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Abstract

Colonization of the human nasopharynx by pneumococcus is extremely common and is

both the primary reservoir for transmission and a prerequisite for disease. Current vaccines

targeting the polysaccharide capsule effectively prevent colonization, conferring herd pro-

tection within vaccinated communities. However, these vaccines cover only a subset of all

circulating pneumococcal strains, and serotype replacement has been observed. Given the

success of pneumococcal conjugate vaccine (PCV) in preventing colonization in unvacci-

nated adults within vaccinated communities, reducing nasopharyngeal colonization has

become an outcome of interest for novel vaccines. Here, we discuss the immunological

mechanisms that control nasopharyngeal colonization, with an emphasis on findings from

human studies. Increased understanding of these immunological mechanisms is required to

identify correlates of protection against colonization that will facilitate the early testing and

design of novel vaccines.

Introduction

Streptococcus pneumoniae (the pneumococcus) is the most common bacterial cause of pneu-

monia, meningitis, and otitis media in children [1]. Pneumococcal pneumonia is also associ-

ated with significant morbidity and mortality in the elderly [2]. Such increased pneumococcal

disease rates in the elderly could be associated with an altered colonization niche, increased

oropharyngeal carriage, as well as with alterations in immunity (reviewed by [3]). Moreover,

pneumococcal pneumonia is a leading cause of death during seasonal and pandemic influenza

infections [4]. In addition, pneumococcus is the most common cause of pneumonia, sepsis,

and meningitis among those infected with HIV [5]. Pneumococcal disease is also increased

with exposure to cigarette smoke and air pollution [6, 7]. A further concern of pneumococcal

infection is high rates of resistance to multiple classes of frequently used antibiotics [8].

Stable colonization (i.e., carriage) within the human nasopharynx, the commensal state of

S. pneumoniae, is extremely common because 40% to 95% of infants and 1% to 10% of adults

are colonized at any time [9]. In children, simultaneous colonization with multiple pneumo-

coccal strains is not uncommon [10]. Carriage is asymptomatic in adults but can be associated

with mild rhinitis symptoms in children [11]. Importantly, carriage is the primary reservoir
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for transmitted pneumococci and is a prerequisite for pneumococcal disease [12]. Increased

carriage density has been demonstrated to correlate with transmission within households [13].

Moreover, coinfection with influenza or HIV can lead to an increased density of colonizing

pneumococci, which is associated with an elevated risk of pneumonia and mortality [14, 15].

An increased carriage density was confirmed as a risk factor for pneumococcal pneumonia in

a second patient cohort of adult patients with radiologically confirmed community-acquired

pneumonia [16]. While causality cannot be determined from these epidemiological studies, a

high pneumococcal density in the nasopharynx may facilitate bacterial invasion and micro-

aspiration into the lungs and thereby increase the likelihood of progression of infection to

pneumonia [17].

In addition to being a prerequisite of disease and a reservoir for transmission, carriage also

causes an increase in antibody levels against immunodominant pneumococcal surface anti-

gens, including capsular polysaccharides and proteins, potentially immunizing against future

colonization and infection [18, 19]. Moreover, carriage increases levels of pneumococcus-spe-

cific cluster of differentiation 4 (CD4+) T memory cells both in blood and in the lung [20].

Even among HIV-infected adults, recurrent disease caused by pneumococci of the same capsu-

lar polysaccharide serotype is extremely infrequent, which suggests a protective effect of expo-

sure [21].

Three pneumococcal vaccine formulations are currently licensed, all of which induce

humoral responses against a subset of the 98 currently described immunologically distinct cap-

sular polysaccharide serotypes [22, 23]. The pneumococcal polysaccharide vaccine (PPV),

which covers 23 serotypes, induces T cell–independent responses by B cells and plasma cells

expressing anticapsular immunoglobulin G (IgG) in adults but is poorly immunogenic in

young children [24]. The protective efficacy of this vaccine for nonbacteremic pneumonia

remains controversial despite many years of use, and there are theoretical concerns about

immunological harm resulting from B cell depletion [25]. The pneumococcal conjugate vac-

cine (PCV) couples capsular polysaccharides to a carrier protein, which elicits T-cell help and

