Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1111/jdi.12674

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34868932

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes

1Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Wuying Children’s Hospital of Wenzhou Medical University, 2Department of Preventive Medicine, School of Environmental Science and Management, Wenzhou Medical University, 3Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China, and 5Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Keywords
Diabetic nephropathy, Hydrogen, Subcutaneous administration

Correspondence
Fangyan Wang
Tel.: +86-577-8668-9817
Fax: +86-577-8668-9817
E-mail address: wzyxywyfy@126.com

J Diabetes Investig 2018; 9: 83–90
doi: 10.1111/jdi.12674

INTRODUCTION
Type 2 diabetes mellitus, the predominant form of diabetes, is characterized by high levels of blood sugar and insulin resistance. Approximately 170 million people in the world suffer from diabetes, a number expected to double by 2030. Although effective drugs are available for clinical use, including insulin, metformin and glucagon-like peptide-1, the World Health Organization reported 1.5 million deaths from diabetes in 2012, making it the eighth most prevalent cause of death. Most diabetes deaths occur in developing countries, and were associated with an estimated cost of $612 billion in 2014.

The anti-oxidant properties of hydrogen gas (H2) have been recognized in recent years, and it has been used extensively to treat various conditions including ischemia/reperfusion, sepsis and acute lung injury. H2 has also shown to inhibit diabetes and related diseases. The low solubility of H2 renders therapeutic administration, and various routes have been used for specific treatments including high-content (saturated) H2 water, inhalation, electrically reduced water, and H2-producing intestinal bacteria.

In the present study, we used a classical mouse model of type 2 diabetes mellitus to investigate the therapeutic effects of subcutaneously injected H2 by examining blood glucose, insulin and lipid levels, oxidative stress, and kidney function.

MATERIALS AND METHODS
Drugs and chemicals
Streptozotocin (STZ) was purchased from Sigma (St. Louis, Missouri, USA). The 40% high-fat diet was obtained from Slac Laboratory Animal Ltd. (Shanghai, China). The radioimmunoassay kits of β2-microglobulin and insulin were purchased...
from Beijing North Institute of Biological Technology (Beijing, China). Urine total protein assay kit was purchased from Boaoing Great Wall Clinical Reagents Co., Ltd. (Boaing, China). Detection kits for total superoxide dismutase (T-SOD), catalase (CAT) and malondialdehyde (MDA) were purchased from Jiancheng Bioengineering Institute (Nanjing, China). Masson staining kit was obtained from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China).

Animals
The 4-week-old male C57/BL6J mice were obtained from Slac Laboratory Animal Ltd. The animals were bred under standard conditions (12-h light–dark cycle, 24°C), with free access to water and standard laboratory chow. All mice were carefully fed according to the standards of the Guide for the Care and Use of Laboratory Animals.

Diabetic induction and animal grouping
Diabetes induction was carried out according to a previously reported protocol16. Briefly, mice were fed a high-fat diet for 4 weeks and then intraperitoneally injected with 100 mg/kg STZ (Sigma) or an equal volume of vehicle as the control (n = 8). After 2 weeks of high-fat diet feeding, glucose levels in the plasma were determined by a blood glucose meter (Andon Health Co., Ltd., Tianjin, China). Mice with glucose levels ≥10 mmol/L were considered diabetic, and were used for experiments if they continuously maintained hyperglycemia (≥10 mmol/L) over 10 days.

Mice were divided into three groups: mice without diabetes induction (normal control [NC], n = 8); diabetic mice receiving subcutaneous injection of air (DM; n = 15); diabetic mice receiving subcutaneous injections of H2 (SAH; n = 15). The SAH group was injected subcutaneously with H2 at a dose of 1 mL/mouse/week for 4 weeks. The same dose of air was given to the DM group by subcutaneous injection. In each group, the bodyweight was monitored daily, and blood glucose level was checked weekly.

Insulin tolerance test and glucose tolerance test
The insulin tolerance test (ITT) and glucose tolerance test (GTT) were carried out at the end of the experiment. For ITT, the mice were intraperitoneally injected with insulin at a dose of 0.5 U/kg bodyweight (Wanbang Biopharmaceuticals, Jiangsu, China) after a 15-h fast. Blood samples (10 μL) were collected at 0, 30, 60 and 120 min after insulin administration. For GTT, the mice received oral glucose at 2 g/kg bodyweight of glucose after a 12-h fast. Blood samples (10 μL) were taken at 0, 30, 60 and 120 min after glucose treatment. The ITT and GTT were carried out on mice without anesthesia into chilled tubes treated with ethylenediamine tetra-acetic acid disodium salt, immediately centrifuged and supernatants stored at –80°C. Plasma low-density lipoprotein (LDL), triglyceride (TG), total cholesterol and high-density lipoprotein levels were measured with the automatic biochemistry analyzer. Plasma insulin level was detected according to the instructions of the kit.

