A Novel Pro-Angiogenic Function for Interferon-Y-Secreting Natural Killer Cells

Citation

Published Version
10.1167/iovs.14-14093

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34917356

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
A Novel Pro-Angiogenic Function for Interferon-γ–Secreting Natural Killer Cells

HyunSoo Lee,1,2 Simona L. Schlereth,1,3 Eun Y. Park,1 Parisa Emami-Naeini,1 Sunil K. Chauhan,1 and Reza Dana1

1Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
2Department of Ophthalmology and Catholic Institute for Visual Science, Seoul St. Mary Hospital, College of Medicine, Catholic University of Korea Seoul, Korea
3Department of Ophthalmology, University of Cologne, Cologne, Germany

Correspondence: Reza Dana, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; reza_dana@meei.harvard.edu.

Ocular angiogenesis, such as seen in choroidal neovascularization (CNV) in AMD and corneal neovascularization, is a principal cause of blinding disease. In these processes VEGF and BFGF increase the recruitment of monocytes, neutrophils, and macrophages to inflammatory sites.1,3 Additionally, VEGF acts as a potent stimulator for proliferation, migration, and tube formation by endothelial cells,2 and BFGF is known to act as a potent inducer of angiogenesis in vitro,3–5 thereby increasing endothelial cell proliferation.

The principal function of natural killer (NK) cells is their cytotoxicity to virally-infected cells and tumor cells.5–7 In addition, NK cells have been shown to secrete a variety of cytokines, including IFN-γ, which are known to be potent angiogenic factors in vivo.8–11 However, the precise mechanisms by which NK cells induce angiogenesis, especially in the eye, remain unclear.

In this study, we report novel angiogenic functions of NK cells in vivo and in vitro assays where we cocultured NK cells and macrophages with human umbilical vein endothelial cells (HUVECs). We demonstrate that IFN-γ–secreting NK cells enhance VEGF production by macrophages to induce angiogenesis at pathologically relevant sites.

Purpose. To explore the function of natural killer (NK) cells in inflammatory angiogenesis in mice.

Methods. To study ocular angiogenic responses we used the cornea BFGF micropellet and the laser-induced choroidal neovascularization (CNV) mouse models (C57BL/6). To deplete NK cells in these models, we injected an anti-NK1.1 antibody or an isotype antibody as a control. Corneas or choroids were immunohistochemically stained for blood vessels (CD31), macrophages (F4/80), or CNV (isolectin-IB4). Vascular endothelial growth factors (VEGF), IFN-γ, or TNF-α levels were measured by real-time quantitative PCR (qPCR) or flow cytometry.

Results. Our data demonstrate that in vivo depletion of NK cells leads to a significant reduction of corneal angiogenesis and CNV. Furthermore, NK cell depletion reduces macrophage infiltration into the cornea and mRNA expression levels of VEGF-A, VEGF-C, and VEGFR3 at day 7 after micropellet insertion. In the laser-induced CNV model, our data show that NK cell depletion leads to decreased areas of CNV and significantly reduced mRNA expression of VEGFs and IFN-γ in the choroid. An in vitro coculture assay shows an IFN-γ–dependent increase in VEGF expression levels, thereby increasing endothelial cell proliferation.

Conclusions. Our findings demonstrate a novel pro-angiogenic function for NK cells, indicating that IFN-γ–secreting NK cells can induce angiogenesis by promoting enhanced VEGF expression by macrophages.

Keywords: endothelial cells, neovascularization, NK cells, macrophages, interferons

Materials and Methods.

