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Abstract

Allogeneic hematopoietic cell transplantation (HCT) is the treatment of choice for a variety

of hematologic malignancies and disorders. Unfortunately, acute graft-versus-host disease

(GVHD) is a frequent complication of HCT. While substantial research has identified clinical,

genetic and proteomic risk factors for acute GVHD, few studies have sought to develop risk

prediction tools that quantify absolute risk. Such tools would be useful for: optimizing donor

selection; guiding GVHD prophylaxis, post-transplant treatment and monitoring strategies;

and, recruitment of patients into clinical trials. Using data on 9,651 patients who underwent

first allogeneic HLA-identical sibling or unrelated donor HCT between 01/1999-12/2011 for

treatment of a hematologic malignancy, we developed and evaluated a suite of risk predic-

tion tools for: (i) acute GVHD within 100 days post-transplant and (ii) a composite endpoint

of acute GVHD or death within 100 days post-transplant. We considered two sets of inputs:

(i) clinical factors that are typically readily-available, included as main effects; and, (ii) main

effects combined with a selection of a priori specified two-way interactions. To build the pre-

diction tools we used the super learner, a recently developed ensemble learning statistical

framework that combines results from multiple other algorithms/methods to construct a sin-

gle, optimal prediction tool. Across the final super learner prediction tools, the area-under-

the curve (AUC) ranged from 0.613–0.640. Improving the performance of risk prediction

tools will likely require extension beyond clinical factors to include biological variables such

as genetic and proteomic biomarkers, although the measurement of these factors may cur-

rently not be practical in standard clinical settings.
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Introduction

Allogeneic hematopoietic cell transplantation (HCT) is currently the treatment of choice for a

variety of hematologic malignancies and disorders[1, 2]. Unfortunately, acute graft-versus-

host disease (GVHD), a debilitating condition associated with significant morbidity, compro-

mised quality of life and mortality remains a frequent complication of HCT[3–8]. To-date,

substantial effort has been directed towards identifying factors known before transplant that

are associated with increased relative risk of acute GVHD including: patient and donor charac-

teristics, such as the indication for transplant[9], patient age[10] and comorbidities[11], use of

an unrelated donor[12], and gender disparity[10]; graft properties, including human leukocyte

antigens (HLA) mismatch[13] and immunophenotypic makeup[10]; clinical factors, including

transplant conditioning, GVHD prophylaxis strategies[13, 14] and post-transplant infectious

events such as cytomegalovirus (CMV) reactivation; genetic factors, including variants of the

nucleotide-binding oligomerization domain containing protein 2 (NOD2)[15] and polymor-

phisms of genes related to interleukin-1 (IL-1)[16]; and plasma protein profiles, including

those based on TNF-α[17]. A comprehensive review is given by Harris and colleagues[18].

While clearly important, this body of work has focused on the relative impact of specific

risk factors compared to absence of the risk factor. In practice, health care providers, patients

and their families are also often interested in understanding and quantifying the absolute risk

of acute GVHD for individual patients. Patients facing treatment decisions, for example,

would like to know their actual predicted risks of GVHD, not whether they have a “higher” or

“lower” risk than others. Furthermore, the quantification of risk could have a number of

potentially important uses, particularly towards enabling individualized patient-centered deci-

sions. First, estimating the absolute risk of acute GVHD as a function of the interplay between

the characteristics of the patient and potential unrelated donors could help inform decisions

about whether to pursue transplantation, which donor to select, and how to perform the trans-

plant. For example, patients at high risk for severe acute GVHD and early mortality may be

more circumspect about pursuing transplantation in first remission, or they may be select

transplant approaches designed to minimize GVHD, potentially at the cost of greater immu-

nosuppression and higher risk of infections. They may be more interested in clinical trials of

novel approaches to prevent GVHD. Conversely, patients whose risk of severe acute GVHD is

low may not require aggressive immunosuppression. From a research perspective, the quanti-

fication of absolute risk could be used as an inclusion criterion for clinical trials to select

appropriate participants based on risk profile.