24-h urine volume collection, and measurement of urinary total protein and β2-microglobulin
Mice were fasted and supplied with water ad libitum for 24-h urine collection. Urinary total protein and β2-microglobulin were determined following the instructions supplied with the commercial kits.

Calculation of kidney weight/bodyweight ratio and examination of renal fibrosis
Under anesthesia, the kidneys were isolated and weighed to calculate the kidney weight/bodyweight ratio (Kw/Bw [mg/g]). The right kidney was fixed in 4% paraformaldehyde for paraffin embedding. Then, 4-μm sections were stained with Masson and observed by microscopy.

Detection of oxidative stress indicator
The MDA content, T-SOD, and CAT activities in the plasma and kidney tissue were determined by the thiobarbituric acid method17, xanthine oxidase18 and the ammonium molybdate colorimetric method19, respectively. The assays were carried out according to the instructions supplied with the commercial kits. The bicinchoninic acid assay was used to normalize the levels in kidney tissue.

Statistical analysis
All data are expressed as mean ± SD. Significant differences were determined by the Bonferroni test. A P-value <0.05 was considered statistically significant.

RESULTS
Subcutaneous administration of H2 improved hyperglycemia in diabetic mice induced by high-fat diet and STZ
To initially investigate the effects of H2 on diabetic mice, bodyweight was tracked throughout the experimental period. Weight gains in all groups were similar without statistical significance (P > 0.05), suggesting that H2 administration does not affect bodyweight (Figure 1a).

We carried out biochemical analysis on blood samples to further investigate the antidiabetic effects of H2. Glucose plasma levels were significantly reduced by H2 injection (P < 0.01 or P < 0.05; Figure 1b). ITT and GTT were carried out at day 28. As shown in Figure 1c,d, blood glucose levels in the diabetic group reached the maximum at 30 min, and then gradually decreased. In contrast, blood glucose in the H2-treated mice declined faster. Serum glucose levels in the diabetic mice were significantly increased compared with the control animals, and
Subcutaneous administration of H₂ (Figure 1d). Thus, glucose tolerance and insulin sensitivity in diabetic mice were significantly improved by subcutaneous H₂ treatment. Additionally, the area under the curve of blood glucose was significantly reduced in the subcutaneous administration of H₂ group (SAH) compared with the DM group. (c,d) At day 28, the glucose tolerance test and insulin tolerance test were carried out to check the levels of blood glucose for each group at the time-points of 0, 30, 60 and 120 min. The area under the curve (AUC) for each group is also shown. (e) The level of plasma insulin was measured after 4-week H₂ treatment. The data are expressed as mean ± SD (n = 8–16). *P < 0.05, **P < 0.01. NC, normal control group.

Figure 1 | Subcutaneous administration of hydrogen gas (H₂) suppressed hyperglycemia in mice with diabetes mellitus (DM) induced by a high-fat diet and a low dose of streptozotocin. Diabetic mice were subcutaneously injected H₂ at 1 mL/mouse/week for 4 weeks. The same dose of air was given as a control. Biochemical analysis was carried out to obtain plasma parameters. (a) Bodyweight after H₂ treatment for each group was recorded weekly. There was no significant difference in bodyweight between the SAH group and DM group. (b) The level of blood glucose after H₂ treatment for each group was recorded weekly. At the 4-week time-point, the level of blood glucose was significantly reduced in the subcutaneous administration of H₂ group (SAH) compared with the DM group. (c,d) At day 28, the glucose tolerance test and insulin tolerance test were carried out to check the levels of blood glucose for each group at the time-points of 0, 30, 60 and 120 min. The area under the curve (AUC) for each group is also shown. (e) The level of plasma insulin was measured after 4-week H₂ treatment. The data are expressed as mean ± SD (n = 8–16). *P < 0.05, **P < 0.01. NC, normal control group.

Subcutaneous administration of H₂ improved hyperlipemia in diabetic mice induced by a high-fat diet and a low dose of STZ

Hyperlipemia is an important feature of type 2 diabetes mellitus. We examined plasma lipids in diabetic mice after subcutaneous H₂ administration. Levels of LDL and TG, but not total cholesterol, were significantly attenuated, whereas the level of high-density lipoprotein was increased after H₂ treatment in the SAH group (***P < 0.01; Figure 2). These observations show significant improvement of hyperlipemia by subcutaneous...
H₂ administration in diabetic mice induced by a high-fat diet and a low dose of STZ.