Corneal Micropocket Assay. The corneal micropocket assay was performed as described previously.1,3 Briefly, micropockets containing 40 ng murine BFGF (R&D Systems, Minneapolis, MN, USA) were implanted into the middle stromal layer of C57BL/6 mice (n = 14/group; Stock Number: 000664; Jackson Laboratories, Chicago, IL, USA). The pellets were located 1.0-mm apart from the limbus in the temporal side, and tetracycline ophthalmic ointment was applied to the eye after pellet implantation. Seven mice received intravenous injections of 50 μg anti-NK1.1 (#108702; BioLegend, San Diego, CA, USA) or isotype control antibody
List of Antibodies Used in This Study

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Catalog Number</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified anti-mouse NK1.1</td>
<td>#108702</td>
<td>BioLegend</td>
</tr>
<tr>
<td>Purified Mouse IgG2a, κ isotype control antibody</td>
<td>#401502</td>
<td>BioLegend</td>
</tr>
<tr>
<td>NK cell isolation kit</td>
<td>#150-096-892</td>
<td>Miltenyi Biotec</td>
</tr>
<tr>
<td>LEAF-purified anti-mouse interferon (IFN-γ) antibody</td>
<td>#505811</td>
<td>BioLegend</td>
</tr>
<tr>
<td>PE conjugated anti-mouse NK1.1 antibody</td>
<td>#108707</td>
<td>BioLegend</td>
</tr>
<tr>
<td>FITC conjugated anti-mouse IFN-γ antibody</td>
<td>#505805</td>
<td>BioLegend</td>
</tr>
<tr>
<td>PE Mouse IgG2a, κ isotype control antibody</td>
<td>#400214</td>
<td>BioLegend</td>
</tr>
<tr>
<td>FITC conjugated anti-mouse IFN-γ antibody</td>
<td>#505805</td>
<td>BioLegend</td>
</tr>
<tr>
<td>Anti-mouse IFN-γ antibody</td>
<td>#400405</td>
<td>BioLegend</td>
</tr>
<tr>
<td>FITC anti-mouse CD49b antibody</td>
<td>#103503</td>
<td>BioLegend</td>
</tr>
<tr>
<td>FITC Armenian Hamster IgG isotype control antibody</td>
<td>#sc-18916</td>
<td>Santa Cruz Biotechnology</td>
</tr>
<tr>
<td>FITC-conjugated anti-mouse CD31 antibody</td>
<td>#121411</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>APC conjugated anti-mouse CD3e</td>
<td>#17-0031-81</td>
<td>eBioscience</td>
</tr>
<tr>
<td>APC conjugated Armenian Hamster IgG iso type control</td>
<td>#17-4888-81</td>
<td>eBioscience</td>
</tr>
</tbody>
</table>

(#i01502, BioLegend) 2 days before, the day of, and 4 days following micropellet insertion. All antibodies used in this study are listed in the Table. All animal studies described herein were managed according to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research under Institutional Animal Care and Use Committee approval of the Schepens Eye Research Institute.

Laser-Induced Choroidal Neovascularization

Laser-induced CNV was performed in C57BL/6 mice as described previously. Briefly, laser photocoagulation (Ocu-light-SLx; Iridex, Mountain View, CA, USA) was performed (wavelength: 810 nm; energy: 120 mW; duration: 100 ms; spot size: 100 μm) by a single individual. The appearance of a cavitation bubble indicated rupture of Bruch’s membrane.

Tube Formation Assay

Human umbilical vein endothelial cells (#C-015-5C; GIBCO; Life Technologies, Chicago, IL, USA) were maintained in EGM-2-bullet kits (Lonza, Inc., Houston, TX, USA) at 37°C in 5% CO₂. These assays were performed as described previously, with minor modifications. Bottom and upper gel layer contained 80% type-I-collagen (Devro-Medical, San Jose, CA, USA), 0.02 N NaOH, 20 mM 2-(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2 mg/mL NaHCO₃, 0.5 μg/mL fibronectin, 0.5 μg/mL laminin, and 10.5 mg/mL RPMI-powder (Life Technologies, Chicago, IL, USA) were maintained in EGM containing 2% horse serum, 12% FBS, 2 mg/mL NaHCO₃, 0.5 μg/mL fibronectin, 0.5 μg/mL laminin, and 10.5 mg/mL RPMI-powder (Life Technologies). For the bottom gel layer, 200 μL of the mixture was added to a 48-well plate and incubated (37°C, 1 hour). Human umbilical vein endothelial cells (4 × 10⁵) were seeded, incubated overnight, then 100 μL gel mixture was added and incubated at 37°C for 1 hour. Magnetically sorted (NK cell isolation kit, #130-096-892; Miltenyi Biotec, Auburn, CA, USA) NK cells (2 × 10⁵) and/or thioglycollate-elicited macrophages (2 × 10⁵) were added in ECM containing 2% horse serum, 12 μg/mL bovine brain extract, and 40 ng/mL BFGF Neutralizing LEAF-purified anti-mouse IFN-γ antibody (#505811; BioLegend) or isotype control (#400413; BioLegend) in 10 μg/mL was added. After 1 day, the entire field was photographed using SPOT software (Diagnostic Instruments, Inc., Sterling Heights, MI, USA) and analyzed using ImageJ software (http://imagej.nih.gov/ij; provided in the public domain by the National Institutes of Health, Bethesda, MD, USA). The total length of all tubes within a field was measured in a masked fashion. Murine VEGF-A levels in the supernatant were determined by ELISA (eBioscience, San Diego, CA, USA).