For the most part studies seeking to develop and validate prediction tools for absolute risk

have focused on outcomes, particularly mortality, following the onset of acute GVHD[16, 17,

19]. Substantially less attention has been paid to the quantification of absolute risk of acute

GVHD for a patient who is about to undergo or who has just undergone HCT. Notable excep-

tions include recent efforts to develop prediction tools based on proteomic biomarker panels

[20, 21]. These studies, however, rely on measurements that may be difficult to obtain in typi-

cal clinical settings and/or are measured after the transplant has already occurred[22–25],

making them unsuitable for pre-transplant risk prediction and selection of GVHD prophy-

laxis. In this work, we seek to develop and evaluate a risk prediction tool for acute GVHD that

could be readily-implemented, and therefore broadly useful, by focusing on patient-, donor-,

transplant- and graft-specific factors that are typically available in standard clinical settings.

Towards developing risk prediction tools, researchers have at their disposal a vast number of

options[26]. The statistical framework we employ is the recently developed super learner

ensemble learning framework[27]. As we elaborate upon, the super learner works by combin-

ing predictions obtained from a range of algorithms/methods, each of which may be used to
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construct a prediction tool, to form a single overarching prediction tool. Through theoretical

work and simulations, the super learner framework has been shown to enjoy a number of opti-

mality properties, including that the final prediction tool outperforms or does no worse than

any of the component algorithm/methods, and has been successfully used in a broad range of

clinical settings[28–31].

Methods

Patients

This is a multi-institutional study based on data from the Center for International Blood and

Bone Marrow Transplant Research (CIBMTR), a collaboration between the National Marrow

Donor Program and the Medical College of Wisconsin representing a worldwide network of

transplant centers that contribute detailed data on HCT. Studies conducted by the CIBMTR are

performed in compliance with all applicable federal regulations pertaining to the protection of

human research participants. Protected Health Information used in research is collected and

maintained in CIBMTR’s capacity as a Public Health Authority under the HIPAA Privacy Rule.

Data were extracted from the CIBMTR databases for 10,178 patients who underwent first

allogeneic HLA-identical sibling or unrelated donor HCT between January 1999 and Decem-

ber 2011 for treatment of acute myeloid leukemia (AML), acute lymphoblastic leukemia

(ALL), myelodysplastic syndrome (MDS) or chronic myeloid leukemia (CML), using either

bone marrow or peripheral blood stem cells combined with myeloablative or reduced inten-

sity/non-myeloablative conditioning. For each patient, HLA identical sibling match assess-

ments were performed per center practice. For patients with an unrelated donor, HLA

matching was determined at high resolution for HLA-A, B, C, DRB1 and DQB1 through retro-

spective typing of stored pre-transplant samples and/or reported by the transplant center and

match assessment performed per CIBMTR criteria[32]. Infection prophylaxis and treatment

were managed according to each institution’s standard practice guidelines. Prior to analyses

we excluded patients with missing values for any of the following: disease status, donor-recipi-

ent sex matching, conditioning intensity and GVHD prophylaxis. This resulted in a final ana-

lytic sample of 9,651 patients. Access to the dataset may be obtained from the CIBMTR after

execution of a data use agreement.

Outcomes

The primary outcome of interest was the binary endpoint indicating whether the patient had a

diagnosis of grade III or IV acute GVHD within 100 days of transplantation[33]. In secondary

analyses, since early death could prevent the development of acute GVHD, we also considered

a composite binary endpoint indicating whether the patient was diagnosed with acute GVHD

grades III-IV or died within 100 days of HCT.

This analysis used patients reported on Case Report Forms (CRFs) and excluded patients

reported solely on Transplant Essential Data (TED) abbreviated forms. Only CRFs captured

detailed information about the timing of acute GVHD and severity of individual organ sys-

tems, allowing application of a standardized algorithm that calculates the overall acute GVHD

grade. CIBMTR selects patients to be reported on CRF or TED forms according to a central

algorithm based on patient and transplant characteristics, not patient outcomes.

Risk factors

In developing the risk prediction tools we focused on factors that are typically available to

health care providers who oversee the care of patients undergoing HCT and that have been
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identified in other studies of GVHD. These included: patient gender, patient age, disease type

(AML, ALL, MDS or CML), disease status (early, intermediate or advanced), donor-patient

female-male sex-mismatch, patient-donor CMV serology match, patient-unrelated donor

HLA-compatibility (8/8 or 7/8 HLA-matched), graft type (bone marrow or peripheral blood),

conditioning intensity (myeloablative or reduced intensity/non-myeloablative), GVHD pro-

phylaxis regimen, in-vivo T-cell depletion (no or yes), and Karnofsky score. All variables were

available in categorized form, including nominally continuous variables such as patient age

(<10, 10–19, 20–29, 30–39, 40–49, 50–59,�60) and Karnofsky score (<90%,�90%).

