Evidence of Stage Shift in Women Diagnosed With Ovarian Cancer During Phase II of the United Kingdom Familial Ovarian Cancer Screening Study

Adam N. Rosenthal, Lindsay S.M. Fraser, Susan Philpott, Ranjit Manchanda, Matthew Burnell, Philip Badman, Richard Hadwin, Ivana Rizzuto, Elizabeth Benjammin, Navvena Singh, D. Gareth Evans, Diana M. Eccles, Andy Ryan, Robert Liston, Anne Dawnyaw, Jeremy Ford, Richard Gunu, James Mackay, Steven J. Skates, Usha Menon, and Ian J. Jacobs on behalf of the United Kingdom Familial Ovarian Cancer Screening Study collaborators

ABSTRACT

Purpose
To establish the performance of screening with serum cancer antigen 125 (CA-125), interpreted using the risk of ovarian cancer algorithm (ROCA), and transvaginal sonography (TVS) for women at high risk of ovarian cancer (OC) or fallopian tube cancer (FTC).

Patients and Methods
Women whose estimated lifetime risk of OC/FTC was ≥10% were recruited at 42 centers in the United Kingdom and underwent ROCA screening every 4 months. TVS occurred annually if ROCA results were normal or within 2 months of an abnormal ROCA result. Risk-reducing salpingo-oophorectomy (RRSO) was encouraged throughout the study. Participants were observed via cancer registries, questionnaires, and notification by centers. Performance was calculated after censoring 365 days after prior screen, with modeling of occult cancers detected at RRSO.

Results
Between June 14, 2007, and May 15, 2012, 4,348 women underwent 13,728 women-years of screening. The median follow-up time was 4.8 years. Nineteen patients were diagnosed with invasive OC/FTC within 1 year of prior screening (13 diagnoses were screen-detected and six were occult at RRSO). No symptomatic interval cancers occurred. Ten (52.6%) of the total 19 diagnoses were stage I to II OC/FTC (CI, 28.9% to 75.6%). Of the 13 screen-detected cancers, five (38.5%) were stage I to II (CI, 13.9% to 68.4%). Of the six occult cancers, five (83.3%) were stage I to II (CI, 35.9% to 99.6%). Modeled sensitivity, positive predictive value, and negative predictive value for OC/FTC detection within 1 year were 94.7% (CI, 74.0% to 99.9%), 10.8% (6.5% to 16.5%), and 100% (CI, 100% to 100%), respectively. Seven (36.8%) of the 19 cancers diagnosed 1 year after prior screen were stage IIIb to IV (CI, 16.3% to 61.6%) compared with 17 (94.4%) of 18 cancers diagnosed 1 year after screening ended (CI, 72.7% to 99.9%; P < .001). Eighteen (94.8%) of 19 cancers diagnosed 1 year after prior screen had zero residual disease (with lower surgical complexity, P = .16) (CI, 46.5% to 90.3%; P = .09).

Conclusion
ROCA-based screening is an option for women at high risk of OC/FTC who defer or decline RRSO, given its high sensitivity and significant stage shift. However, it remains unknown whether this strategy would improve survival in screened high-risk women.

J Clin Oncol 35:1411-1420. © 2017 by American Society of Clinical Oncology. Licensed under the Creative Commons Attribution 4.0 License: http://creativecommons.org/licenses/by/4.0/

ASSOCIATED CONTENT

See accompanying Editorial on page 1384

Data Supplement
DOI: 10.1200/JCO.2016.69.9330

DOI: 10.1200/JCO.2016.69.9330

© 2017 by American Society of Clinical Oncology
salpingo-oophorectomy (RRSO) for women older than 35 years of age to prevent OC or fallopian tube cancer (FTC) and to detect occult neoplasia is recommended as the only proven mortality-reducing intervention.10,11 Although effective when used premenopausally,10,11 RRSO causes infertility and premature menopause, with associated cardiovascular risks,12 osteoporosis,13 and neurologic risks4 (although premature menopause can be treated with hormone replacement therapy). Some women decline RRSO regardless of OC risk, and others prefer to defer it (eg, until menopause). Effective OC screening would be a welcome option for such women.

Annual OC screening in the general population that uses a cutoff for the serum tumor marker cancer antigen 125 (CA-125) was associated with improved survival.15 In the high-risk population, we16 and others17-20 have reported annual screening using a CA-125 cutoff and transvaginal sonography (TVS). Although we demonstrated high sensitivity (> 80%) and positive predictive value (PPV; 25%), two symptomatic interval cancers occurred, and 69% of detected cancers were stage III to IV.16 This annual screening interval has been associated with a poor 10-year survival rate of 36% in BRCA1/2 carriers.21

Multimodal screening with the risk of ovarian cancer algorithm (ROCA) to interpret serial CA-125 results, and TVS as a second-line test, in the randomized general-population United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) achieved high sensitivity and specificity.22,23 Significantly more (40%) low-volume (stages I, II, or IIIa) invasive epithelial ovarian/peritoneal cancers were identified compared with unscreened controls (26%) on an intention-to-screen analysis, and the trial provided an encouraging, though not definitive, mortality benefit.24

Random assignment to a nonscreening arm is thought to be unacceptable to high-risk women and clinicians.16 Even if ethical, it would likely be unfeasible, so research screening in this population is limited to prospective cohort studies. To our knowledge, this is the first published study to use ROCA-based screening to define sensitivity in the high-risk population.