Flow Cytometry

Cultured NK cells were first stained with a PE conjugated anti-NK1.1 antibody (cell surface: #108707; BioLegend) or isotype control antibody (#400211, BioLegend), then fixed and permeabilized, and finally intracellularly stained with a FITC conjugated anti–IFN-γ antibody (#505805; BioLegend) or isotype control antibody (#400405, BioLegend). To prove NK cell depletion on day 7, peripheral blood of anti-NK1.1 or isotype-treated mice was stained with PE-NK1.1 and FITC–CD31 antibody (#sc-18916, Santa Cruz Biotechnology). CD3+ cells were excluded (APC conjugated anti-mouse CD3e, #17-0031-81, eBioscience). Appropriate isotype-matched control antibodies (#400905, BioLegend) were used in the flow cytometry analyses. Stained cells were analyzed using an LSR II flow cytometer (Becton-Dickinson, Pittsburgh, PA, USA) and Summit v4.5 software (Dako, Pittsburgh, PA, USA).

Immunohistochemistry

Corneal mounts were immunostained with a FITC-conjugated CD31 antibody (#sc-18916; Santa Cruz Biotechnology, Dallas, TX, USA) for epifluorescence microscopy (model E800, Nikon, Tokyo, Japan). Areas covered by blood vessels (CD31hi) were measured by ImageJ, as described previously. To label CNV immunohistochemistry was performed on RPE/choroidal flat-mounts 10 days after laser injury using 0.5% Alexa-488-conjugated isoelectric-IB4 (#121411; Invitrogen, Eugene, OR, USA). The CNV volume was quantified using a confocal microscope (Leica TCS–SP5; Leica Microsystems, Wetzlar, Germany). Laser scars were scanned in total by Z-stack images of 1-μm intervals and the sum of the entire fluorescent area was measured by ImageJ, as described previously.

RT and Quantitative Real-Time PCR

Ribonucleic acid was isolated from cornea, conjunctiva, or the RPE/choroidal complex using the RNasy-kit (Qiagen, Hilden, Germany) and reverse transcribed using Superscript-III Kit (Life Technologies). Quantitative real-time PCR was performed using a Taq Man-Mastermix and preformulated primers (Life Technologies) for murine VEGF-A (Mm01281449_m1), VEGF-C (Mm00437510_m1), VEGF-D (Mm01319294_m1), VEGF-R2 (Mm01222421_m1), VEGF-R3 (Mm01292604_m1), IFN-γ
(Mm01168134_m1), TNF-α, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Mm99999915_g1). The GAPDH gene was used as the endogenous reference for each reaction. The results were analyzed by the comparative threshold cycle (Ct) method with LightCycler analysis software (Version 3; Roche, Atlanta, GA, USA) and the relative expression level of each sample was expressed as fold change from isotype control-treated group.