For both the primary and secondary outcomes we developed two sets of prediction tools.

The first solely considered main effects for each of the risk factors. The second set additionally

considered a series of two-way interactions that were identified a priori as being of potential

predictive value based on clinical considerations. These included interactions between: HLA-

compatibility and patient/disease characteristics (gender, age, disease type and disease status);

HLA-compatibility and donor-patient matching variables (sex, CMV); HLA-compatibility and

transplant variables (graft type, conditioning intensity, prophylaxis regimen, use of in vivo T-

cell depletion); patient age and donor-patient matching variables (sex, CMV); patient age and

the use of in vivo T-cell depletion; disease type and donor-patient matching variables (sex,

CMV); disease type and transplant variables (graft type, conditioning intensity, prophylaxis

regimen, use of in vivo T-cell depletion); disease status and donor-patient matching variables

(sex, CMV); and disease status and transplant variables (graft type, conditioning intensity, pro-

phylaxis regimen, use of in vivo T-cell depletion). Information on HLA-DP typing was not

available for the full cohort, thus was not included as a potential predictor.

In general, missing data among the factors we consider for inclusion as predictive factors was

minimal; 5.7% of patients had a missing value for Karnofsky performance status, while 2.4% of

patients had missing data on the patient-donor CMV serology match. For both of these variables,

our strategy for addressing missing values was to code an additional “missing” category.

Statistical analysis

Since all risk factor variables were available in categorical form, the sample population was ini-

tially described using frequency counts and corresponding percentages. Additionally, prior to

conducting our main analyses, we conducted a series of analyses examining univariate (i.e.

unadjusted) associations between each of the risk factors and the two binary outcomes.

Development of the prediction tools

To develop the prediction tools we employed the super learner, a recently developed ensemble

learning framework[27, 28]. Briefly, use of the super learner framework consists of two stages.

At the first stage a series of prediction tools are developed using a set of candidate algorithms/

methods. In our implementation we considered the following algorithms/methods: standard

logistic regression[34], logistic regression via the lasso[35], generalized boosted regression[36],

generalized additive regression[37], polynomial spline regression[38], Bayesian additive

regression trees[39], ridge regression[40], elastic net regularization[41], and neural networks

[42]. For each of these algorithm/methods, patient-specific predictions were obtained via

10-fold cross-validation[26]. In principle, analysts using the super learner framework may

consider any number of algorithms/methods that could individually be used to develop a risk

prediction tool for inclusion in the set of candidates. Our choice for the candidate set was

guided by our prior experience in implementing the super learner, through consideration of

the pros and cons of each algorithm/method as reported in the literature, and through consid-

eration of the computational burden associated with adding more algorithms/methods.
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At the second stage a logistic regression of the binary outcome (i.e. acute GVHD or the

composite outcome of acute GVHD or death) is fit with the patient-specific cross-validated

predictions from the individual candidate algorithms/methods used as inputs. The estimated

coefficients from this logistic regression are then used to construct a final weighted combina-

tion that constitutes the super learner function; the coefficient weights serve to either increase

or decrease the influence of any individual candidate algorithm/method. From a theoretical

perspective, the super learner has been shown to be optimal in the sense that predictions from

the final tool are guaranteed to perform at least as well asymptotically (i.e. as the sample size

grows) as the predictions from the best individual candidate algorithm/method[27]. Further-

more, in constructing a weighted score using predictions from the individual algorithms/

methods, the super learner has the advantage of not relying on any single individual algo-

rithm/method that may perform well in some settings but not in others.

Evaluation of predictive performance

To evaluate predictive performance of the predictive tools we calculated the receiver operating

characteristic (ROC) curve as well as three numerical criteria that are relevant when consider-

ing whether the model can be used to guide patient management: calibration, discrimination

and risk stratification[43, 44]. Calibration assesses the goodness-of-fit of the predicted values

by initially stratifying the patients on the basis of their predicted risk using pre-specified risk

intervals. Within each interval, the proportion of patients who actually experienced the out-

come is then compared to the mid-point of the risk interval. If these two numbers align across

all intervals, the tool is regarded as being well calibrated. The second criterion, discrimination,

summarizes the prediction tool’s ability to correctly classify events and non-events. Typically,

discrimination is summarized via the area under the curve (AUC) statistic. Towards calcula-

tion of AUC, one would ideally evaluate predictive performance on an independent sample.