results in improved memory–B cell formation, affinity maturation, class switching, and levels

of IgG. Two formulations that target 10 or 13 serotypes have been licensed to date [24]. Sero-

types included in PCV10 are 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F. The PCV13 formulation

includes the additional serotypes 3, 6A, and 19A. An investigational vaccine, which also

includes the two serotypes 22F and 33F in addition to those in PCV13, might increase this pro-

tection to 15 serotypes in the near future [26]. An important benefit of PCV-induced immu-

nity is a decreased incidence of vaccine-type pneumococcal carriage in the population (herd

protection). Since the release and widespread use of PCVs among children, a decrease in the

circulation of the targeted serotypes in immunized populations has been observed. As a result,

the incidence of invasive pneumococcal disease and pneumonia in both vaccinated children

and unvaccinated adults has been reduced dramatically [27]. In fact, most of the overall effi-

cacy of PCV has been attributed to herd immunity for populations at risk. Problems that

remain with PCV are the high cost of this complex vaccine, evidence of gradual replacement

by serotypes not covered by the vaccine, and poor matching to serotypes circulating in devel-

oping countries, which suffer the largest burden of disease [28]. Novel vaccination strategies

are needed to complement current vaccination and treatment options. As a result, at least nine

protein-based or whole-cell pneumococcal vaccines are currently in preclinical and clinical tri-

als [29]. Nasopharyngeal carriage is an endpoint for several clinical trials testing novel vaccines

because it is a fast, easy-to-measure, and cost-efficient surrogate for disease endpoints [30].

However, the immunological correlates of protection against carriage have not yet been identi-

fied in humans, which hinders the development of effective novel vaccines and does not pro-

vide a clear licensure pathway for protein-based vaccines.
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Factors promoting pneumococcal colonization include, among others, evasion of mucocili-

ary clearance, host nutrient availability, niche competition with other pneumococci and

microbes of other species (reviewed in [31]), and the ability to avoid the host immune response

long enough to allow successful transmission to a new host. Here, we focus on the immunolog-

ical factors that control pneumococcal carriage, with an emphasis on mechanisms that have

been described in animal models and subsequently examined in human studies.

Capsule-specific antibodies

There is a large amount of evidence supporting the role of capsule-specific antibodies in pre-

venting colonization. Pneumococcal colonization in adults confers virtually complete protec-

tion against acquisition of the same strain up to one year later in a controlled human infection

model [19]. In contrast, healthy adults who were recently naturally colonized with a different

serotype are not less susceptible to acquisition of experimental carriage [32]. This suggests that

serotype-specific adaptive immune responses can control the establishment of carriage,

although it cannot be excluded that strain-specific, serotype-independent memory responses

protect against homologous reacquisition. Similarly, serotype-specific protection against car-

riage is present in toddlers for at least several serotypes, demonstrating that this plays a role

not just in adults [33]. While capsule can be expressed at lower levels during colonization, its

expression is required for colonization [34]. Importantly, increased amounts of capsule are

associated with transmission in an infant mouse model of transmission [35]. Serotype-specific

protection from acquisition of carriage is likely conferred by antibody-mediated bacterial

agglutination on the mucosal surface that may aid mucociliary clearance and, as a result, pre-

vent stable establishment along the epithelium (Fig 1) [36]. Agglutination occurs though the

bi- or multivalency of immunoglobulin and has been shown to be independent of the immu-

noglobulin fragment crystallizable (Fc) region and interactions with complement [37]. A

secreted pneumococcal protease can specifically cleave human IgA1, the most abundant anti-

body subtype on the mucosal surface of the nasopharynx, preventing IgA1-dependent aggluti-

nation [37]. This protease, however, does not target IgG. Antibodies can also act by facilitating

complement-mediated opsonophagocytosis by effector cells and thus prevent acquisition or

mediate clearance (Fig 1) [38]. Therefore, capsule-specific immunity can effectively prevent

establishment of colonization.

