]. Finally, biological systems may fail to respond (e.g., stress-

induced exhaustion, allostatic crash, or death), indicating a static condition (Figure 1C). 

 

These operational principles can be readily applied to analyze mechanisms of 

adaptation to regulate energy metabolism in obesity. Perturbation analysis in human 

erythrocytes based on structural kinetic modeling indicates that system stability is 

increasingly sensitive to changing fluxes in ATP production or consumption [55]. In 

addition, fuzzy-logic simulation and sensitivity analyses indicate that manipulating ATP 

regulatory components makes metabolic regulation highly sensitive to smaller 

perturbations [56]. Persistent and substantial surplus or shortage in energy substrates of 

the cell may generate stress in the metabolic phase space that initiates a chaotic search 

for alternative attractors. Thus, homeostatic regulation of energy metabolism in obesity 

may give way to allostatic mechanisms, such as inflammation [35] and altered energy 

metabolism, as discussed below. Chaotic exploration for system stability initiated by 
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persistent caloric surplus may then find increasingly unusual attractors linked to the 

development of obesity-associated adverse health events, such as diabetes and cancer. 

 

4. Network properties of physiological adaptation  

Network analysis has become a powerful tool of systems biology efforts to deconstruct 

the complexity of living organisms. Networks (graphs) consist of nodes (vertices) 

connected with links (edges) through some kinds of architecture (topology). Possible 

interactions between groups of nodes (subgraphs) can be described mathematically, 

modeled by mechanical circuitries, and compared to real-life presence in biological 

systems [57, 58]. What can networks tell us about homeostasis? What network topology 

is associated with ordered and chaotic adaptive responses? Can we identify network 

attributes that help or hinder our ability to cope with stress and prevent disease? Are 

there changes in network behavior that may predict the success or failure of this 

process? Finding answers to these questions may offer new perspectives in the 

understanding of physiological adaptation. 

 

Based on their topology, networks may follow different principles of organization. In 

random networks, connections among nodes are driven by chance, resulting in a 

Poisson distribution for the numbers of links per node [59]. In scale-free networks, the 

distribution of links per node follows a power law, indicating that most nodes have few 

connections while a small number of nodes have a progressively high number of links 

[60]. Preferential attachment (‘the rich get richer’) is a basic property of evolving scale-

free networks, with new nodes more likely to be added to one of the highly connected 

nodes (hubs) rather than to a wealthy connected node [60]. Since its original formulation 

a little over a decade ago [60], the theory of scale-free networks has become a 

pervasive platform for studying complex systems. Scale-free networks have surprisingly 
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uniform architectural features and rules of operations, regardless of being abstract, 

inanimate, or alive [57] (Figure 2).  

 

4.1. Feedback and other network motifs 

Network dynamics depend on the types of interactions between nodes and links. 

Although the theoretical number of these interactions can be very large, there are 

surprisingly few such patterns of interaction (network motifs) observed in biological 

systems (e.g., sensory transcription, signal transduction, developmental, or neuronal 

networks) [61]. A feedback loop is an elementary form of signal control and one of the 

best-known network motifs associated with physiological adaptation. Feedback has a 

corrective effect on the input by monitoring system status, stabilizing responses to 

perturbations [62]. As indicated by mathematical modeling, feedback is essential for 

allosteric regulation and greatly improves the dynamic properties and stability of 

metabolic networks [55]. This stabilizing effect of feedback control protects the system 

against widely varying external conditions, indicating a key role for allosteric enzymes in 

maintaining and restoring metabolic homeostasis [55]. 

 

While negative feedback diminishes the impact of perturbation, positive feedback acts as 

a signal amplifier at the expense of unpredictable responses (autocatalysis) [63]. A 

special form of positive feedback, which involves a heterodimer where only one 

component is subject to feedback regulation, is designed to limit the risk of runaway 

mechanisms. This circuit is based on an asymmetric self-upregulation (ASSURE) motif 

that allows a strong yet precisely tuned response in the presence of varying signal 

intensity [64]. ASSURE is utilized in many biological systems, such as cellular antiviral 

defense, cholesterol homeostasis, and adipocyte differentiation [64]. 
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Mitochondrial respiration is an important example of positive feedback in metabolic 

networks. While oxidative phosphorylation is a highly efficient mechanism of ATP 

synthesis, it is also a key site of superoxide production, making mitochondria the primary 

source of oxidative stress in the cell [65]. Superoxide forms when electrons spin off the 

respiratory chain before reaching cytochrome oxidase and react with molecular oxygen. 