Subcutaneous administration of H₂ reduced the oxidative stress of diabetic mice induced by a high-fat diet and a low dose of STZ.

The effect of H₂ on oxidative stress was examined by measuring the levels of T-SOD, CAT and MDA in plasma (Figure 3a–c). The MDA level in plasma was significantly reduced in the H₂-administered mice (P < 0.01). The activity of T-SOD and CAT in plasma was prominently reduced in the diabetic mice compared with the NC group, whereas these changes were reversed by subcutaneous administration of H₂ (P < 0.01 or P < 0.05). Thus, H₂ suppressed oxidative stress in the diabetic mice. We also measured the levels of T-SOD, CAT and MDA to evaluate the oxidative stress in the kidney after H₂ administration (Figure 3d–f). H₂ administration significantly reduced MDA compared with the DM group. The activity of T-SOD and CAT in the kidney tissue of diabetic mice was prominently attenuated, which was enhanced by subcutaneous administration of H₂. These data show that H₂ inhibited renal oxidative stress in the diabetic mice.

Subcutaneous administration of H₂ reduced diabetic renal injury

Because the kidney was sensitive to injury induced by diabetes, we evaluated 24-h urine volume, total urine protein and β2-microglobulin, Kw/Bw, and renal fibrosis in the experimental and control groups. As shown in Figure 4a, the 24-h urine volume of mice in the DM group was significantly increased, and this was ameliorated by subcutaneous injection of H₂ (P < 0.01). The levels of total urinary protein and β2-microglobulin, and the ratio of Kw/Bw were significantly higher in the DM vs NC mice, and subcutaneous administration of H₂ attenuated all DM-associated parameters (P < 0.01; Figure 4b–d). The fibrosis observed in the kidneys of diabetic mice (blue) was alleviated by H₂ treatment (Figure 4e). These data strongly show that subcutaneous administration of H₂ is able to reduce renal injury in diet- and STZ-induced diabetic mice.

DISCUSSION

Previous studies showed that H₂-water is able to attenuate oxidative stress in patients with type 2 diabetes mellitus and metabolic syndrome. Although ingesting H₂-water is a convenient route of administration, the absorptive dose of H₂ is extremely limited because of low saturation (0.8 mmol/L at atmospheric pressure). In the present study, we showed for the first time that subcutaneous injection of H₂, which is locally stored in tissue and subsequently stably diffused, has significant effects on type 2 diabetes mellitus-associated disease features.

In preliminary experiments, we found that it took approximately 1 week to completely absorb 1 mL of subcutaneously injected H₂, and these observations were used to design the H₂ administration schedule. Based on the H₂ solubility coefficient...
(0.0182 at 20°C) and international standard atmosphere (101.3 kPa), 55 mL of water is required to dissolve 1 mL of H2. At an ingestion rate of 5–7 mL/mouse/day, it would require 8 days to consume 1 mL of H2. In the digestive tract, the absorption of H2 into the body is even less efficient. Furthermore, injection of saturated-H2 saline at a dose of 0.6 mL/mouse/day would require approximately 91 days to consume 1 mL of H2. Although previously reported H2 administration routes have been shown to have significant anti-oxidative effects9,22,23, our studies suggest that subcutaneous H2 injection is an efficient way to enhance H2 absorption by tissues and thereby improve therapeutic efficacy.

Hyperlipemia is a typical clinical feature of metabolic syndrome induced by diabetes. Other studies showed that the plasma TG level of diabetic mice12 and the plasma LDL, especially oxidized LDL, of type 2 diabetes patients, were suppressed by drinking H2-water20. However, this improvement in hyperlipemia by drinking H2-water was not observed in type 2 diabetic mice by Haruka10. The present experiments show that subcutaneous administration of H2 for 4 weeks (1 mL/week) in diabetic mice significantly decreased the serum levels of LDL and TG. In particular, we showed the high-density lipoprotein content was increased by subcutaneous injection of H2, which was not previously reported. The results show that subcutaneous administration is a more effective method for H2 treatment.

Another important finding of the present study was that subcutaneous administration of H2 ameliorated hyperglycemia. Furthermore, the data of GTT and ITT showed that glucose homeostasis and insulin sensitivity in diabetic mice were also significantly improved by subcutaneous H2 treatment. However, these effects were not stably achieved through ingestion of H2 water. Haruka et al.10 reported that hyperglycemia attenuation from drinking H2 water was effective only for type 1, but not type 2, diabetic mice.