Patients and Methods

A prospective multicenter cohort screening study was undertaken within the United Kingdom (UK) National Health Service (NHS). Ethical approval was given by the Eastern Multicentre Research Ethics Committee (Reference No. 97/5/007). The protocol can be found online.25

Entry Criteria

High-risk women at an estimated minimum 10% lifetime risk of OC were recruited; inclusion criteria (Data Supplement, online only) depended on family history or predisposing mutations. Documentation (death certificates and/or histopathology reports) of relevant cancers was required, and eligibility was confirmed by the coordinating center (CC). Clinical genetic testing was performed by accredited NHS laboratories. After screening ended, 45.2% of the study population underwent BRCA1/2 next-generation sequencing research testing.26

Recruitment

Participants were recruited at 42 centers in the UK by specialist nurses, clinical geneticists, or gynecologists. In December 2006, participants in the UK Familial Ovarian Cancer Screening Study (UK FOCSS) Phase I (annual screening using a CA-125 cutoff and TVS)26 were invited to join this study—UK FOCSS Phase II. Other participants were recruited de novo. Women were counseled about RRSO and screening limitations. All participants provided written consent.

Screening

The trial database16 scheduled serum CA-125 tests every 4 months and TVS annually. Venipuncture packs were mailed to participants for use in primary care and blood samples returned to the CC laboratory for CA-125 assay.23 Results were uploaded to the database, which calculated OC risk using the high-risk ROCA, which also incorporated the higher a priori risk in our population and different reference levels for risk stratification for postmenopausal compared with premenopausal women, because of the higher baseline CA-125 and variability in premenopausal women.27 Menopausal status was determined by the database by using the age of participants and their responses to questions about gynecologic history and/or symptoms, which were returned with serum samples (Data Supplement).

Initial risk of ovarian cancer (ROC) was based on initial CA-125 level and estimated age-specific OC incidence. Subsequently, ROC was based on absolute CA-125 level and rate of change. Initially high or increasing CA-125 levels (even < 30 iU/ml) generated a high ROC, whereas initially low, stable-high (even > 30 iU/ml), or decreasing levels generated low ROCs. ROCA results were used for triage, including expedient of repeat CA-125 tests and/or TVS after abnormal results (Data Supplement).

Collaborating centers performed scans and completed pro formas (Data Supplement), which were classified by the database according to predetermined criteria (Data Supplement).16 When indicated, women were referred to a gynecologist for clinical assessment, with a view to surgical removal of the fallopian tubes and ovaries. The final decision about surgery was made after additional investigation and discussion with the patient.

Follow-Up

Participants were flagged (by their unique NHS number) with relevant cancer registries, which provided cancer and/or death data.16 Collaborators notified the CC when women withdrew before routine screening ended (June 30, 2011). Women were observed through cancer registries with censorship that was based on date of death, last notification from the registry, or last contact if they were lost to registry follow-up. Participants were sent health questionnaires in January 2011 and April 2013 specifically asking about surgery that involved removal of fallopian tubes/ovaries and cancer diagnosis.

Diagnostic Documentation

Whenever women underwent salpingo-oophorectomy, the CC obtained documentation of indication, operation notes, and histopathology/cytopathology reports. These were reviewed by a gynecologic oncologist (A.N.R.) and pathologist (E.B./N.S.) and were classified according to the International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10). Trial surgery was defined as either screen-positive or screen-related (nonconcerning abnormal results, such as simple cysts and/or transient/stable abnormal ROC results that contributed to the participant’s decision to undergo surgery).17 Centers were provided with an RRRO protocol, which advocated serial sectioning of fallopian tubes/ovaries (Data Supplement). A surgical complexity score was assigned using recognized criteria (Data Supplement).28

Statistical Analysis

For performance analyses, data were censored 365 days after the last UK FOCSS screen. Invasive OC, FTC, or primary peritoneal cancer (PPC) diagnosed < 365 days after the last screen were included. Cancers that occurred after censoring and diagnosed before February 28, 2016 were
UK FOCSS Phase II Screening Results

Reported but not included in the performance analyses. The study was powered to estimate sensitivity within 10% (expected 95% CI), given an annual OC incidence of 0.5%. Analyses were done with Stata (version 14; STATA, College Station, TX).

Compliance with blood tests and scans was defined as the proportion of requested tests received by the CC. These were analyzed separately and according to screen type (eg, routine, protocol-indicated repeat).

