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Abstract 

In this paper, we introduce an apparatus to perform micro-tensile tests at elevated 
temperatures inside a scanning electron microscope. The apparatus has a stroke of 250 
µm with a displacement resolution of 10 nm and a load resolution of 9.7 µN. 
Measurements at elevated temperatures are performed through use of two silicon-based 
micromachined heaters that support the sample. Each heater consists of a tungsten 
heating element that also serves as a temperature gauge. To demonstrate the testing 
capabilities, tensile test were performed on submicron Cu films at various temperatures 
up to 430°C. Stress-strain curves show a significant decrease in yield strength and initial 
slope for the samples tested at elevated temperature, which we attribute to diffusion-
facilitated grain boundary sliding and dislocation climb. 

 
Keywords: In situ tension test, High-temperature deformation, Thin film, Grain boundary 
sliding, Creep 
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1. Introduction 

Thin metal films with thicknesses well below 1 µm are widely used as functional and 

structural elements in microelectronic devices and large-scale integrated circuits, thin-film 

solar cells [1], electrical sensors [2, 3], and electronic textiles [4]. Decreasing dimensions 

of micro-electronic and micro-mechanical devices have motivated research on the micro- 

and nano-scale mechanical behavior of materials. Much work has been dedicated to 

characterizing the mechanical behavior of thin metal films and it has been observed that 

the mechanical properties of thin films can be very different from those of their bulk 

counterparts. For example, experimental studies have shown that the flow stress, 

hardening rate and fatigue life exhibit a strong size-dependence [5-13]. With conventional 

mechanical testing methods used for bulk materials it is difficult to obtain precise stress-

strain curves for thin films and capture this size-dependence. Much attention has 

consequently been directed toward experimentally measuring the mechanical properties of 

thin films by a variety of techniques [14-17]. Most of these studies successfully 

investigated the effects of microstructural length scales and sample size on the 

mechanical properties of thin films at room temperature. Length-scale effects at elevated 

temperatures remain an unexplored area. 

Prior studies of the mechanical behavior of thin films at elevated temperatures focused 

on films deposited on substrates [18-22]. However, recent work has revealed that the 

tensile and fatigue behavior of metallic thin films on substrates may differ substantially 

from the behavior of freestanding thin films [6, 23-26]. Thus, testing freestanding thin 

films at elevated temperature is a critical step towards understanding their intrinsic 

behavior. 
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Testing of freestanding thin films has historically been challenging due to the inherent 

difficulties associated with handling and gripping of the samples. The basic requirements 

for accurate elevated temperature mechanical testing, including a uniform temperature 

distribution throughout the sample, accurate measurement of the temperature, and a 

controlled environment to prevent sample oxidation, are further complicated by the small 

sample dimensions. As a result, only a few studies report mechanical testing of 

freestanding thin films at elevated temperatures [27-34]. These studies expanded our 

understanding, but were limited to films with thicknesses above several microns [30-33] 

or to temperatures lower than 200 ºC [27-29, 34].  

In this paper, we present a tensile tester with 9.7 µN load resolution and 10 nm 

displacement resolution that can be used inside a SEM. Measurements at elevated 

temperatures are performed through use of two silicon-based micromachined heaters that 

support the sample. Each heater consists of a tungsten heating element that also serves 

as a resistance thermometer. To demonstrate the testing capabilities, tensile tests were 

performed on submicron Cu films at various temperatures up to 430°C.  
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2. Tester description and thermal modeling 

2.1 In-situ SEM tensile tester and calibration 

The tensile tester was designed to cover a broad range of displacements (tens of nm 

to hundreds of µm) and loads (tens of µN to 10 N), and to work inside the chamber of 

a scanning electron microscope (SEM). These design requirements were met through use 

of capacitive displacement gauges and a load cell that consisted of a compliant double 

leaf spring. The tester is shown schematically in Fig. 1. As illustrated in the figure, an 