This could be accomplished by randomly splitting the available data in two (i.e. one part for

model building and another for evaluation), although this strategy is known to be inefficient

[45]. To avoid loss of information, we used the entire sample of 9,651 patients to develop the

final prediction tools and then based the calculation of AUC based on 10-fold cross-validation

[26]. For comparison, we also computed the “apparent” AUC in which the predictive perfor-

mance was evaluated using the original sample. The final criterion, risk stratification, provides

a means to evaluate the contribution of the interaction terms. Briefly, for a patient’s predicted

risk to be useful it should ideally indicate a clear action or decision. This most naturally occurs

when patients have a predicted risk that is either small or large (i.e. close to 0.0 or close to 1.0).

Risk stratification summarizes this notion in our setting by comparing the number of patients

allocated to the extremes of the risk distribution based on the main effects and interaction

terms prediction tool to corresponding number based on the main effects only prediction tool.

Finally, we estimated the Kaplan-Meier estimate of the survivor curve associated with time to

acute GVHD based on the main effects only super learner prediction tool, stratifying patients

by their predicted risk into three groups: low risk, 0–10%; medium risk, 11–25%; high risk

>25%.

Illustration of clinical utility

Finally, we illustrate how the risk prediction tools could be used in clinical practice. Specifi-

cally, we consider two clinical scenarios for a hypothetical 50-year-old male patient with a Kar-

nofsky score of 90% and positive CMV serology, who was diagnosed with intermediate risk

AML and is in second complete remission. In the first scenario this patient is about to undergo

a transplant from his CMV+ HLA-identical brother using myeloablative conditioning. In the
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second scenario, he will instead receive reduced intensity conditioning because of co-morbidi-

ties of diabetes, prior colon cancer, and moderate pulmonary dysfunction. In this scenario, an

8/8 unrelated donor with CMV negative serology has been identified. We illustrate the range

of estimated GVHD rates considering graft type, T cell depletion and GVHD prophylaxis, all

factors controlled by the transplant center.

Throughout, all statistical analyses were conducted in the R statistical environment[46]

(version 3.2.2). The code used to conduct the analyses is provided in online Supplementary

Materials.

Results

The first column of Table 1 presents demographic, clinical and donor for all 9,651 patients in

the study sample. The majority of patients were male (55.6%), with most being between 20–59

years of age at the time of HCT (75.2%). Furthermore, approximately half of the patients

underwent HCT for AML (51.0%) and transplantation was performed in an early or interme-

diate disease state (74.5%). The vast majority of patients (83.3%) received their graft from

either an HLA-identical sibling or an 8/8 HLA compatible unrelated donor, with approxi-

mately two-thirds of patients receiving a peripheral blood graft (64.7%). Finally, just over

three-quarters of patients underwent myeloablative conditioning (80.1%).

Of the 9,651 patients in the study, 1,701 (17.6%) developed acute GVHD grades III-IV,

while 1,477 (15.3%) died within 100 days. Furthermore, 2,679 (27.8%) experienced at least one

of these events before 100 days, while 499 (5.2%) experienced both. Most of the factors we con-

sidered for inclusion in the risk prediction tools were significantly associated with risk of acute

GVHD within 100 days in univariate analyses (Table 1), although determining the clinical

implications of specific estimated associations should proceed with caution. In contrast, not-

withstanding the increased event rate, only age, disease status, Karnofsky score, HLA compati-

bility, GVHD prophylaxis regimen and conditioning intensity were significantly associated in

unadjusted analyses with the composite endpoint of severe acute GVHD and/or 100 day mor-

tality in univariate analyses.

Fig 1 provides a summary of the risk predictions obtained from the four super learner tools.

From top-left panel of Fig 1, the estimated probability of acute GVHD within 100 days based

solely on main effects ranged between 0.06 and 0.39, with a median of 0.17 and an inter-quar-

tile range (IQR) of (0.14, 0.20). Permitting the inclusion of interaction terms did not meaning-

fully change the predictions, as evidenced by the strong correlation between the two sets (top-

right panel of Fig 1). From the bottom-left panel the median predicted risk for the composite

endpoint based on the main effects only tool was 0.27 with a range of 0.03 to 0.65 and IQR of

(0.21, 0.34). As with acute GVHD within 100 days, the inclusion of interaction terms did not

meaningfully change the risk predictions for the composite endpoint (bottom-right panel of

Fig 1).