Women who underwent salpingo-oophorectomy were only classified as having undergone RRSO if they were asymptomatic, they had normal results at prior screen, and the recruiting center indicated RRSO as the reason for withdrawal. Cases in which abnormal results prompted surgery were true positive (TP) if invasive epithelial OC/FTC was diagnosed. All other diagnoses (including borderline/benign tumors) that resulted from surgery that was prompted by abnormal results were false positive (FP). Cases in which nonconcerning test results (simple cysts/transiently elevated CA-125) contributed to the decision for surgery were classified as screen-related surgery, to provide estimates of likely additional surgeries in any future screening program. True-negative (TN) designations were for those patients in whom the last screen was normal and no OC/FTC was diagnosed < 365 days. Patients who presented with clinically diagnosed interval cancers between screens or < 365 days after the final screen were considered false negative (FN). Prevalent cases were those diagnosed at first screen. Incident cases were those diagnosed subsequently. For women who transferred from Phase I (annual CA-125 cutoff and scan) to Phase II (ROCA every 4 months and annual TVS), their first Phase II screen was classified as incident.

We reported performance according to whether occult cancers diagnosed < 365 days after a prior screen were classified as FN or TP. In an attempt to estimate true sensitivity, we assumed that the proportion of occult cancers identified at RRSO, which would have been screen detected had women not undergone surgery, would be identical to that observed in those who continued screening. We then used the lower confidence limit of

Participants transferred from Phase I to Phase II (n = 2,362; 52.1%)

- Ineligible for screening (n = 117; 2.6%)
 - RRSO
 - Not eligible*
 - Died (n = 3)

- Withdrawn with no screening (n = 66; 1.5%)
 - Participant choice
 - Did not attend screening (n = 26)
 - Lost contact†

Participants recruited in Phase II (N = 4,531; 100%)

Participants recruited de novo to Phase II (n = 2,169; 47.9%)

Participants screened (n = 4,348; 96.0%)

- Completed screening without surgery (n = 3,172; 73.0%)
 - Last screen normal (n = 3,110)
 - Final screen abnormal; care handed to local centre (n = 62)
 - Nonsurgical reasons (n = 401)
 - Tested negative for family mutation
 - New information about family cancer history
 - Lost direct contact but still flagged with cancer registries
 - Moved abroad
 - Participant choice
 - Noncompliant with screening
 - Poor health
 - Died of cause other than OC/FTC
 - Surgery (n = 576)
 - RRSO
 - Bilateral salpingo-oophorectomy‡
 - Surgery for incidental findings; both adnexae removed
 - Screen positive (n = 162)
 - Screen related (n = 37)

- Withdrew during screening (n = 977; 22.5%)
 - Screen positive for family mutation
 - New information about family cancer history
 - Lost direct contact
 - Moved abroad
 - Participant choice
 - Noncompliant with screening
 - Poor health
 - Died of cause other than OC/FTC

- Trial surgery‡ (n = 199; 4.6%)

Fig 1. CONSORT diagram. Percentages refer to the proportion of the total in preceding box. (*)Ineligible due to new information about family cancer history, tested negative for family mutation, or already undergoing investigation for abnormal screening results during UK Familial Ovarian Cancer Screening Study Phase I. (†) Unable to establish current whereabouts or nonresponder despite correct address. (‡) Defined as either screen-positive or screen-related (nonconcerning abnormal results, such as simple cysts and/or transient/stable abnormal ROC results that contributed to the participant’s decision to undergo surgery). Includes volunteers who underwent unilateral salpingo-oophorectomy or diagnostic laparoscopy only who returned to screening. ($) Insufficient data to determine indication (all had normal final screen results, none had cancer). RRSO, risk-reducing salpingo-oophorectomy.

jco.org

© 2017 by American Society of Clinical Oncology 1413
observed sensitivity in women who did not undergo RRSO as a conservative estimate of occult cancer detection sensitivity, and we rounded the predicted number of occult cancers detected to the nearest integer.

Because the protocol required parallel CA-125 and TVS, the results of which influenced each other’s timing, it was not possible to calculate performance characteristics per test. Therefore, we calculated these metrics per woman-screen year (WSY) for the protocol overall.

To allocate WSYs to correct outcomes we applied the following rules; for TP and FP detection screens, the WSY that commenced with that screen was classified as TP or FP, respectively. WSYs before the detection screen were TN. For occult cancers diagnosed <365 days after prior screen, the WSY that commenced with that screen was classified as FN or TP (dependent on analysis type), and prior WSYs were TN. For TN cases, all WSYs were classified TN.

To investigate potentially avoidable delays, we analyzed screening and screen-to-surgery intervals. Detection screens were defined as an abnormal TVS and/or abnormal ROC that diagnosed OC/FTC. Delayed screens were defined as any detection screen performed after the protocol-indicated date. Delay was calculated as the detection screen date minus the protocol-indicated date. The interval from screen date to diagnosis was calculated to the date of surgery/biopsy. We compared International Federation of Gynecology and Obstetrics stage and postsurgery zero residual disease rates in OC/FTC diagnosed during and <365 days from the end of UK FOCSS screening with those diagnosed >365 days after screening ended. We also compared stage-distribution and zero residual disease rates in incident screen-detected cancers in Phases I and II of the study. No survival analysis was performed because of the low number of events observed.