Vaccination with PCV leads to an increase in vaccine-serotype–specific IgG, which accesses

the mucosal surface [24]. Indeed, very high levels of capsule-specific IgG induced by PCV13

vaccination protect healthy adult volunteers from experimental carriage acquisition [39]. As

expected following efficient blocking of carriage acquisition and transmission, the serotypes

covered in PCV have been rapidly depleted in highly vaccinated communities in Europe and

the United States [27, 40]. An exception is serotype 3, which has persisted longer than other

serotypes following PCV introduction, perhaps because of its capacity to release its capsule

and thus circumvent the effect of anticapsular IgG [41, 42].

For antibodies to confer direct protection against acquisition, higher anticapsular antibody

levels (as induced by PCV) may be required than to protect against invasive disease [43]. Anti-

body titers greater than 0.35 ug/mL following PCV vaccination are associated with effective

protection against invasive disease in infants [44, 45]. However, to confer protection against

colonization, antibody titers greater than 4.0 ug/mL might be required, depending on serotype

[43, 46]. A recent study assessing anticapsular levels in PCV-vaccinated toddlers in Kenya was

unable, however, to identify protective cutoff levels against carriage [47]. This could explain

the limited correlation found between serum levels of capsule-specific antibodies and acquisi-

tion in children and adults [9, 33]. Indeed, levels of polysaccharide-specific memory B cells but
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not IgG correlate with protection from experimental carriage acquisition [19, 32]. Such mem-

ory B cells can quickly differentiate into plasma cells, which can produce antibodies, following

pneumococcal encounter and thus prevent acquisition (Fig 1) [32]. In addition, while capsule-

specific responses are undoubtedly involved in controlling colonization, responses to other

pneumococcal antigens, including surface proteins, likely participate in conferring protective

immunity against carriage.

Capsule-independent immunity

Longitudinal follow-up of children from birth to one year has demonstrated that carriage pro-

tects against subsequent carriage events also in a serotype-independent manner [48]. Indeed,

this protection is observed prior to the maturation of capsule-specific antibodies, which are

Fig 1. Immunological mechanisms of control of pneumococcal carriage. The serotype-dependent and

-independent immunological mechanisms that control pneumococcal carriage are depicted. Memory B cells

and plasma cells specific to capsule and proteins produce IgG. This can lead to antibody-mediated

pneumococcal agglutination and antibody-mediated phagocytosis by neutrophils, monocytes, and

macrophages. Moreover, IL-17A produced by memory CD4+ T cells might lead to recruitment and activation

of neutrophils and monocytes/macrophages, thus increasing phagocytosis. CCL2, C-C motif chemokine

ligand 2; CD4+, cluster of differentiation 4; IgG, immunoglobulin G; IL-17A, interleukin 17-A.

https://doi.org/10.1371/journal.ppat.1006665.g001
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not observed until two years of age. Moreover, the duration and density of carriage episodes

decrease with age and previous pneumococcal exposures [49, 50]. Epidemiological data and

mathematical modeling have attributed such decreases predominantly to the gradual accumu-

lation of serotype-independent immunity [51]. Models taking both serotype-independent and

serotype-dependent immunity into account were able to accurately predict serotype frequency,

diversity, and carriage duration. In contrast, models that only included serotype-specific

immunity predicted a lower serotype diversity, as well as lower carriage rates in adults, com-

pared with reported data. Several immunological mechanisms could explain such a serotype-

independent mode of control, including antibodies directed against proteins, T helper type 17

(Th17) memory cells, and trained innate immune responses.

Protein-specific antibodies

The role of antibodies against pneumococcal proteins in protection from carriage acquisition

has been studied repeatedly with conflicting results, particularly in regards to human testing.

In a study using a 23F-type human challenge model, increased baseline antibody levels against

pneumococcal surface protein A (PspA) were found in individuals protected against acquisi-

tion of carriage [18]. Moreover, a recent study in Native American communities found that

decreased antibody titers against PspC group 3 were associated with increased colonization by

pneumococci expressing this variant [52]. However, because this study did not assess the rela-

tionship between antibody levels and carriage in a prospective manner, no conclusions on the

protective potential of variant-specific antibodies could be drawn. In contrast, in studies using

a 6B-type human challenge model, serum IgG levels against 18 pneumococcal proteins, includ-

ing PspA and PspC, did not correlate with protection against carriage [19, 32]. However, the

immunodominant N-terminus of PspA is highly variable, and it is possible that variant-spe-

cific immunity could be necessary to confer protection. A similar lack of correlation between

protein-specific antibodies and carriage acquisition was observed in an observational study in

young children [53]. Antibodies and mature B cells were found to be dispensable for the clear-

ance of carriage in adult mice [54]. Recently, a vaccine inducing protein-specific antibodies

was tested for its effect on carriage in a phase-2 clinical trial in infants in The Gambia [55].