XYZ-axis micro stage is used to align tester and sample. The sample is deformed using 

a piezo nano-positioning actuator (PI P-622K067) with an external amplifier/servo 

controller for closed-loop control (PI E-665). This actuator is capable of imposing 

displacements as large as 250 µm with a resolution better than 10 nm. The actuator 

displacement, δ1, scales with the voltage applied to the actuator and is measured using 

an internal displacement sensor. As the sample is loaded, the leaf spring deforms and the 

displacement of the spring,  δ2, is measured using a capacitive displacement sensor 

(Capacitec HPB-200A). This displacement sensor has a working range of 600 µm and a 

resolution of 10 nm. The load on the sample is determined from the displacement of the 

leaf spring and its spring constant k. To prevent interference by the electron beam inside 

the SEM, the displacement sensor is shielded by an aluminum enclosure.  

The displacement imposed on the sample is given by the difference between the 

displacement of the actuator and that of the leaf spring, 

 𝛿=𝛿2	
   −	
   𝛿1, (1) 

while the load on the sample is given by  
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 𝐹=𝑘∙	
   𝛿2. (2) 

To calibrate the leaf spring, a 98 mN load cell (Cooper instruments & systems LFS 

270 10G) was attached to the tester and the load-displacement characteristic of the leaf 

spring was measured. The spring was linear to within 99.7% for loads up to 0.098 N 

and had a spring constant of 966.6±0.5 N/m. Given a displacement resolution of 10 nm, 

this translates to a load resolution of 9.7 µN. The resolution of the load cell can be 

further improved through use of a more compliant leaf spring, although any gain in 

resolution would decrease the maximum load that can be imposed. Conversely, the 

maximum load can be increased to 10 N, the maximum value allowed by the piezo 

actuator, if a stiffer leaf spring is used. The various components of the tester were 

controlled and all signals were recorded with a personal computer equipped with a 

National Instruments USB-6281 data acquisition card (DAQ) and a Labview program.  
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2.2 Micro-heater with freestanding metal thin film 

Two possible techniques were considered for heating the sample during the test: 1) 

resistive heating of the sample by applying a current or a voltage [31, 32, 35] and 2) 

sample heating using an external heater [27-30, 36, 37]. Resistive heating is 

straightforward to implement, but requires an electrically conductive sample and may 

result in temperature changes and a non-uniform temperature distribution during testing as 

the resistance of the sample changes. Once the sample starts to neck, current crowding 

results in localized heating and premature failure. External heating does not suffer from 

these drawbacks, but is more difficult to implement. Here we employ an external 

micromachined heater that is integrated with the sample. This approach minimizes sample 

handling, allows for in-situ temperature measurements, and results in a very uniform 

temperature distribution in the sample as long as the radiation heat losses are not too 

large. 

Figure 2 shows the conceptual design of the micro-heater. The sample is supported by 

two micromachined heaters fabricated out of silicon. The micro-heaters use tungsten 

heating elements that also serve as resistive thermometers. A current passed through the 

heating elements heats the sample along with the heaters, while the resistance of the 

heating elements is measured in a four-point measurement setup. The temperature of the 

micro-heaters during the experiment is determined from the resistance of the heating 

elements, which is calibrated to temperature. 

Preparing and handling thin-film samples for mechanical testing is difficult without 

damaging the sample [38, 39]. To facilitate sample handling, two sets of Si supports 
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were designed on either side of the Si heaters. The outermost set of supports provides 

protection during sample handling. After the sample has been mounted in the tensile 

tester, the innermost V-shape supports protect the sample while the outermost supports 

are removed; these innermost supports are designed to easily snap when the sample is 

loaded in compression (Figure 2). 
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2.3 Thermal modeling of the micro-heater 

The temperature distribution in the Si micro-heaters and a typical sample was 

determined using the finite element method (FEM). The simulations were performed by 

solving the coupled thermal and electrical problem using the commercial code COMSOL 