RESULTS

Between June 14, 2007, and May 15, 2012, 4,531 women were recruited. This included 2,362 (66.3%) of 3,563 eligible women from UK FOCSS Phase I (Fig 1). Table 1 lists inclusion indications. A total of 183 (4.0%) women withdrew before screening (Fig 1). The outcome of the remaining 4,348 women (96.0%) were analyzed. The median age at recruitment was 45.5 years (range, 34.2 to 84.8 years). Of the eligible women, 1,278 women (29.4% of participants) underwent mutation testing, and the WSY that commenced with that screen was classified as FN or TP (dependent on analysis type), and prior WSYs were TN. For TN cases, all WSYs were classified TN.

screening/compliance

The 4,348 screened participants underwent 13,728 WSY (median, 3.26 screen-years per woman; range, 1.00 to 5.94 screen-years per woman). A total of 189 women (4.3%) ceased screening by choice. Five hundred fifty-eight (12.8%) ceased because of surgical removal of both fallopian tubes/ovaries for RRSO (n = 534) or indeterminate reasons (n = 24). A total of 377 women (8.7%) whose last screen was abnormal continued screening until May 15, 2012, by which time 315 had normal results and did not undergo surgery. Care was transferred to local gynecologists for the 62 women who still had abnormal results. Three of these 62 women underwent surgery; none had cancer.

Compliance with requested routine CA-125 tests and scans were 92.1% (27,138 of 29,450 CA-125 tests) and 94.6% (9,100 of 9,619 scans), respectively (Data Supplement). Compliance for scans was based on reports received, not scans undertaken, so it is likely an underestimate. Protocol-indicated repeat test compliance was higher: 97.4% (4,716 of 4,834) of blood tests, and 98.8% (2,792 of 2,825) of scans requested were received.

Of the 32,587 blood samples received, routine tests comprised 83.3% (27,138 of 32,587), protocol-triggered repeats comprised 14.5% (4,716 of 32,587), and 2.2% (733 of 32,587) were requested by study clinicians (eg, because CA-125 levels had increased by ≥50%, despite a normal ROC). A total of 2,233 (6.9%) of 32,587 blood samples were discarded because they arrived more than 56 hours after venipuncture. Of the 12,038 scan results, 75.6% (9,100 of 12,038) were normal, 23.2% (2,792 of 12,038) were triggered early by abnormal ROC results and/or previous abnormal scans, and 1.2% (146 of 12,038) were repeated because of a poor view of the ovaries. Overall, 162 (3.7%) of 4,348 women underwent screen-positive trial surgery. Thirteen of these 162 women had screen-detected cancers. The remaining 149 (3.4%) of the 4,348 women underwent survival analysis was performed because of the low number of events observed.

| Table 1. Inclusion Criteria and Mutation Status in Screened Participants (N = 4,348) |
|---------------------------------|-----------------|-----------------|
| Indication for Inclusion | No. of Patients (%) |
| Known mutation in family and/or proband | 975 (22.4) |
| Breast/ovarian cancer in family; no known mutation | 1,761 (40.5) |
| Ovarian cancer only in family; no known mutation | 1,034 (23.8) |
| Lynch’s syndrome in family; no known mutation | 77 (1.8) |
| Did not fit standard inclusion criteria but deemed high risk by recruiting center and study clinical geneticist (J.M.) | 501 (11.5) |

Mortality status of proband from clinical genetics testing

Total no. who underwent clinical genetics testing 1,278 (29.4)
Tested positive 854 (19.6)
Tested negative 381 (8.8)
Result unavailable 43 (1.0)
Untested 3,070 (70.6)

BRCA1 or BRCA2 mutation carrier 734 (16.9)
BRCA1 377 (8.7)
BRCA2 352 (8.1)
BRCA1/2 6 (0.1)
MMR gene mutation carrier 120 (2.8)
MLH1 40 (0.9)
MSH2 52 (1.2)
MSH6 12 (0.3)
PMS2 2 (0.05)
MMR gene mutation (gene not specified) 14 (0.3)

Total no. who underwent research NGS testing 1,985 (45.2)
BRCA1 mutation by NGS 40 (0.9)
BRCA2 mutation by NGS 30 (0.7)
Total tested by clinical genetics or NGS 3,243 (74.6)
Total BRCA1/2 mutation carriers 804 (18.5)
Total BRCA1/2 and MMR mutation carriers 924 (21.3)

NOTE. Documentation (death certificates or histopathology reports) of relevant cancers in the family was required. This was available for 2,226 (66.0%) of 3,373 women who were included for reasons other than a predisposing mutation in themselves or a first-degree relative.

Abbreviations: MMR, mismatch repair; NGS, next generation sequencing.
false-positive surgery prompted by abnormal results (Table 2). Of these 149 women who underwent false-positive surgery, 46 (30.9%) had an abnormal ROC alone, 62 (41.6%) had an abnormal scan alone, and 41 (27.5%) had abnormal results for both tests. Overall, 95 (63.8%) of the 149 women who underwent false-positive surgery had benign ovarian pathology, two (1.3%) had borderline ovarian tumors, and 52 (35.0%) had other/no pathology identified. An additional 37 (0.9%) of the 4,348 women underwent screen-related trial surgery.