This vaccine contained PCV10 combined with pneumolysin and pneumococcal histidine triad

protein D (PhtD), and antibodies against both proteins were potently induced. However, this

vaccine only conferred a 0.5% to 2.1% protection against non–vaccine-type (NVT) carriage,

depending on dosage [55]. Because this study was designed to look at NVT acquisition, there

was no cohort that did not receive any pneumococcal vaccine. Consequently, the effect of vac-

cination on VT acquisition could not be compared to natural colonization. In all groups, VT

acquisition was around 10% in each 3- to 4-month interval in the year post vaccination (2–5

months old, 5–9 months old, 9–12 months old).

While difficult to assess, it is conceivable that high levels of antibody to a single antigen

might be insufficient, while a cumulative effect of antibodies to several antigens could confer

protection against carriage.

Th17 responses

Murine models have indicated a role for CD4+ Th17 cells, which produce interleukin-17A (IL-

17A), in controlling carriage density and duration following either vaccination with pneumo-

coccal whole-cell vaccine (WCV) or repeated homologous colonization [56–58]. However,

these findings have not yet been conclusively corroborated in humans.

A polymorphism in the IL17A gene was found to be associated with lower serum levels of

IL-17 and increased carriage levels in young children [59]. Levels of pneumococcus-specific
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CD4+ Th17 cells and regulatory T cells (Treg) have been extensively studied in lymphoid tis-

sues in children [60–64]. The ratio of Th17/Treg is low in children and increases with age as

colonization frequency decreases [62]. In addition, this ratio is lower in colonized children

than in uncolonized children [56, 57]. However, the association between the ratio of Th17/

Treg and carriage state could also reflect the fact that carriage itself modulates the frequency of

Th17 and Treg cells. Indeed, carriage increases Treg frequency in mice, which is associated

with stable colonization [65]. Moreover, the finding that children in Bangladesh, where pneu-

mococcal carriage and infection rates are relatively high, have increased Th17 responses com-

pared with children in Sweden (where the incidence of carriage and infection with

pneumococcus is much lower) would suggest that these responses alone are not sufficient in

conferring protection [66].

Recently, the GEN-004 vaccine, consisting of three antigens identified following a proteo-

mic screen for proteins that elicit robust Th17 cell responses (Streptococcus pneumoniae pro-

teins SP0148, SP1912, and SP2108), was tested using a human challenge model [67]. This

vaccine consistently reduced carriage acquisition by 18% to 36% versus placebo, but the differ-

ences were not statistically significant because the study was powered to detect 50% protection

[67]. There was no evidence of reduced colonization density or duration up to day 14 following

inoculation [67]. One limitation of the GEN-004 study is that Th17 cellular responses have not

yet been reported, which limits the conclusions one can draw from the study.

Neutrophils

In mice, the control of established colonization and clearance by Th17 cells depends on both

neutrophils and macrophages (Fig 1) [56, 57]. Immunization with WCV leads to neutrophil

recruitment to the nasopharynx following colonization, and depletion of these cells partially

abrogates the protective effect of vaccination [56]. Such neutrophil recruitment is necessary to

control carriage because neutrophils are not detected in the nasal mucosa of naïve mice [57].

Therefore, it is not surprising that the depletion of neutrophils did not increase pneumococcal

acquisition in an infant mouse model of pneumococcal transmission [68]. In contrast to the

case in mice, neutrophils are present in the nasal lumen of human adults and children [69, 70].

Therefore, neutrophils might be able to prevent the establishment of colonization in humans,

while the effect of additional neutrophil recruitment is unclear.