This process may be amplified if electron flow becomes sluggish due to oxidative 

damage of respiratory complexes, creating a vicious cycle [66]. Importantly, increased 

supply of respiratory substrates (e.g., due to increased caloric intake in obesity) 

promotes early spinoff of electrons by slowing their flow against the high proton gradient 

[67]. Uncoupling proteins, activated by superoxide, may prevent this electron pile-up by 

deflating the proton gradient, but diminished ATP synthesis remains a substantial 

tradeoff [68]. 

 

Regulation of oxidative phosphorylation features additional feedback circuits serving the 

prevention of excessive ROS production while shifting ATP production away from the 

mitochondria. Thus, decreased iron-sulfur protein assembly in the electron transport 

chain mediated by microRNA-210 and dampened flux of the tricarboxylic acid cycle 

mediated by pyruvate dehydrogenase kinase 1 in response to hypoxia are under the 

control of hypoxia-inducible factor HIF-1, both mechanisms aimed at reducing 

mitochondrial oxidative stress while promoting ATP synthesis via glycolysis [69, 70]. This 

fundamental mechanism of adaptation, known as the Pasteur effect, conceals a major 

tradeoff (i.e., the Warburg effect) that allows metabolic reprogramming in rapidly 

proliferating cancer cells [71].  

 

4.2. Redundancy and degeneracy 
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Redundancy in a network indicates having more than one node or clusters of nodes to 

perform identical or similar functions, resulting in the multiplication of critical components 

or functions [72]. Redundancy is the mirror image of multi-functionality (bow-tie 

architecture) with a single node involved in more than one pathway. In structural 

redundancy, multiple copies of a given element enhance system reliability. Gene 

duplication is a classical example of this type of redundancy in biological systems. 

Provision of more than one means or resource to perform the same action is functional 

redundancy [72]. Biological systems often engage different structures for realizing same 

or very similar outcomes. This property, also called degeneracy, can be found between 

various developmental pathways or signaling mechanisms that are redundant only within 

particular contexts [72]. A classical example for degeneracy is the genetic code in which 

multiple nucleotide triplets (codons) call for using the same amino acid during protein 

synthesis.  

 

An important difference between redundancy and degeneracy is that degenerate 

systems are able to produce different outputs in different contexts, which makes them 

extremely adaptive [72]. Sustained and high-level degeneracy allows the use of 

alternative pathways in response to unpredictable perturbations (e.g., single point 

failure). A network with little functional redundancy is brittle but responds in predictable 

ways, while a redundant network may use different outputs to yield equivalent functions 

[73]. This is an important tradeoff between ordered and chaotic responses, and may be 

utilized to characterize adaptive responses under increasing environmental pressure.  

 

Adipose tissue remodeling associated with secretion of a multitude of pro-inflammatory 

cytokines, chemokines, adhesion molecules, and adipokines exemplifies redundancy 

associated with obesity [74]. These biologically active substances promote insulin 
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resistance, contribute to endothelial dysfunction, and activate oncogenic pathways by 

exerting parallel effects on downstream signaling cascades and gene expression [75-77]. 

The resultant structural and functional redundancy may substantially limit success in 

finding molecular targets at this operational level to prevent the adverse effects of 

obesity.  

 

4.3. Modularity and network diameter 

Modules in scale-free networks represent areas with highly interconnected nodes 

involved in similar or sequentially arranged functions (e.g., metabolic pathways or 

signaling cascades) [78]. Network modules are characterized by high clustering 

coefficients (defined as the ratio of existing over possibly existing links), indicating that 

any two neighbors of a given node are likely linked to each other [57]. Links within a 

module are short and strong, while different modules are connected by longer and 

weaker links. Highly modular networks are stable against random perturbations, and 

allow the on-off switch of individual modules without affecting other functions (pleiotropy) 

[78, 79]. These beneficial properties depend on the degree of component sharing 

(overlap) between different modules.  