Invasive OC/FTC/PPC

Thirty-seven women were diagnosed with invasive cancer before February 28, 2016 (Table 3); nineteen occurred during 13,728 WSY < 365 days after prior screen and/or withdrawal (annual incidence 0.14%). In addition, 18 women were diagnosed > 365 days after their last UK FOCSs screen (median, 666 days; range, 400 to 2,159 days). The median age at diagnosis in the 37 women diagnosed with OC/FTC/PPC was 50 years (range, 37 to 79 years). All diagnoses occurred in families with hereditary breast-ovarian cancer. Thirty-four (91.2%) of the 37 women were diagnosed with high-grade serous carcinoma. Cancers in 31 (83.8%) of the 37 women occurred in mutation carriers—24 (64.9%) were BRCA1 carriers and seven (18.9%) were BRCA2 carriers. Three (8.1%) of the 37 women had BRCA1/2 negative; one (2.7%) of the 37 women had a BRCA2 variant of unknown significance; two (5.4%) of the 37 women were untested. Of the 37 women diagnosed with OC/FT/PPC, 23 (62.2%) knew they carried pathogenic mutations and 14 (37.8%) had a history of breast cancer. No OC occurred in women with a family history of LS or those who were mutation carriers for the syndrome (n = 192; 558 WSY).

The 19 invasive OC/FTCs diagnosed within 365 days of prior screen included one prevalent screen-positive OC (International Federation of Gynecology and Obstetrics stage IIIc) and 18 incident cancers. Twelve of the 18 incident OC/FTCs were screen detected and six were occult cancers identified at RRSO. Of the 12 patients with incident screen-detected cancer, 11 (91.7%) had an abnormal ROC and 5 (41.7%) had a normal TVS at detection (compared with zero of 13 patients who had normal TVS at detection in UK FOCSs Phase I; P = 0.015). The median CA-125 level at detection was 53.8 iU/ml (range, 11.7 to 219.2 iU/ml) in UK FOCSs Phase II (< 30 iU/ml in four of 12 patients) compared with 73 iU/ml (range, 4 to 3,874 iU/ml) in Phase I, which did not mandate assay type and recommended premenopausal and postmenopausal cutoffs of 35 and 30 iU/ml, respectively, rather than according to the ROCA. Five (38.5%) of the 13 screen-detected OC/FTCs (CI, 13.9% to 68.4%) and 5 (83.3%) of the six occult OC/FTCs (CI, 35.9% to 99.6%) were stage I to II. Overall, 10 (52.6%) of the 19 cancers diagnosed within 365 days of prior screen were stage I to II (CI, 28.9% to 75.6%).

Eighteen cancers were diagnosed > 365 days after the end of UK FOCSs screening. Two occult cancers were detected at RRSO, three cancers were detected at annual screening performed locally, and 13 were detected when women presented with symptoms. Only one (5.6%) of the 18 cancers was diagnosed at stage I to II (CI, 0.2% to 27.3%).

Women were significantly less likely to be diagnosed with stage IIIb to IV OC during UK FOCSs Phase II screening (seven [36.8%] of 19; CI, 16.3% to 61.6%) compared with those diagnosed subsequently (17 [94.4%] of 18; CI, 72.7% to 99.9%; P < .001). Twelve (92.3%) of 13 women who had screen-detected cancers had zero postsurgical residual disease (CI; 64.0% to 99.8%). Overall, 18 (94.8%) of 19 women diagnosed with OC during UK FOCSs had zero postsurgical residual disease (CI, 74.0% to 99.9%) compared with 13 (72.2%) of 18 women who were diagnosed subsequently (CI, 46.5% to 90.3%; P = .09). None of the women diagnosed during UK FOCSs required complex surgery, one had interval surgery. Three of the subsequently diagnosed women required complex surgery, seven had interval surgery, and two had no debulking (Table 3). The proportion of women diagnosed with OC during UK FOCSs who had neo-adjuvant chemotherapy (1 [5.3%] of 19 women; CI, 0.1% to 26.0%) was significantly lower than in the women diagnosed subsequently.

Table 2. Diagnoses in Women Who Underwent False-Positive Surgery to Rule Out Ovarian Cancers As a Result of Abnormal Screening Tests (n = 149)

<table>
<thead>
<tr>
<th>Histopathologic Diagnosis</th>
<th>No. With Only Scan Abnormal (n = 62)</th>
<th>No. With Only ROCA Abnormal (n = 48)</th>
<th>No. With Both Scan and ROCA Abnormal (n = 41)</th>
<th>Total No. (%) With Abnormalities (n = 149)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign ovarian pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign ovarian tumor</td>
<td>37</td>
<td>17</td>
<td>22</td>
<td>76 (51.0)</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>19 (12.8)</td>
</tr>
<tr>
<td>Borderline ovarian tumor</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Serous borderline ovarian tumor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonovarian malignancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic breast cancer</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Benign tubal pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fimbrial/paratubal cyst</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>11 (7.4)</td>
</tr>
<tr>
<td>Hydrosalpinx</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4 (2.7)</td>
</tr>
<tr>
<td>STIC lesion</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Uterine/cervical pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibroids</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7 (4.7)</td>
</tr>
<tr>
<td>Complex atypical endometrial hyperplasia</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4 (2.7)</td>
</tr>
<tr>
<td>Endometrial polyp</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4 (2.7)</td>
</tr>
<tr>
<td>CIN</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>No pathology reported</td>
<td>5</td>
<td>16</td>
<td>5</td>
<td>26 (17.4)</td>
</tr>
</tbody>
</table>