Table 2 shows that each of the four super learner risk scores are well-calibrated; within each

stratum defined by predicted risk the percentage of patients who actually experienced the end-

point is consistent with the strata limits. For example, among the 6,714 patients whose pre-

dicted risk for acute GVHD based on the main effects only tool was between 10% and 20%, the

percentage of patients who actually experienced an acute GVHD event was 14.4%.

Figs 2 and 3 and Table 3 summarize the discriminatory performance of the four super

learner prediction tools. The cross-validated AUC for the super learner prediction tool for

acute GVHD based solely on main effects is 0.618; the corresponding cross-validated AUC

based on main effects and interactions terms is 0.612 (Fig 2). Furthermore, the cross-validated

AUC for the super learner prediction tool for the composite endpoint based solely on main
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Table 1. Patient and donor characteristics for 9,561 patients who underwent HCT between 01/1999-12/2011 for treatment of AML, ALL, MDS or CML. Also shown

are unadjusted event rates and results from univariate logistic regressions (OR = odds ratio; CI = confidence interval) for the two binary outcomes of acute GVHD grades

III-IV within 100 days and a composite endpoint of the first of death or acute GVHD grades III-IV within 100 days.

Acute GVHD grades III-IV Composite endpoint

Event rate Univariate Logistic Regression Event rate Univariate Logistic Regression

N % (%) OR 95% CI p-value (%) OR 95% CI p-value

Total 9,651

Gender

Male 5,366 55.6 18.6 1.00 0.006 28.1 1.00 0.632

Female 4,285 44.4 16.4 0.86 (0.77, 0.96) 27.7 0.98 (0.89, 1.07)

Age, years

Younger than 10 653 6.8 12.7 0.66 (0.5, 0.84) 0.005 18.8 0.57 (0.45, 0.7) <0.001

10–19 1,162 12.0 16.9 0.91 (0.75, 1.1) 25.2 0.83 (0.71, 0.98)

20–29 1,572 16.3 19.4 1.08 (0.92, 1.28) 29.0 1.01 (0.87, 1.16)

30–39 1,581 16.4 17.8 0.98 (0.82, 1.16) 27.5 0.93 (0.81, 1.08)

40–49 2,095 21.7 18.2 1.00 29.0 1.00

50–59 2,008 20.8 18.3 1.01 (0.86, 1.18) 30.8 1.11 (0.97, 1.26)

60 or older 580 6.0 15.0 0.79 (0.61, 1.02) 28.1 0.97 (0.79, 1.19)

Disease type

AML 4,919 51.0 16.2 1.00 <0.001 27.0 1.00 0.127

ALL 2,071 21.5 17.0 1.06 (0.93, 1.22) 28.4 1.07 (0.96, 1.2)

CML 1,525 15.8 21.1 1.39 (1.2, 1.6) 28.5 1.08 (0.95, 1.22)

MDS 1,136 11.8 20.2 1.31 (1.11, 1.55) 30.2 1.17 (1.02, 1.35)

Disease status

Early 4,873 50.5 16.4 1.00 0.002 23.0 1.00 <0.001

Intermediate 2,316 24.0 18.1 1.13 (0.99, 1.29) 27.8 1.30 (1.16, 1.46)

Advanced 2,462 25.5 19.6 1.25 (1.1, 1.41) 37.8 2.05 (1.85, 2.28)

Karnofsky score

Less than 90% 2,723 28.2 18.7 1.10 (0.98, 1.24) 0.243 33.9 1.52 (1.38, 1.68) <0.001

90–100% 6,382 66.1 17.3 1.00 25.3 1.00

Missing 546 5.7 16.8 0.97 (0.77, 1.22) 28.9 1.22 (1, 1.47)

D-R sex match: F-M

No 7,732 80.1 17.3 1.00 0.097 27.8 1.00 0.520

Yes 1,919 19.9 18.9 1.11 (0.98, 1.27) 28.5 1.04 (0.93, 1.16)

D-R CMV match

-/- 2,594 26.9 18.9 1.16 (1.01, 1.33) 0.239 28.1 1.06 (0.94, 1.19) 0.584

-/+ 2,741 28.4 17.1 1.02 (0.89, 1.18) 28.8 1.10 (0.98, 1.23)

+/- 1,135 11.8 18.1 1.10 (0.92, 1.32) 28.2 1.06 (0.91, 1.24)

+/+ 2,953 30.6 16.7 1.00 27.0 1.00

Missing 228 2.4 18.9 1.16 (0.81, 1.62) 27.2 0.98 (0.71, 1.32)