In addition to mediating neutrophil recruitment, IL-17A increases the capacity of human

neutrophils to kill pneumococci in vitro (Fig 1) [56, 69, 70]. Indeed, the vaccination of mice

using a type 2 pneumococcal pep27 mutant strain led to increased capacity of neutrophils to

kill pneumococci in vitro [71]. This vaccination provided protection against colonization by a

range of heterologous serotypes. The role of neutrophils against carriage in humans is sup-

ported by the fact that the capacity of a given serotype to resist neutrophil- (and possibly com-

plement-) mediated killing in vitro is associated with its prevalence [72]. However, in a recent

study of mouse cocolonization with six pneumococcal serotypes, the depletion of neutrophils

did not alter relative serotype recovery [73]. It should be noted that this experiment was con-

ducted using naïve mice that have delayed neutrophil recruitment dynamics [57, 73].

Monocytes/Macrophages

Recolonization of mice by the same pneumococcal strain also increases levels of macrophages

in the nasopharynx, albeit with delayed recruitment kinetics compared with neutrophils [57].

In mice, this recruitment of mucosal macrophages correlates with dynamics of clearance—a

process that requires weeks to months. Macrophage depletion increases carriage density and

delays carriage clearance in this model [57]. Molecular studies of this macrophage recruitment
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have identified innate and adaptive receptors and cytokines in a two-phase recruitment (Fig

1). Toll-like receptor 2 (TLR2) and IL-17A but not neutrophils or CD8+ T cells are required

for this macrophage recruitment [57]. Indeed, TLR2 but not TLR4 was previously found to be

required for pneumococcal clearance in mice [74]. Early recruited macrophages sense lyso-

zyme-digested pneumococcal peptidoglycan through nucleotide-binding oligomerization

domain-containing protein 2 (Nod2), produce C-C motif chemokine ligand 2 (CCL2), and

induce recruitment of additional macrophages in a positive feedback loop [75]. Deletion of

both TLR2 and Nod2 has a more profound effect on pneumococcal clearance than either

alone, suggesting that these mechanisms are complementary [75].

Recently, the delayed clearance dynamics in infant mice compared with adult mice were

linked to a failure to recruit monocytes to the nasopharynx, related to microbiota-induced

tonic CCL2 production [76]. Similarly, elderly mice have dysfunctional macrophages and dis-

play impaired monocyte recruitment to the nasopharynx, which is associated with decreased

clearance [77, 78]. In addition, prior influenza infection impairs monocyte/macrophage

recruitment through type 1 interferon signaling, leading to increased colonization density in

mice [79].

Unlike neutrophils, monocytes/macrophages are virtually absent from the human naso-

pharynx in uncolonized individuals [70]. Human macrophages express IL-17R, which can

directly mediate recruitment following IL-17A encounter [80]. Whether these cells are

recruited following pneumococcal carriage in adults or children has not been studied. How-

ever, the recruitment of monocytes to the nose during influenza infection is seen in young chil-

dren, along with increased CCL2 levels in nasal aspirates [81].

IL-17A can also activate macrophages because the capacity of human alveolar macrophages

to kill pneumococcus in vitro is increased by coculture with IL-17A (Fig 1) [20]. Interestingly,

Th17-mediated immunity is also elicited by vaccination with whole-cell Bordetella pertussis
but not by the acellular pertussis vaccine, boosting macrophage function [82]. Indeed, induc-

tion of IL17 expression in baboons vaccinated with whole-cell pertussis but not acellular per-

tussis associates with protection against colonization [83]. In mice, wild-type influenza

predisposes to pneumococcal pneumonia in part by impairing the phagocytic capacity of

monocytes/macrophages by interferon gamma (IFNɣ)-mediated modulation of the scavenger

receptor Macrophage Receptor With Collagenous Structure (MARCO) [84]. While the role of

monocytes/macrophages in controlling human colonization has not been addressed directly, it

is interesting that live-attenuated influenza vaccination (LAIV) increases carriage density in

children [85].

Effect of inflammation and other innate mechanisms

The contribution of other immunological modalities to the control of pneumococcal coloniza-

tion has not been extensively studied and remains unclear. The presence of local inflammation

is likely to predispose to carriage acquisition. Induction of inflammation by treatment with

bacterial lipopolysaccharides (LPS) increases carriage acquisition in infant mice [68]. Further-

more, inflammation of the mucosa is associated with increased carriage levels in children [86].