Abbreviations: CIN, cervical intraepithelial neoplasia; ROCA, risk of ovarian cancer algorithm; STIC, serous tubal intraepithelial carcinoma.

*Total of 159 diagnoses in 149 women, because some women had more than one diagnosis.
Mutation status by detection type	Age at Diagnosis (years)	Cancer Site, Histotype	FIGO Stage, Grade	CA-125 at Detection or Final Screen (IU/ml)	ROCA Score at Detection Screen or Final Screen	Ultrasound Scan Result at Detection or Final Screen	Interval in Screen-Positive Women Between Abnormal Test and Diagnosis (days)	Interval in Screen-Negative Women Between Last Screen and Diagnosis (days)	Debulking: Optimal (o) or Complete (c)	Surgical Complexity Score	Year of Diagnosis	Alive on Death Censor Date, March 14, 2016	
BRCA1 positive	53	C56, serous/ endometrioid	IIc, high grade	341.2	High intermediate	Normal	80	NA	C	5	2010	Y	
Untested (mother negative)	52	C56, clear cell	Ia, high grade	11.7	Normal	Abnormal	9	NA	C	3	2010	Y	
BRCA1 positive	64	C57, serous	Ic, high grade	28.0	Elevated	Normal	56	NA	C	2	2010	Y	
BRCA1 positive	45	C56 and C54, Ia, G2 ovarian and Ia, G2 endometrioid	56.3	High intermediate	Abnormal	49 (CA-125) 63 (scan)	NA	C	4	2010	Y		
BRCA1 positive	46	C56, serous	Ic, high grade	24.2	Low intermediate	Abnormal	3 (CA-125) 49 (scan)	NA	C	3	2010	Y	
BRCA negative	49	C56, serous	Iic, high grade	23.8	High intermediate	Normal	100	NA	C	3	2011	Y	
Untested	50	C56, serous	Iia, high grade	33.8	High intermediate	Normal	147	NA	C	2	2011	Y	
BRCA1 positive	39	C56, serous	Iib, high grade	90.3	High intermediate	Normal	176	NA	C	3	2011	Y	
BRCA1 positive	37	C56, serous	Iib, high grade	78.8	High intermediate	Abnormal	209 (CA-125) 300 (scan)	NA	C	4	2010	Y	
BRCA1 positive	54	C56, serous	Iic, high grade	79.4	High intermediate	Abnormal	64 (CA-125) 48 (scan)	NA	C	4	2010	Y	
BRCA1 positive	46	C56, endometrioid	Iic, high grade	219.2	High intermediate	Abnormal	43 (CA-125) 29 (scan)	NA	O	2	2011	Y	
BRCA positive	48	C56, serous	Iic, high grade	51.2	Intermediate	Abnormal	115 (CA-125) 60 (scan)	NA	C (at IDS)	3	2009	N	
BRCA1 positive	39	C56, serous	Iic, high grade	96.9	Intermediate	Normal	129	NA	C	2	2009	N	
Occult cancers diagnosed within 365 days of prior screen (n = 6)													
BRCA2 positive	66	C57, serous	Ia, high grade	13.3	Normal	Normal	NA as occult 168 (CA-125) 334 (scan)	C	2	2011	Y		
BRCA1 positive	42	C57, serous	Ia, high grade	7.9	Normal	Normal	NA as occult 34 (CA-125) 127 (scan)	C	2	2010	Y		
BRCA1 positive	52	C57, endometrioid	Ia, G2	36.5	Normal	Normal	NA as occult 2 (CA-125) 255 (scan)	C	2	2011	Y		
BRCA2 VUS positive	47	C56, serous	Ic, high grade	88	Normal	Normal	NA as occult 121 (CA-125) 77 (scan)	C	3	2011	Y		
BRCA2 positive	57	C57, serous	Iia, high grade	28.1	Intermediate	Normal	NA as occult 131 (CA-125) 144 (scan)	C	3	2009	N		
BRCA1 positive	55	C56, serous	Iia, high grade	7.7	Normal	Normal	NA as occult 24 (CA-125) 81 (scan)	C	2	2010	Y		
Diagnosed > 1 year after end of screening on UK FOCS in (n = 18)													
BRCA1 positive	51	C56, serous	Ic, high grade	12.7	Normal	Normal	NA as occult 684 (CA-125) 815 (scan)	C	2	2013	Y		
BRCA1 positive	43	C56, serous	Iib, high grade	14.1	Normal	Normal	NA as occult 400 (scan only)	C	5	2012	Y		
BRCA1 positive	50	C57, serous	Iic, high grade	6.6	Normal	Normal	NA as presented with postmenopausal bleed 531 (CA-125) 1,966 (scan)	C	4	2013	Y		
BRCA1 positive	53	C56, serous	Iic, high grade	14.1	Normal	Detected on annual screening post study end	1,020 (CA-125) 77 (scan)	C	10	2014	Y		
BRCA1 positive	39	C57, serous	Iic, high grade	31.2	Normal	Never had UKFOCSS scan	Detected on annual screening post study end	O	3	2013	Y		
Invasive Ovarian, Tubal, and Peritoneal Cancers That Occurred During Screening and Follow-Up (continued)