Statistical Analyses

Data are expressed as the mean ± SEM of at least three trials. The significance of the difference between groups was analyzed with the two-tailed Student’s t-test using Prism software (version 5.0; GraphPad, San Diego, CA, USA). Differences were considered significant when P was less than 0.05.
FIGURE 3. The presence of both NK cells and macrophages increased tube formation of HUVECs in vitro. (A) In a tube formation assay 4×10^4 HUVECs were added to the lower gel layer and incubated overnight. The next day, in a 48-well plate, 2×10^4 NK cells and/or 2×10^4 macrophages were plated with 40 ng BFGF on the upper gel layer, above the HUVECs, then incubated at 37°C overnight. Singular HUVECs are marked with an arrowhead and black spots show upper gel layer with macrophages or NK cells in some of the pictures. Human umbilical vein endothelial cells showed significantly spreading and growth, when cultured under the influence of macrophages and NK cells (marked with arrow; representative
RESULTS

NK Cell Depletion Reduces Vessel Formation, Macrophage Infiltration, and mRNA VEGF Expression in a BFGF Micropellet Model In Vivo

The standard model of inducing inflammatory angiogenesis by placing BFGF pellets into mouse corneas was performed, and NK cells were systemically depleted using an anti-NK1.1 antibody. Successful depletion of NK cells was monitored by flow cytometry (Supplementary Fig. S1). Corneal angiogenesis was quantified by immunohistochemical staining of CD31, which showed a significant reduction of blood vessel formation in NK cell-depleted mice at days 7 and 10 (Figs. 1A, 1B). Moreover, NK cell–depleted mice showed significantly reduced infiltration of macrophages into the cornea (Figs. 1C, 1D).

Further, we performed real-time qPCR to quantify mRNA levels of the proinflammatory cytokine IFN-γ as well as of ligands and receptors of the VEGF family, VEGF-A, -C, -D, -R2, and -R3 in the cornea and conjunctiva of NK cell–depleted and control mice with prior BFGF micropellet insertion. We detected reduced mRNA levels of VEGF-A, -C, and -R3 in corneas of NK cell-depleted mice and reduced mRNA levels of VEGF-A and IFN-γ in conjunctivae of NK cell–depleted mice compared with control mice (Fig. 2).

NK Cells Induce Increased Tube Formation of HUVECs In Vitro

To investigate the direct effects of NK cells in inducing angiogenesis, we conducted an in vitro assay coculturing NK cells and macrophages with HUVECs in a sandwich-collagen matrix gel to prevent cell–cell contact between immune cells and endothelial cells, and measured HUVEC tube formation. Human umbilical vein endothelial cells cocultured with NK cells and macrophages showed a prominent increase in tube formation (Fig. 3A), which was inhibited in the presence of an IFN-γ-blocking antibody (Fig. 3B). Enzyme-linked immunosorbent assay analyses of supernatants from in vitro assays showed that coculturing of NK cells and macrophages led to increased levels of VEGF-A. Natural killer cells alone showed almost no competence to produce VEGF-A. Coculturing NK cells and macrophages in the presence of the IFN-γ-blocking antibody showed a significant decrease in VEGF-A secretion compared with controls (Fig. 3C). In addition, the population of IFN-γ-secreting NK cells was increased when cocultured with

![Graphs and images showing experimental results](image-url)
macrophages, which might enhance VEGF-A production of macrophages reciprocally (Fig. 3D).

NK Cell Depletion Reduced Neovascularization in a Murine Laser–Induced CNV Model

Next, we induced CNV by laser and investigated the effect of NK cell depletion on neovascularization. In the laser-induced CNV model, our data showed that NK cell depletion led to decreased areas of CNV (Fig. 4A) and significantly reduced mRNA expression of VEGF-A, VEGF-D, VEGFR2, and IFN-γ in the choroid of NK cell–depleted mice compared with isotype controls (Fig. 4B).

DISCUSSION

In this study, we aimed to investigate the role of NK cells in ocular angiogenesis using two distinct mouse models as well as an in vitro culture system. Here, we demonstrate that (1) NK cell depletion leads to decreased corneal neovascularization in vivo associated with reduced macrophage infiltration into the cornea and reduced mRNA levels of VEGF-A, -C, and -R3 in the cornea and conjunctiva, (2) NK cell depletion reduced CNV, and was associated with lower mRNA levels of VEGF-A, -D, and -R2 in the cornea, and (3) optimized HUVEC proliferation in vitro required both NK cells and macrophages, and was associated with elevated VEGF-A levels.