Multiphysics®. Figure 3 shows a schematic of the three-dimensional mode used for the 

simulations. The tungsten heating element had a line width of 115 µm and a total length 

of 16 mm. Only one micro-heater and half of the sample (red box in Figure 2) were 

analyzed because of symmetry. The material properties used in the simulation are listed 

in Table I – the properties of the sample are typical for a Cu thin film. The 

temperature at the base of the micro-heater was fixed at 20°C. Heat loss from the 

surface of the heater and the sample occurred only via radiation because the tester is 

typically placed in vacuum during operation. The simulations were performed for several 

electric potentials applied to the tungsten heating element. The results of the FEM 

analysis are shown in Figure 4. It is clear from the figure that the W heating element 

produces a very uniform temperature distribution in the sample even above 1000 ºC. 

Note that in the absence of convective heat losses, temperature non-uniformity in the 

sample can only arise because of radiative heat losses from the sample. These heat 

losses become significant only at temperatures in excess of 1200 °C, which still results 

in a temperature non-uniformity of only 10 ºC within the film. The emissivity values 

used in the simulations were obtained from experimental measurements on similar thin-

film materials [40-45] and we believe these values to be representative metal thin films. 

The numerical values are quite small and this of course helps the temperature uniformity 
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of the sample. The temperature measurement relies on a four-point measurement of the 

resistance of the heating element, which in turn is calibrated to temperature. Table II 

shows the difference between the volumetric average temperature of the W heating 

element and the Cu sample. It is clear that this difference is very small, less than 2%, 

even at the highest temperature. 
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3. Experiment 

3. 1 Fabrication of the micro-heater fixture 

The integrated micro-heater and sample were prepared using standard photolithography 

and silicon micromachining techniques. As shown in figure 5(a), the process starts with a 

(100) Si wafer coated on both sides with a low-pressure chemical vapor deposited 

(LPCVD) Si3N4 film. This wafer is first cleaved into 55 × 55 mm2 square substrates. 

Both sides of one such substrate are coated with photoresist (Shipley, S1831) and 

exposed to UV for patterning. Si3N4 is then selectively removed from the bottom side of 

the substrate in a reactive ion etch (RIE) process using CF4 (Figure 5(b)), and 700 nm 

of W is sputter deposited on the front side of the substrate. As illustrated in Figure 5(c), 

the W layer is defined using a lift-off procedure, and then coated with a 30 nm layer of 

Si3N4 to prevent oxidation during high-temperature testing. To fabricate the thin-film 

sample, the front side of the wafer is again coated with photoresist. After exposing the 

photoresist, the sample of interest is deposited using sputter deposition and patterned 

using lift-off (Figure 5(d)). To make the sample freestanding, the Si substrate is etched 

using a 30% potassium hydroxide (KOH) solution at 85°C (Figure 5(e)). This Si etch is 

anisotropic with an etch selectivity of approximately 50:1 between the (100) and (111) 

crystal orientations. In a final step, the Si3N4, which acts as a etch stop during KOH 

etching, is removed by RIE using CF4 (Figure 5(f)). Figure 6 shows the resultant micro 

heaters with a magnified view of the thin-film sample (Copper, in this figure). A total 

of 28 individual micro-heaters can be fabricated on a single 55 × 55 mm Si substrate. 

The fabrication procedure is quite general and samples can be made out of any material 
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that can be sputtered, evaporated, or printed, as long as there is sufficient etch selectivity 

with respect to SiNx. It is also possible to fabricate the micro-heater fixture without 

sample and then mount a sample such as a nano-wire by attaching it to the edges of 

the micro heater using focused ion beam deposition. 