HLA compatibility

HLA-Identical Sibling 3,941 40.8 13.5 1.00 <0.001 21.8 1.00 <0.001

8/8 4,100 42.5 19.1 1.51 (1.34, 1.7) 30.0 1.58 (1.43, 1.75)

7/8 1,610 16.7 23.8 1.99 (1.72, 2.31) 37.8 2.24 (1.97, 2.54)

Graft type

Bone marrow 3,405 35.3 16.2 0.85 (0.76, 0.95) 0.005 27.5 0.96 (0.87, 1.05) 0.387

Peripheral blood 6,246 64.7 18.4 1.00 28.2 1.00

Conditioning intensity

Myeloablative 7,732 80.1 18.2 1.00 0.001 28.1 1.00 0.436

Reduced intensity/non-myeloablative 1,919 19.9 15.1 0.80 (0.69, 0.91) 27.1 0.96 (0.85, 1.07)

GVHD prophylaxis

(Continued )
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Table 1. (Continued)

Acute GVHD grades III-IV Composite endpoint

Event rate Univariate Logistic Regression Event rate Univariate Logistic Regression

N % (%) OR 95% CI p-value (%) OR 95% CI p-value

Ex-vivo TCD/CD34 Selection 523 5.4 12.2 0.69 (0.52, 0.9) <0.001 26.6 1.03 (0.83, 1.26) <0.001

Post-HCT Cy 49 0.5 22.4 1.42 (0.69, 2.71) 40.8 1.82 (1, 3.22)

Tac+MTX+/-others 3,686 38.2 16.9 1.00 26.0 1.00

Tac+/-others 1,686 17.5 20.3 1.26 (1.08, 1.45) 32.1 1.35 (1.19, 1.54)

CSA+MTX+/-others 2,809 29.1 17.0 1.01 (0.88, 1.15) 26.8 1.03 (0.92, 1.15)

CSA+/-others 898 9.3 20.3 1.25 (1.04, 1.5) 32.0 1.34 (1.14, 1.57)

In vivo T-cell depletion

No 7,538 78.1 18.6 1.00 <0.001 28.2 1.00 0.393

Yes 2,113 21.9 14.2 0.73 (0.64, 0.83) 27.1 0.95 (0.86, 1.06)

https://doi.org/10.1371/journal.pone.0190610.t001
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Fig 1. Risk predictions from super leaner analyses for 9,651 patients at risk for: (i) acute GVHD within 100 days, and (ii) the composite endpoint of acute GVHD

and death within 100 days. For each outcome risk predictions are presented for two tools: one based solely on main effects for risk factors considered and another

based on main effects and select two-way interactions.

https://doi.org/10.1371/journal.pone.0190610.g001
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effects is 0.640; the corresponding cross-validated AUC based on main effects and interactions

terms is 0.634. When stratified on the basis of predicted risk from the super learner tool for

acute GVHD based solely on main effects, patients exhibited increasingly poor outcomes

across the low, medium and high risk groups (Fig 3). Finally, as anticipated by theoretical con-

siderations, the super learner outperformed or did no worse than each of the component algo-

rithm/methods (Table 3).

Consistent with the observations from Fig 1, inclusion of interaction terms in the prediction

tools did not meaningfully improve risk stratification (Table 2). For the acute GVHD outcome

4.2% of patients were allocated to the lowest and highest risk strata based on the main effects only

super learner; based on the main effects and interaction terms super learner only 8.4% were allo-

cated to these strata. Similarly, while 24.7% of patients were allocated to the lowest and highest

risk strata for the composite endpoint based on the main effects only super learner, only 25.9%

were allocated to these strata based on the main effects and interaction terms super learner.

Finally, we calculated the predicted risk for acute GVHD within 100 days of HCT for the

hypothetical 50-year-old man based on the main effects only prediction tool. In particular, if

the patient underwent transplant from his CMV-positive, HLA-identical brother using periph-

eral blood and Tac+MTX and no in vivo T-cell depletion, his predicted risk of grade III-IV

acute GVHD would be 14.6%. If he underwent the same transplant but his brother donated

bone marrow instead, his risk would be 12.2% or if peripheral blood was used but in vivo T

cell depletion was added, his risk would be 11.7%. If he received reduced intensity condition-

ing and peripheral blood from an 8/8 CMV-negative female donor with Tac+MTX GVHD

prophylaxis and no in vivo T-cell depletion, his risk would be 16.6%. If GVHD prophylaxis

was switched to tacrolimus and mycophenolate mofetil without methotrexate, his risk would

be 19.4%. Other patients getting similar transplants as this last patient might be encouraged to

participate in a novel GVHD prevention trial and the trial would need far fewer patients

because of the higher baseline risk. In contrast, those getting bone marrow from HLA-identical

Table 2. Summary of calibration and risk stratification performance for four super learner risk prediction tools.