Similarly, asymptomatic upper respiratory tract virus infection predisposes to experimental

carriage acquisition in humans [87]. It is not clear to what extent respiratory viral infection

and inflammation promote increased carriage by impairing innate immune responses, includ-

ing neutrophil and monocyte function [84, 88]. Coinfection with virus may act through

other mechanisms, such as (i) impairment of mucociliary clearance, (ii) up-regulation of

pneumococcal receptors such as platelet-activating factor receptor (PAFr) and polymeric

immunoglobulin receptor (pIgR) on epithelial cells, (iii) epithelial denudation and adherence
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to the exposed basal layer, and (iv) increased availability of nutrients such as sialic acid [89–

93].

Finally, genetic ablation of the IFNa receptor increases colonization density in a murine

model while not impairing recruitment of neutrophils and monocytes [94]. This provides fur-

ther evidence that type 1 interferons might be involved in controlling carriage through induc-

tion by bacteria. The role of other immune cells, such as innate lymphoid cells, in controlling

pneumococcal colonization has not been extensively studied [95].

Future perspectives

A better understanding of the immunological factors that govern pneumococcal acquisition,

control density, and mediate clearance will guide the informed development of novel anti-

pneumococcal interventions.

The antibody-independent factors that control carriage acquisition following pneumococ-

cal encounter still remain unclear. The recent development of murine transmission models

and use of experimental human challenge models may allow new perspectives and further elu-

cidation of these mechanisms [68, 96].

While a clear picture has emerged on how established pneumococcal colonization is con-

trolled in mice, much of these data have not yet been validated in humans. Further studies of

levels of neutrophils and monocytes following pneumococcal carriage should be performed to

fill these gaps. In particular, the lack of additional recruitment of these cells in children may

explain their high carriage levels. Moreover, longitudinal data on Th17/Treg levels and car-

riage presence and duration are required to determine causality in the interaction between

these cells and carriage. Recently, anti–IL-17A monoclonal antibodies were licensed for treat-

ment of psoriasis [97]. The carriage levels in individuals receiving such antibodies compared

with controls would be an excellent tool to study the effect of IL-17A on colonization in a

human setting. Pneumococcal genes that can be recognized by Th17 cells are under lesser

diversifying selection than genes that are recognized by antibodies, which could make them

excellent targets for vaccination [98].

Finally, a better understanding of the pneumococcal proteins that mediate serotype-inde-

pendent immunity in humans should be identified. Several studies of pneumococcal specific

protein antibody responses in children and adults have been unable to demonstrate an associa-

tion with carriage [19, 32, 53]. And while recent protein-specific vaccine trials have shown

only modest effects on colonization in randomized clinical trials (RCTs), the ecological effects

of such protection are hard to predict [55, 67, 99]. In addition, these studies have examined

only a few candidate antigens; ongoing trials of the WCV, which will examine impact on car-

riage as well as invasive disease, may provide further information in this regard. A wider array

of antibody responses, as may be generated in response to WCV, could be required for non–

serotype-specific protection.

Conclusions

The immunological mechanisms that mediate serotype-dependent control of carriage have

been well described, with capsule-specific memory B cells and IgG being able to prevent colo-

nization through antibody-mediated agglutination and disease through opsonophagocytosis

(Fig 1). However, the serotype-independent immune responses that are able to control pneu-

mococcal carriage remain uncertain, especially in humans. It is currently hypothesized that

Th17-mediated protein-specific responses play a role in controlling established carriage den-

sity and duration through recruitment and activation of neutrophils and macrophages. How-

ever, these data are largely derived from studies in adult mice with little human validation to
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date. Moreover, the array of pneumococcal proteins that would optimally confer such protec-

tion are still unidentified. There is also conflicting evidence from human studies for the capac-

ity of protein-specific antibodies to confer protection. Therefore, further studies assessing

these mechanisms in humans are necessary to foster the development of more broadly acting,

serotype-independent vaccines.
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