3. 2 Specimen preparation and characterization 

For this study, thin-film samples of Cu were deposited using a DC magnetron deposition 

system (AJA International) with a base pressure of 1x10-7 Pa. The Cu source (50.8 mm diameter) 

was powered at 200 W and the deposition proceeded in an atmosphere of 0.67 Pa of Ar. Samples 

were fabricated with widths of 100, 150, and 200 µm, and lengths of 1326 ± 18 and 2552 ± 77 

µm. Film thicknesses were measured using a profilometer (Veeco Dektak 6M). After deposition, 

all samples were annealed at 250°C for one hour in vacuum to increase the grain size of the film 

and to stabilize the microstructure. The grain structure of the samples was characterized using 

both a Zeiss Ultra55 field-emission scanning electron microscope (FE-SEM, Carl Zeiss Inc. 

Thornwood, NY) and a Zeiss NVision 40 Dual-Beam focused ion beam and scanning electron 

microscope (FIB/SEM). The crystallographic texture of the films was measured using electron 

backscattered diffraction (EBSD) inside a Zeiss Supra55 FE-SEM and confirmed with X-ray 

diffraction (XRD) using a Bruker D8 system.  

Figure 7 shows EBSD and FIB images of the microstructure of the 880 nm Cu film. At least 

five images (EBSD or FIB) were analyzed to determine the grain size of the films (Table III). 

The grain size was measured using the intercept method with twins counted as separate grains 

[47]. Note that the grain size was comparable to the film thickness when twins were not counted 

as grains, and that additional annealing at the maximum testing temperature (430ºC in this study) 

did not further increase the grain size. This is consistent with the theoretical prediction that grain 
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growth in a film is constrained by the thickness of the film [48]. EBSD images also provided the 

crystallographic texture of the films, which showed a strong (1 1 1) texture for all of the films. 

XRD further substantiated these results by showing strong (1 1 1) peaks for all films (Figure 8). 
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3.3 Experimental setup and procedure 

To perform a tensile test on a thin-film sample, the integrated micro-heater and sample 

are mounted in the tensile tester (Figure 9(a)) and placed inside the SEM (Figure 9(b)). 

The tensile tester is designed to fit inside the SEM chamber with extra space to rotate 

and control the x, y and z-displacements of the tester. The tensile tester is connected to 

the control and data acquisition system outside the SEM using a specially designed 

flange with feed-through (Capacitec Vacuum Flange Kit KF40). While the tensile tester 

is intrinsically load-controlled, it is possible to perform experiments at constant 

displacement or strain rate using an appropriate feedback loop. In this study, tests were 

performed at a constant strain rate of 3.3×10−5𝑠−1. For each thickness, three samples 

were tested at room temperature. In addition, several samples were tested at a range of 

elevated temperatures. All results showed good repeatability. 

High-temperature measurements were performed by connecting the current leads of the 

micro-heaters to a Protek 3030D dual dc power supply (Englewood, NJ) and the voltage 

sensing leads to the data acquisition system. The current applied to the heating elements 

also passes through a 10 Ω precision resistor. The precise value of the applied current is 

determined by measuring the voltage drop across the precision resistor, while the 

resistance of the heating elements (RMH) is determined from the voltage drop across the 

voltage sensing leads (see Figure 3) of the heating elements.  

The temperature of the micro-heater is then calculated from 

𝑇=	
   𝑇0+𝑅𝑀𝐻−𝑅𝑀𝐻,0𝜆𝑅𝑀𝐻,0                                                        

(3) 
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where λ is the temperature coefficient of resistance of the heating element, T0 is the 

ambient temperature, and RMH,0 is the resistance at T0. Using this setup, we have been 

able to reach temperatures up to 700°C. Note that only the micro-heaters are heated 

while the rest of the tester remains at room temperature. This approach virtually 

eliminates thermal drift in the test system. The absence of significant thermal drift is 

also confirmed prior to mechanical testing by monitoring the displacement signals with 

the micro-heaters turned on. 
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3.4 Temperature calibration 