 

Network diameter is defined as the greatest distance between any pair of nodes by 

selecting the shortest possible route. There is a tradeoff between adaptive speed and 

accuracy as responses modeled in small gene networks are rapid but inaccurate, while 

large networks have accurate responses that may take a longer time [80]. In addition, 

network diameters increase with the extent of modularity in mathematical simulations, 

indicating another tradeoff between efficiency and pleiotropy [81]. For instance, 

metabolic flux and modularity analysis of 3T3-L1 pre-adipocytes indicates that major 

reaction clusters of lipid metabolism coalesce into a single module by day 8 in culture 
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with a primary biochemical function to convert glucose into triglycerides [82]. These 

observations suggest that de novo adipocyte formation, an important element of higher 

adipocyte turnover in obesity [83], is associated with an increasingly centralized 

metabolic network in which preference is given to response velocity (which is heightened 

by increased clustering) over pleiotropy. 

 

4.4. Robustness and fragility 

Complex systems with stable characteristics and specific functions amidst changing 

conditions are described as robust [84]. Network robustness indicates resilience to 

removal of nodes or links (topological robustness) [85]. Loss of link capacity (weight) or 

directionality (information flow or direction of the dependencies) in adapting networks 

may also impair abilities to address properly internal or external challenges [85]. Scale-

free networks have a remarkable tolerance for disintegration of their architecture with 

preserved functionality even if 80% of nodes are removed by random selection [86]. 

However, selective removal of highly connected nodes (hubs) in scale-free networks 

may result in rapid collapse indicating that these systems are robust yet fragile in 

response to targeted attacks [86].  

 

Robustness is a key attribute of homeostasis, with the original function preserved during 

adaptation following reliable and ordered pathways. Robustness may also succeed 

when outcomes are less predictable and adaptive responses have elements of chaotic 

exploration. Obesity is a case in point for how energy metabolism, designed to prevent 

the impact of malnutrition, attains a new (albeit dysfunctional) level of stability in the era 

of sustained nutrient excess [74]. To maintain normoglycemia under fasting conditions, 

TNF-alpha blocks peripheral glucose uptake by promoting insulin resistance in skeletal 

muscle and adipose tissue (Fernandez-Real and Ricart, 1999), while UCP2 blocks 
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insulin secretion via interference with ATP-dependent glucose sensing in beta cells [87, 

88]. These compensatory mechanisms backfire in food abundance when insulin 

resistance is robustly maintained by an emergent positive feedback loop involving TNF-

alpha derived from remodeled adipose tissue [74]. Similarly, persistent abundance of 

UCP2 in obesity causes dysfunction of the pancreatic beta cell, contributing to end-

organ damage [89]. 

 

4.5. Network rewiring and disease   

Node and edge failure is a common cause of deteriorating network performance, while 

addition of new nodes or links (random or preferential rewiring) to existing networks may 

increase robustness [90]. Increasing the number of weak ties in simulated and real 

networks (e.g., peer-to-peer social groups of the Internet) allows faster and more 

efficient adaptation [81, 90]. Rewiring has a profound impact on biological networks 

where topology may be altered by aging or disease. A classic example of molecular 

rewiring is the BCR-ABL fusion oncoprotein, which results from the Philadelphia 

chromosome translocation t(9;22)(q34;q11) and becomes a defining event in chronic 

myelogenous leukemia (CML) [91]. In CML, BCR-ABL uncouples the JAK-STAT 

signaling module and allows direct nuclear translocation of STAT5 with enhanced 

transcription of genes involved in cell growth and differentiation [92].  

 

Replacement of missing genes (e.g., stem cell transplant to replace the ABCD1 gene in 

adrenoleukodystrophy) or macromolecules (e.g., clotting factors in hemophilia) 

represents successful attempts at rewiring biological networks [93, 94]. Genetic 

engineering of supplemental gut bacteria that are traditionally considered as ‘probiotics’ 

is another exciting application of therapeutic rewiring. For instance, commensal strains 

of Escherichia coli transfected to express insulinotropic proteins GLP-1 and PDX-1 
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stimulate intestinal epithelial cells to secrete insulin in response to glucose as an effort to 

treat diabetes [95]. 