Risk strata based on predicted probabilities

Acute GVHD grades III-IV (0, 10] (10, 20] (20, 30] >30

Main effects only
Number in strata 317 6714 2529 91 - -

Percent in strata 3.3 69.6 26.2 0.9 - -

Percent with diagnosis 7.3 14.4 26.5 46.2 - -

Main effects and interactions
Number in strata 521 6258 2568 304 - -

Percent in strata 5.4 64.8 26.6 3.1 - -

Percent with diagnosis 6.3 14.5 25.2 37.8 - -

Risk strata based on predicted probabilities

Composite end point � 20 (20, 30] (30, 40] (40, 50] >50

Main effects only
Number in strata - 2205 3735 2591 934 186

Percent in strata - 22.8 38.7 26.8 9.7 1.9

Percent with diagnosis - 13.3 24.4 35.6 47.1 61.3

Main effects and interactions
Number in strata - 2315 3626 2524 1005 181

Percent in strata - 24 37.6 26.2 10.4 1.9

Percent with diagnosis - 13.1 25 35.1 47.8 57.5

https://doi.org/10.1371/journal.pone.0190610.t002
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siblings would have less to gain from more aggressive immunosuppression and showing a ben-

efit with the intervention would require a prohibitive sample size.

Discussion

As the number of patients undergoing HCT increases, the burden of severe acute GVHD will

also increase. The past decade has witnessed significant shifts towards matching unrelated

donors and patients on the basis of HLA, the prime determinant of compatibility. This stan-

dardization of pre-transplant donor-recipient matching in combination with better supportive

care has significantly improved outcomes[47, 48]. Despite HLA matching, however, GVHD

remains a serious and frequent complication of HCT with approximately 50% of patients

developing some acute GVHD, of which a third is considered severe. As such, while overall

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC
App CV

aGVHD ME only:   0.639   0.618
aGVHD ME + IT:   0.643   0.612
     CEP ME only:   0.662   0.640
     CEP ME + IT:   0.664   0.634

Fig 2. Receiver operating characteristics curves corresponding to super learner predictive tools for 9,651 patients at risk for: (i) acute GVHD within 100 days, and

(ii) the composite endpoint (CEP) of acute GVHD and death within 100 days. For both outcomes, two prediction tools were developed: one based solely on main

effects (ME only) for risk factors considered and another based on main effects and select two-way interactions (ME + IT). Also shown are apparent (App) and cross-

validated (CV) area-under-the-curve (AUC) statistics.

https://doi.org/10.1371/journal.pone.0190610.g002
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survival is arguably the most important clinical outcome, there is a significant need for vali-

dated prediction tools that informs a patient of their absolute risk of acute GVHD, and that be

used as a basis for making treatment and monitoring strategy decisions. In this paper we

address this gap. Crucially, towards ensuring that the prediction tools could be easily imple-

mented, we chose to focus on factors that are readily-available in clinical settings.

The key strengths of this paper are two-fold. First is that the available data consisted of

detailed clinical information on a large sample that reflects real-world heterogeneity in patients

who undergo HCT. Specifically, the data are representative of the broad range of patient-

donor characteristics observed in clinical settings as well as the diverse ways in which patients

are treated prophylactically and post-transplant. In this sense, the final predictive models can

be viewed as being relevant to real-world clinical settings. Furthermore, that the sample was

large also permitted the inclusion of interaction terms between predictive factors which, in

turn, introduced flexibility in how a given factor might influence a patients risk.
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Fig 3. Kaplan-Meier estimates and pointwise 95% confidence intervals for grade III-IV acute GVHD-free survival within 100 days among 9,651 patients who

underwent who underwent first allogeneic HLA-identical sibling or unrelated donor HCT for treatment of a hematologic malignancy, stratified by risk group

according to the super learner prediction tool based solely on main effects: low risk, 0–10%; medium risk, 11–25%; high risk >25%.