Before high-temperature tensile measurements can be made, the micro-heaters need to 

be stabilized and calibrated. Stabilization occurred during the sample anneal, after which 

the resistivity of the heaters was typically below 3	
   ×10−7	
   Ω∙m, and very stable during 

high-temperature testing. The temperature coefficient of resistance of the micro-heaters 

was measured by placing a micromachined fixture on a hot plate and increasing the 

temperature to 180ºC in steps of approximately 20°C. During this process, the 

temperature of the micro-heater was measured with a thermocouple, while the resistance 

of the micro-heater was measured using a Keithley 2000 multimeter in a four-terminal 

setup. The temperature coefficient of resistance λ was determined from a linear least 

squares fit of the resistance data as a function of temperature. The calibration 

measurements were generally very reproducible with a linearity better than 99.9%. 

Experimental values of λ averaged (1.18±0.04)×10−3	
   𝐾−1. 
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4. Results and discussion 

4.1 Stress-strain curve at room temperature 

Figure 10(a) shows an SEM image of an 880 nm Cu sample before testing, while 

representative stress-strain curves are shown in figure 10(b). The value of Young’s 

modulus obtained from the unloading curve is 131.1 ± 0.2 GPa, in good agreement with 

previous studies [6, 49]. This value also agrees well with the modulus of 130.3 GPa 

expected for Cu films with a strong (111) texture based on the single-crystal elastic 

constants of bulk Cu [50, 51].  

The stress-strain curves show a strong size effect – the yield strength of the 880 nm 

film is 302.6 ± 7.4 MPa, while the value for the 385 nm film is approximately 510 ± 

10.3 MPa. These values are similar to measurements for freestanding Cu films performed 

by Xiang et al [6] using the bulge test, and to values obtained by Gruber et al [52] 

using the bulge test and a synchrotron-based tensile test on Cu/polyimide films. From the 

stress-strain curves it is evident that the 880 nm film is fully plastic, while the 385 nm 

film failed during the elastic-plastic transition. Agreement of both Young’s modulus and 

yield strength with values obtained through different means, and the repeatability of the 

measurements indicate that the technique described here is a reliable method for 

measuring the stress-strain curves of thin films. 
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4.2 Stress-strain curve at elevated temperatures 

Figure 11 shows the stress-strain curves for the 880, 385, and 465 nm films at various 

temperatures. As the temperature increases, two features stand out: the initial and 

unloading slopes of the stress-strain curves decrease dramatically, as do the yield 

strengths (Table III). The slope decreases from 131 GPa at room temperature to 92 GPa 

at 430°C, while the yield strength decreases from 303 MPa to 72 MPa over the same 

temperature range. The reduction in slope is consistent with experiments on bulk 

materials [53, 54] at elevated temperature. It is instructive to compare the results in 

Figure 11 with substrate curvature measurements performed on Cu films. Substrate 

curvature measurements provide the stress in a coating on a substrate. If the substrate is 

heated, thermal mismatch between the film and substrate can cause the film to flow 

plastically. In this case, the film stress provides a measure for the yield strength of the 

film. Keller et al [8] reported that the compressive stress in unpassivated Cu films on Si 

substrates decreased in absolute value with increasing temperature and attributed this to 

operation of diffusional creep as the dominant deformation mechanism [54]. In their 

experiment, a relatively low and constant stress was reached, -25 MPa for a 1µm film 

and -60 MPa for a 600 nm film above 210 ºC. Figure 11(a) shows a plateau stress of 

approximately 70 MPa for 880 nm films tested above 300 ºC. 
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4.3 Temperature-dependent elastic behavior 

Early studies of bulk single crystal and polycrystalline copper reported temperature-

dependent elastic constants [53]. Interestingly, Young’s modulus of polycrystalline copper 

showed a significantly steeper decline with increasing temperature than the value obtained 

by appropriate averaging of single-crystal constants. In particular, the experimental 

temperature coefficient of Young’s modulus was -4.8×10-4 K-1 for polycrystalline copper, 

while the temperature coefficient based on the single-crystal constants was -3.6×10-4 K-1. 