Natural killer cells are known to be important in ocular inflammatory diseases such as dry eye disease where NK cell depletion leads to inhibited maturation of antigen presenting cells. While the role of macrophages in inducing inflammatory neovascularization through secretion of VEGF is well described, the function of NK cells in angiogenesis is not well known. Our results show, for the first time, the importance of NK cells in the induction of angiogenesis: NK cell depletion inhibited blood vessel formation by reducing macrophage infiltration into the cornea after placing BFGF pellets. Basic fibroblast growth factor is known to be a potent angiogenesis inducer, including stimulation of endothelial proliferation and migration.
Using an in vitro assay we found a prominent increase in tube formation of HUVECs and increased VEGF-A levels only when cocultured with both macrophages and NK cells together. Moreover, an IFN-γ-blocking antibody could inhibit tube formation and VEGF-A secretion. These results clearly indicate that IFN-γ-secreting NK cells can enhance VEGF-A production by macrophages, and seem to be necessary for full macrophage activation. This is in accord with the previous work by Xiong et al.17 who emphasized the importance of IFN-γ to increase VEGF expression in IFN-γ/lipopolysaccharide (LPS)-double activated macrophages.

To date, few details are known about the pathogenesis of CNV in AMD,18 although intravitreal administration of VEGF-A-neutralizing antibodies or VEGF trap are known to improve visual acuity in CNV patients.19 Furthermore, macrophage depletion has been shown to reduce the size of laser-induced CNV associated with decreased VEGF levels19 and a role of NK cells in the pathogenesis of AMD has been proposed20; however, the cytokines and pro-angiogenic molecules involved in this mechanism remain unknown. Thus, we investigated the effect of NK cell depletion in a murine model of CNV and detected decreased areas of CNV and reduced mRNA expression of VEGF-A, D, -R2, and IFN-γ in the choroid of NK cell depleted mice. In tumor rejection studies, IFN-γ-dependent antiangiogenic and antitumoral effects have been shown.21–24 On the other hand, pro-angiogenic effects of NK cells in nonsmall cell lung cancer has been identified lately,25 but little is known about the angiogenic function of IFN-γ-secreting NK cells in an inflammatory environment. As NK cells are essential for immune defense of herpes simplex virus (HSV),26,27 we postulate that increased corneal angiogenesis associated with HSV, might be mediated by NK cell activation. Here, we demonstrate that the depletion of IFN-γ-secreting NK cells leads to decreased infiltration and activation of VEGF-secreting macrophages, which finally results in reduced laser injury-induced CNV.

It is known, that the anti-NK1.1 antibody depletes NK cells and natural killer T (NKT) cells. Others have selectively looked at NKT cells in CNV and found, similar to our results, that NKT cells augment the production of VEGF by other cells.28 Here, we focused on the function of NK cells in angiogenesis and identified a direct effect of NK cells on macrophages and their VEGF production using two in vivo mouse models and an in vitro assay. Therefore, in the context of neovascularization, NK and NKT cells seem to work in a similar manner, but the distinct function of both cell populations in angiogenesis needs further investigation to better understand inflammatory angiogenesis.

In conclusion and summarized in Figure 5, these data suggest that IFN-γ-secreting NK cells promote angiogenesis by enhancing VEGF expression through macrophage activation, indicating a new mechanism for NK cells’ interaction with macrophages in inducing angiogenesis, and opening new perspectives for the treatment of immune-mediated angiogenic conditions.

Acknowledgments

The authors thank Daniel Saban (Duke University), Susanne Ehligen24 (Schirmer Eye Research Institute), and Johannes Schwartzkopff for their scientific discussions. They also thank Namb Nallasami (Harvard Medical School) for support with image analysis.

Supported by grants from the National Institutes of Health/National Eye Institutes R01-12963 (RD).

Disclosure: H. Lee, None; S.L. Schlereth, None; E.Y. Park, None; P. Emami-Nacini, None; S.K. Chauhan, None; R. Dana, None

References