Oxidative stress, involved in the pathogenesis of various diseases23–29, is a process of imbalance between increased ROS and impaired anti-oxidant defenses to induce cellular injury. Most of the superoxide anion radical (O2) is produced by electron leakage from the electron transport chain and the Krebs

Figure 3 | Levels of malondialdehyde (MDA), total superoxide dismutase (T-SOD) and catalase (CAT) activity in the plasma and kidney of mice with diabetes mellitus (DM) induced by a high-fat diet and a low dose of streptozotocin. Subcutaneous administration of hydrogen gas (H2) to the mice (a) decreased the levels of MDA, and promoted the activities of (b) T-SOD and (c) CAT in plasma. After 4 weeks of H2 treatment, the plasma samples from each group were collected to detect the levels of indicators for plasma oxidative stress. The oxidative stress was significantly reduced in the subcutaneous administration of H2 group (SAH) group compared with the DM group. Subcutaneous administration of H2 (d) reduced the content of MDA and promoted the activities of (e) T-SOD and (f) CAT in the kidney. Renal tissues were homogenized to examine T-SOD and CAT activity, and MDA content. Bicinchoninic acid assay was used to determine protein levels in renal samples to normalize oxidative parameters. The data are expressed as mean ± SD (n = 8–16). *P < 0.05; **P < 0.01. NC, normal control group.
cycle. SOD converts O\textsubscript{2} into hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), which is detoxified into H\textsubscript{2}O by either glutathione peroxidase or CAT. Excessive O\textsubscript{2} reduces transition metal ions, such as Fe3+ and Cu2+, which in turn react with H\textsubscript{2}O\textsubscript{2} to produce hydroxyl radicals (OH•). OH•, the strongest of the oxidant species without an especially targeted detoxification system, reacts easily with nucleic acids, lipids and proteins. Therefore, scavenging OH• is a critical anti-oxidant process. Oxidative stress is an important mechanism underlying diabetes mellitus24,30,31, which impacts millions of people worldwide. Oxidative stress can cause pancreatic β-cell damage32, and induce insulin resistance in fat cells and liver cells33,34, thus affecting glycolipid metabolism. As an anti-oxidant gas, H\textsubscript{2} can reduce oxidative damage in multiple tissues and organs. Previous studies have shown that H\textsubscript{2} can improve diabetes and diabetes-associated complications35. Therefore, we believe that H\textsubscript{2} improves glucose and lipid metabolism, likely through reducing oxidative damage in the liver, adipose tissue and pancreatic β-cells.

H\textsubscript{2} is a promising scavenger of reactive oxygen species, and shows remarkable protective effects in various diseases5,7. Ohsawa \textit{et al}5 showed that H\textsubscript{2} is a novel anti-oxidative gas molecule to selectively address OH•. In the present study, we examined oxidative stress-related parameters including T-SOD, CAT and MDA levels in plasma, and found that subcutaneous injection of H\textsubscript{2} strikingly alleviated the oxidative stress of diabetes, which is consistent with previous studies35. Here, we also showed that subcutaneous injection of H\textsubscript{2} improved diabetic nephropathy (DN) through anti-oxidative stress. DN is one of the most common complications of diabetes. We examined multiple parameters to evaluate anti-DN effects of subcutaneous injection of H\textsubscript{2} including 24-h urine volume, urinary total protein, β2-microglobulin, kidney weight/bodyweight ratio (Kw/Bw) and renal fibrosis resulting from diabetes. After 4 weeks of H\textsubscript{2} treatment, (a) 24-h urine volume, (b) urinary total protein, (c) β2-microglobulin and (d) Kw/Bw were detected, and (e) kidney tissues were fixed for Masson staining. The 24-h urine volume, urinary total protein, β2-microglobulin, Kw/Bw and renal fibrosis in the group with H\textsubscript{2} treatment were significantly reduced, compared with the diabetes mellitus (DM) group (n = 16 for each group). The data are expressed as mean ± SD (n = 8–16). **p < 0.01. NC, normal control group; SAH, subcutaneous administration of H\textsubscript{2} group.

![Graphs and images](http://onlinelibrary.wiley.com/journal/jdi)
lipid and glucose metabolism, and DN in diabetic mice by providing protection against oxidative stress. These observations support the potential clinical application of this novel route of H2 administration for the treatment of type 2 diabetes mellitus.

ACKNOWLEDGMENTS
We gratefully acknowledge Xiaoyi Qin and Youpei Wang (Department of Pathology, Eye Hospital of Wenzhou Medical University) for instruction in pathological examination. This work was supported by the Zhejiang Province Natural Science Foundation of China (NO. LY14H070005), Zhejiang Province Medical Science and Technology Project of China (NO. 2013C37005). The funders are not involved in study design, data collection and analysis, and manuscript preparation.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
2. Death rates fall for 8 of 10 top causes; Alzheimer’s up to no. 6. Hosp Health Netw 2008; 82: 127.