The discrepancy between these values was clearly associated with the presence of grain 

boundaries in the polycrystalline material and was interpreted as a softening of the grain 

boundaries at elevated temperature. The temperature coefficient measured in this study is 

-7.3×10-4 K-1, approximately twice as large as the value based on the single-crystal 

constants. Evidently this enhanced temperature dependence must be due to the very small 

grain size and the ensuing large volume fraction of grain boundaries in the copper films. 

Deformation by grain boundary sliding is a possible mechanism for the softening effect 

of the grain boundaries [55-58]. During grain boundary sliding, an internal back stress 

builds up at the triple junctions of the grain boundaries that eventually stop the sliding. 

This internal stress drives the recovery process during unloading and may result in a 

reduced modulus. At elevated temperature, grain boundary sliding must be accompanied 

by diffusion to ensure compatibility between grains. The relaxation time τ for such a 

diffusion-controlled sliding process is given by [59-61] 

 𝜏=	
   14𝑘𝑇𝜇𝛺𝑏2𝑑𝛿𝐷0,𝑔𝑏𝑒𝑥𝑝𝑄𝑔𝑏𝑅𝑇, (4) 

where µ is the shear modulus, d is the grain size, Qgb and D0,gb are the activation 
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energy and pre-exponential coefficient for the grain boundary diffusivity, b is the Burgers 

vector, T is the absolute temperature, k is Boltzmann’s constant, and δ is the width of 

the grain boundary (see Table IV for numerical values of these parameters). Relaxation 

times calculated for each experiment are shown in Figure 12. If the relaxation time is 

much shorter than the time scale of a given tensile test, grain boundary sliding occurs 

during the test. Figure 12 clearly demonstrates that the relaxation time at room 

temperature is much larger than the duration of the experiments, so that any effects of 

grain boundary sliding can be ruled out in this case. It is also evident that grain 

boundary sliding is a plausible explanation for the reduction in the initial slopes and the 

unloading slopes at elevated temperature.  
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4.4 Temperature-dependent yield strength 

The temperature-dependent mechanical behavior of thin metal films has been explained 

using several deformation mechanisms including thermally activated dislocation glide, 

grain boundary diffusional creep, and dislocation-based creep [18, 22, 29, 62, 63]. In an 

attempt to identify the mechanism that controls high-temperature deformation in copper 

thin films, we calculate the activation energies of several different deformation 

mechanisms assuming they control the deformation in our experiments and compare them 

with their bulk value (see Table IV for numerical values of material parameters used in 

this calculation). If the calculated activation energy is on the order of, or greater than, 

the bulk value, the deformation mode under consideration is likely active. 

If deformation is controlled by thermally activated dislocation glide, the strain rate 𝜀𝑑𝑔 

is given by [18, 54] 

 𝜀𝑑𝑔=	
   𝜀0	
   𝑒𝑥𝑝−∆𝐹𝑑𝑔𝑘𝑇1−𝑠𝜎𝜏 (5) 

where 𝜀0 is a characteristic constant that depends on the initial dislocation density, ∆𝐹𝑑𝑔 is the 

activation energy at zero stress, σ is the applied stress, 𝜏 is the critical resolved shear stress, 

which can be interpreted as the yield strength at 0 K, and s is the Schmid factor for single 

crystals or materials with a strong texture. Following calculations by Gruber et al. [18], ∆𝐹𝑑𝑔 is 

calculated from Eq. (5) by replacing the strain rate 𝜀𝑑𝑔 with the experimental strain rate and by 

using the experimental yield strength for 𝜎. This procedure results in the activation energy 
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required for thermally activated dislocation glide to explain the experimental data. The results of 

this calculation are tabulated in Table V.  