Table 3

<table>
<thead>
<tr>
<th>Mutation status by detection type</th>
<th>Age at Diagnosis (years)</th>
<th>Cancer Site, Histology</th>
<th>FIGO Stage, Grade</th>
<th>FIGO Stage, Grade Detail</th>
<th>CA-125 at Detection or Final Screen (IU/ml)</th>
<th>ROC Score at Detection Screen or Final Screen</th>
<th>Ultrasonic Scan Result at Detection or Final Screen</th>
<th>Interval in Screen-Positive Women Between Abnormal Test and Diagnosis (days)</th>
<th>Interval in Screen-Negative Women Between Last Screen and Diagnosis (days)</th>
<th>Debulking: Optimal (o) or Complete (c)</th>
<th>Surgical Complexity Score</th>
<th>Year of Diagnosis</th>
<th>Alive on Death Date</th>
<th>March 14, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1 positive</td>
<td>47</td>
<td>C56, serous</td>
<td>IIIc, high grade</td>
<td>58.9</td>
<td>Low intermediate/positive</td>
<td>Normal</td>
<td>NA; presented with heavy menstrual bleeding(a)</td>
<td>511 (CA-125)</td>
<td>604 (scan)</td>
<td>O</td>
<td>3</td>
<td>2012</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA1 positive</td>
<td>44</td>
<td>C56, serous</td>
<td>IIIc, high grade</td>
<td>10.1</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with abdominal pain/distension</td>
<td>759 (CA-125)</td>
<td>772 (scan)</td>
<td>C (at IDS)</td>
<td>3</td>
<td>2013</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA1 positive</td>
<td>59</td>
<td>C49.1, serous</td>
<td>IIIc, high grade</td>
<td>6.4</td>
<td>Low intermediate(c)</td>
<td>Normal</td>
<td>NA; presented with constricting bleeding 30 months post-RRSO</td>
<td>980 (CA-125)</td>
<td>987 (scan)</td>
<td>C</td>
<td>2</td>
<td>2013</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA1 negative</td>
<td>72</td>
<td>C56, serous</td>
<td>IIIc, high grade</td>
<td>10.8</td>
<td>High intermediate/positive</td>
<td>Detected on annual screening post study end</td>
<td>677 (CA-125)</td>
<td>708 (scan)</td>
<td>No debulking surgery done</td>
<td>NA</td>
<td>2013</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA1 negative</td>
<td>47</td>
<td>C57, serous</td>
<td>IIIc, high grade</td>
<td>35.2</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with pelvic pain</td>
<td>1,176 (CA-125)</td>
<td>1,388 (scan)</td>
<td>C</td>
<td>9</td>
<td>2014</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA1 positive</td>
<td>54</td>
<td>C57, serous</td>
<td>IIIc, high grade</td>
<td>11.8</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; suspicious left adnexal mass on TVS done as preoperative screen before planned RRSO</td>
<td>399 (CA-125)</td>
<td>683 (scan)</td>
<td>C</td>
<td>9</td>
<td>2012</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BRCA1 positive</td>
<td>52</td>
<td>C56, serous</td>
<td>IIIc, high grade</td>
<td>4.5</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with abdominal pain/distension</td>
<td>2,159 (CA-125)</td>
<td>2638 (scan)</td>
<td>C (at IDS)</td>
<td>2</td>
<td>2014</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA1 positive</td>
<td>52</td>
<td>C57, serous</td>
<td>IIIc, high grade</td>
<td>15.6</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with unexpected stage IIIc disease found at RRSO</td>
<td>1,197 (CA-125)</td>
<td>1,157 (scan)</td>
<td>C</td>
<td>4</td>
<td>2013</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA2 positive</td>
<td>79</td>
<td>C56/C57, serous</td>
<td>IIIc, high grade</td>
<td>7.9</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with bowel obstruction after screening ended</td>
<td>1,430 (CA-125)</td>
<td>1,535 (scan)</td>
<td>Debulking surgery not possible(d)</td>
<td>NA</td>
<td>2015</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>BRCA2 positive</td>
<td>68</td>
<td>C56, serous</td>
<td>IIIc, high grade</td>
<td>25.9</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with abdominal pain/distension</td>
<td>869 (CA-125)</td>
<td>1,314 (scan)</td>
<td>O (at IDS)</td>
<td>3</td>
<td>2014</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA2 positive</td>
<td>63</td>
<td>C56, serous</td>
<td>IV, high grade</td>
<td>14.0</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with shortness of breathed/obstructive distension</td>
<td>1,288 (CA-125)</td>
<td>1,197 (scan)</td>
<td>C (at IDS)</td>
<td>4</td>
<td>2016</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA1 positive</td>
<td>50</td>
<td>C56, serous</td>
<td>IV, high grade</td>
<td>8.5</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with malignant pleural effusion</td>
<td>1,157 (CA-125)</td>
<td>1,402 (scan)</td>
<td>C (at IDS)</td>
<td>2</td>
<td>2014</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BRCA2 positive</td>
<td>43</td>
<td>C57, serous</td>
<td>IV, high grade</td>
<td>11.1</td>
<td>Normal</td>
<td>Normal</td>
<td>NA; presented with malignant pleural effusion</td>
<td>541 (CA-125)</td>
<td>726 (scan)</td>
<td>C (at IDS)</td>
<td>3</td>
<td>2012</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: C48.1, primary peritoneal cancer; C54.1, endometrial cancer; C56, ovarian cancer (excluding borderline ovarian tumors in this table); C57, fallopian tube cancer; FIGO, International Federation of Gynecology and Obstetrics; G, grade; IDS, interval debulking surgery; NA, not applicable; ROC, risk of ovarian cancer; ROCA, risk of ovarian cancer algorithm; RRSO, risk-reducing salpingo-oophorectomy; TVS, transvaginal sonography; UK FOCSS, United Kingdom Familial Ovarian Cancer Screening Study; VUS, variant of unknown significance.