 

Rewiring the regulation of human energy metabolism in the central nervous system is a 

particularly intriguing approach to study the pathogenesis of obesity, as correcting faulty 

neuronal circuits in the hypothalamus may restore homeostatic regulation of appetite 

and body weight [96]. Thus, administration of leptin may control appetite and other 

complex behaviors by synaptic reorganization between excitatory and inhibitory contacts 

on neuropeptide Y and pro-opiomelanocortin (POMC) neurons [97]. Similar synaptic 

plasticity can be achieved by using estradiol to increase the number of excitatory inputs 

to POMC neurons in the arcuate nucleus with a corresponding decrease in appetite and 

adiposity in leptin-deficient ob/ob mice [98].  

 

5. Conclusions 

Living organisms constantly interact with their surroundings and regulate this dialogue by 

matching inherited and acquired abilities to specific challenges through physiological 

adaptation. In response to various perturbations, biological systems may restore, 

explore, or abandon ways and means to enhance their development and safeguard their 

existence. From a systems-level approach, these fundamental adaptation strategies fit 

the conceptual framework of chaos and complexity surprisingly well. In addition, the 

complex interplay between constituents of biological systems can be described and 

predicted by network-based analysis, which provides new perspectives on the 

understanding of health and disease. Thus, integration of classic physiology, chaos and 

complexity theory, and network science offers a fresh look at physiological adaptation.  
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This conceptual platform is helpful to examine the role of physiological adaptation in 

complex diseases. Outcomes in these conditions depend on adaptive interactions 

between a multitude of genetic and environmental factors occurring over a lifetime. 

Disease progression indicates increasing dysfunction from health to pathophysiological 

conditions, intermediate phenotypes, and clinically obvious disease pathophenotypes 

[18]. This process can be displayed within a phase space diagram as a widening 

probability distribution, indicating a shift from predictable and often transient changes to 

an escalating search for appropriate responses within varying conditions that threaten 

the integrity of an individual (Figure 3A). Obesity as a complex disease with widely 

different outcomes can serve as an excellent model for studying progressively nonlinear 

trajectories of physiological adaptation (Figure 3B).  

 

Network-based analysis of complex diseases offers additional considerations. Recent 

work indicates that attractor landscape analysis of vascular, metabolic, and oncogenic 

pathophenotypes is a useful approach to understand disease pathogenesis and identify 

novel therapeutic strategies [99-102]. Drawing analogy from the evolutionary concept of 

adaptive landscapes [103], attractors as alternative states of system stability explored by 

physiological adaptation in the multidimensional phase space can be viewed as a 

distinct network (Figure 3C). In principle, such attractor networks may be designed for 

all genotype-phenotype interactions in a given individual and analyzed by network-based 

methods if sufficient information and computational power are available. This approach 

may better define disorders of physiological adaptation and personalized molecular 

targets for intervention. 
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Tables 

Table 1. Historical concepts and key strategies of physiological adaptation 

   Restore Explore Abandon 

Homeostasis: Maintenance of 

physiological variables within 

optimum range around set 

points (steady state) [20] 

Heterostasis: Activation of 

dormant defensive reactions 

to reach new equilibrium in a 

changing environment [40] 

 

Homeorhesis: Physiological 

stability by making correction 

to a trajectory rather than a 

single defined set point [24] 

Enantiostasis: Replacement of 

original regulation by new 

mechanisms to maintain equal 

or similar functions [104] 

 

Alarm: Awareness of danger 

(stressor) and activation of 

nonspecific defense such as 

the HPA axis [23] 

Resistance: Reversible 

allocation of energy for 

continued fight against 

persisting stress [23] 

Exhaustion: Accumulating 

burden of adaptation due to 

stress overload, burnout, and 

vanishing resistance [23] 

 
Allostasis: Achieving stability 

through change, anticipating 

need for adjustment, and 

abandoning set points for new 

ones while accumulating wear 

and tear (allostatic load) [27, 

30, 33] 