The second mechanism we considered is creep by grain boundary diffusion, a mechanism 

originally postulated by Gibbs [62]. In this case, the strain rate 𝜀𝑔𝑏 is given by 

 𝜀𝑔𝑏=	
   𝐴𝑔𝑏𝛿𝐷0,𝑔𝑏𝑘𝑇Ω𝑑ℎ2𝜎	
   𝑒𝑥𝑝−𝑄𝑔𝑏𝑅𝑇, (6) 

where 𝐴𝑔𝑏 is a constant equal to 12, d is the grain size, and h the film thickness. The activation 

energies for creep by grain boundary diffusion calculated using the same procedure as before are 

tabulated in Table V. 

Finally, power law creep with diffusion assisted climb of dislocations over obstacles is 

considered [54, 63-65]. The power law creep model is usually coupled with lattice diffusion for 

high-temperature creep and dislocation core diffusion for low-temperature creep. In our 

calculations, only lattice diffusion was considered, because core diffusion resulted in an 

activation energy that was much too low [63]. The creep rate in case of power law creep with 

lattice diffusion can be written as 

 𝜀𝑣=	
   A𝑏𝜇𝐷0,𝑣𝑘𝑇𝜎𝜇4.8	
   𝑒𝑥𝑝−𝑄𝑣𝑅𝑇, (7) 

where A is a constant of 1.79	
  ×107, 𝐷0,𝑣 the pre-exponent coefficient for lattice diffusion, and 

𝑄𝑣 is the activation energy for lattice diffusion. Equation (7) was used to calculate the activation 

energies for power law creep using the same procedure as before. 

The activation energies required for the various deformation mechanisms are listed in Table V, 

along with experimental values obtained for bulk materials. The table shows that the activation 

energies increase with increasing test temperature for all three mechanisms. However, the 

activation energy for thermally activated glide stays well below the bulk value, even at the 
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highest temperature, making this mechanism less likely to occur. Power law creep or creep by 

grain boundary diffusion, on the other hand, have activation energies that are comparable to or 

exceed the bulk values at elevated temperature, and are therefore likely to occur. Thus, it is 

reasonable to assume that deformation occurs via creep induced by grain boundary diffusion or 

dislocation climb [60]. Figure 13 shows an SEM micrograph of region where the 880 nm sample 

failed taken at the conclusion of the test at 332°C. Evidently fracture occurred along the grain 

boundaries. The micrograph also shows extensive grain boundary voiding, indicative of 

significant grain boundary diffusion. These observations and the analysis are consistent with a 

recent study on Au films that identified grain boundary sliding as the dominant deformation 

mechanism, with an increasing contribution of dislocation climb at elevated temperature [29]. 

While more extensive mechanical characterization may be required to provide detailed insight in 

the temperature dependence of plastic flow in thin films, the merit of the approach is clear. 
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5. Summary 

We have built an in-situ SEM mechanical tester for determining mechanical properties 

of nano/micro thickness thin films. The displacement resolution of the tester is 10 nm 

with 250 µm stroke and the load resolution is 9.7 µN. A micromachined heater is also 

introduced for mechanical testing at elevated temperatures inside the SEM. Each micro-

heater consists of a tungsten heating element, which also serves as a temperature gauge, 

and a freestanding thin film for mechanical measurement. FEM thermal analysis was 

performed to confirm a homogeneous temperature profile in the freestanding thin film 

and to estimate the temperature during Joule heating. Stress-strain curves measured at 

room temperature show high repeatability with Young’s modulus and yield stress similar 

to results reported in the literature. Tensile testing at elevated temperature reveals a large 

decrease in the yield strength, as well as a significant decrease in the initial loading and 

unloading slopes. We attribute this difference to thermally activated deformation 

mechanisms such as grain boundary sliding and dislocation climb aided by lattice 

diffusion at elevated temperatures. These experiments demonstrate the capability of our 

testing method to investigate temperature-dependent mechanical behavior of thin films. 
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