https://doi.org/10.1371/journal.pone.0190610.g003
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A second strength of the paper is our use of modern methods for the development of risk

prediction models, currently a major area of research in the statistical and machine learning

literature. Our choice to use the super learner framework was driven by both theoretical con-

siderations and simulations which show that it outperforms standard techniques in many

common data settings, including when there are a small to moderate number of moderate-

sized effects and a large number of small effect sizes[27]. These features are likely present in

heterogeneous clinical populations, such as the HCT population we consider, and when the

goal is to predict a clinically complex outcome, such as acute GVHD. Furthermore, a central

appeal of the super learner is that it does not require analysts to choose and rely on a single

algorithm/method; the final prediction tool can therefore be viewed as being robust to the

model misspecification. One potential drawback of this robustness, however, is that the frame-

work does not provide a simple characterization of the influence or statistical significance of

any single input or predictive factor. This is in contrast to, say, multivariate logistic regression

wherein the effect of a single factor is quantified via an odds ratio. While such simple charac-

terizations can be useful, especially if interest lies with the relative impact of a specific factor,

the philosophy of the super learner is not to identify whether and how individual factors are

predictive but rather to provide a flexible framework within which the impact of any factor is

not constrained. In a multivariate logistic regression model, for example, a risk factor may

only influence the prediction through the strength of the odds ratio association. In contrast,

depending on the chosen set of candidate algorithms/methods, any given factor may influence

the final super learner through one or many mechanisms.

From a clinical perspective, the predictive performance of the four super learner models is

comparable to that reported by Sorror and colleagues who investigated the value of a pre-

transplant HCT comorbidity index, HCT-CI, in predicting the development of acute GVHD

following HCT[11]; in particular, they report an AUC of 0.64 associated with prediction based

on HCT-CI. In principle, it is possible that including HCT-CI in the pool of factors we consid-

ered may have yielded predictive tools with superior performance. Data for this instrument,

however, has only recently been collected by CIBMTR and could therefore not be included.

Moreover, the comparability of the AUCs from our study and the Sorror study suggests that

any improvements would be minimal.

Table 3. Apparent and cross-validated area-under-the-curve (AUC) statistics for four super learner risk prediction tools, as well as for each of the component algo-

rithms/methods considered in the implementation of the super learner.

Acute GVHD grades III-IV Composite end point

Main effects only Main effects and interactions Main effects only Main effects and interactions

Apparent Cross- Apparent Cross- Apparent Cross- Apparent Cross-

validated validated validated validated

Logistic regression 0.630 0.617 0.660 0.595 0.641 0.632 0.667 0.620

Logistic regression + Lasso 0.629 0.617 0.638 0.613 0.641 0.633 0.649 0.628

Generalized boosted regression 0.644 0.618 0.654 0.609 0.653 0.637 0.657 0.630

Generalized additive models 0.630 0.617 0.660 0.595 0.641 0.632 0.667 0.620

Polynomial spline regression 0.500 0.545 0.618 0.500 0.640 0.624 0.628 0.623

Bayesian additive regression trees 0.645 0.619 0.649 0.615 0.660 0.641 0.658 0.636

Ridge regression 0.630 0.617 0.648 0.600 0.641 0.632 0.658 0.625

Elastic net 0.629 0.617 0.639 0.611 0.641 0.633 0.649 0.628

Neural network (hidden layers = 2) 0.500 0.500 0.500 0.500 0.667 0.570 0.716 0.561

Neural network (hidden layers = 5) 0.500 0.503 0.500 0.500 0.699 0.578 0.775 0.534

Super learner 0.639 0.618 0.643 0.612 0.662 0.640 0.664 0.634

https://doi.org/10.1371/journal.pone.0190610.t003
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Moving forward, our results suggest that additional efforts at exploring alternative statistical

methods and/or flexible approaches to modeling, including interaction terms, are unlikely to

be worthwhile. In particular, while such efforts may lead to closer representations of the under-

lying data generating mechanism (which prediction models are, in some sense, trying to

mimic), there is a limit to how much information one can extract from any given set of vari-

ables. Instead, as others have argued[19–21, 49], we believe that the strategy with the greatest

potential to improve performance is one that focuses on building prediction tools that jointly

consider clinical factors with recently-identified genetic factors and proteomic biomarkers

[18]. While this represents a natural next step, it is important to note that the implementation

of such prediction tools in standard clinical settings may be limited if these measures are not

readily-available or routinely collected. This may change, however, as high-throughput proteo-

genomic technologies advance and become affordable.
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