Allostatic overload: Failing 

adaptive regulatory systems 

due to sustained activation, 

self-perpetuating dysfunction 

with increased risk of disease 

and death [33, 34] 

Predictive homeostasis: 

Corrective response to 

Reactive homeostasis: 

Response to changes not 

Homeostatic overload: 

Response to further 
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anticipated changes within 

the range of predictable life-

history demands [15] 

anticipated by predictive 

operations, with outcomes still 

within ‘reactive scope’ [15] 

challenges resulting in 

damage and failure due to 

sustained disruption [15] 
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Figure Legends 

 

Figure 1 

Strategies of physiological adaptation  

A. Components of biological systems responding to perturbations exhibit various 

behaviors in the multidimensional phase space of complex systems. Single point 

represents a functional unit residing in a small area of probability distribution (red circle) 

with predictable and reversible positional changes without leaving the original attractor or 

‘set point’ (straight arrows), indicating efficient control of critical parameters by 

homeostasis. B. Upon more intense or persistent perturbation, units may find stability in 

new attractors by following nonlinear dynamics through chaotic exploration (curved 

arrows), which may provide a better match to altered conditions while makes precise 

position of the unit increasingly unpredictable. This adaptive response, associated with 

tradeoffs and compromises, is typical for allostasis. C. As perturbation continues, 

escalating cycles of chaotic exploration may find attractors in which the unit ultimately 

fails to respond, indicating a static condition and representing maximal entropy. This 

path is seen in stress-induced exhaustion or allostatic crash representing the demise of 

a biological system.  

 

Figure 2   

Elementary network attributes in complex adaptive systems 

Common operational features illustrated in a network with hypothetical topology. Nodes 

(circles of different size) indicate system components with relative importance (e.g., red 

filled circles correspond to hubs with high connectivity), and links (lines with various 

thickness and arrows) indicate connection strength and directionality between pairs of 

nodes. Autoregulatory loops allow rapid initial response. Feedback allows response 
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monitoring and adjustment. Feed-forward loops act as delay elements, sensitivity filters, 

pulse generators, or response accelerators. Single-input modules permit sequential 

activation and time-based expression. Multi-functional pathways share the same effector 

(‘bow-tie’). Redundancy indicates the existence of parallel effectors resulting in a 

common outcome. Degeneracy is a special form of redundancy in which separate 

pathways yield the same outcome but may produce additional effects. Modules 

represent clusters of highly connected nodes specialized for a subtask. Network 

diameter is the longest distance between two nodes through the shortest possible route 

(path connecting green nodes between extremes marked with asterisk).  

 

Figure 3 

Physiological adaptation: An integrated view  

A. Probability distribution of biological systems parameters depicted in the phase space 

remains narrow and predictable in health. Perturbations may cause pathophysiological 

conditions that prompt chaotic search for new attractors. Settling in these attractors may 

be temporary as ongoing perturbations escalate this explorative phase of adaptation 

increasingly associated with tradeoffs and compromises (sequelae-pathology). The 

system moves from intermediate pathophenotypes to disease pathophenotypes and 

beyond, corresponding to successive adaptation strategies (i.e., restore, explore, and 

abandon). B. Physiological adaptation in obesity is primarily determined by sustained 

nutrient excess, which may lead to intermediate pathophenotypes such as inflammation 

and altered energy metabolism (dashed circles). If perturbations persist, adaptation 

efforts to find new attractors are increasingly fraught by compromises and tradeoffs, 

resulting in higher risk for developing disease pathophenotypes marked by endothelial 

dysfunction (cardiovascular disease), insulin resistance (type 2 diabetes), and 

oncogenesis (cancer). C. Schematized network of attractors associated with obesity 
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including links between relevant disease pathophenotypes and sub-phenotypes to 

illustrate hypothetical transition probabilities in the phase space recording a single life. 

Similar and more complex topologies could represent attractors that a biological system 

may occupy through physiological adaptation with opportunities and liabilities 

determined by the genetic and environmental assemblage of an individual organism 

(e.g., person-specific patterns of diabetic end-organ damage or cancer development). 

Computational analysis of personalized attractor networks may eventually prove 

invaluable in predicting and managing the outcomes of complex diseases.  
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