\(a\)For these cases, ultrasound scan result is at time of referral.

\(b\)Reluctant to have surgery. Computed tomography scan done and reported as normal; underwent surgery when CA-125 continued to increase.

\(c\)Reluctant to have surgery. TVS repeated and showed complex adnexal mass.

\(d\)Reluctant to have surgery. Magnetic resonance imaging scan done and reported as nonmalignant. Underwent surgery when CA-125 continued to increase.

\(e\)Reluctant to have surgery. TVS repeated but still normal. Eventually, computed tomography showed complex adnexal and omental masses.

\(f\)For these cases, ultrasound scan result pre-RRSO is by definition normal.

\(g\)Intermediate result classified as an incomplete screen, because ROC value prior to RRSO was abnormal and would have triggered a repeat test had participant not undergone RRSO. The case was classified as occult for screening performance analysis.

\(h\)Incompletely staged.

\(i\)Intermediate result classified as an incomplete screen, because patient was noncompliant with request for repeat test.

\(j\)Found to have CA-125 level of 288 IU/ml and adnexal mass on TVS.

\(k\)Found to have CA-125 level of 581 IU/ml and widespread disease on computed tomography.

\(l\)Intermediate result classified as an incomplete screen, because test was not repeated as patient was withdrawn by center for RRSO.

\(m\)Found to have CA-125 level of 1,094 IU/ml and widespread disease on computed tomography.

\(n\)Underwent laparotomy and was found to have nonresectable disease. Subsequently deemed unfit to receive chemotherapy.

\(o\)CA-125 level of 12 IU/ml 522 days before diagnosis, then 339 IU/ml 55 days before diagnosis.

\(p\)Underwent laparoscopy for consideration of IDS but had excellent response to chemotherapy, and multidisciplinary team decided not to perform IDS.
(eight [44.4%] of 18 women; CI, 21.5% to 69.2%; P = .008). The mean surgical complexity score in women diagnosed during screening or less than 365 days after the final screen was 2.7 compared with 4.3 in those diagnosed subsequently (Mann-Whitney U test, P = .16).

Screening/Surgical Intervals

The median delay in incident detection screens in this Phase II study was 6 days (range, 0 to 87 days) compared with 88 days (range, 6 to 737 days) in Phase I (gamma generalized linear model, P = .004). The median interval between detection screen and diagnosis in this Phase II study was 82 days (range, 9 to 209 days) compared with 79 days (range, 15 to 184 days) in Phase I (P = not significant). Reasons for the delay included falsely reassuring scans and reluctance to undergo surgery (Table 3).

Screening Performance

All 13 cancers (100%) in women who did not undergo RRSO were screen detected (CI, 75.3% to 100%). Hence, for modeled sensitivity, the lower confidence limit of 75.3% was used to conservatively estimate the proportion of occult cancers which would have been screen detected had women not undergone RRSO.

Modeled sensitivity, PPV, and negative predictive value (NPV) for the detection of OC/FTC at 1 year for the whole population were 94.7% (CI, 74.0% to 99.9%), 10.8% (CI, 6.5% to 16.5%), and 100% (CI, 100% to 100%), respectively. PPV was significantly better in BRCA1/2 carriers than in women who had an unknown mutation status (Table 3).

Comparison of Phase I With Phase II

Key comparisons of UK FOCSS Phase I and Phase II are listed in Table 5. Rates of clinically presenting interval cancers, zero residual disease after surgery, modeled sensitivity, proportions of women diagnosed with cancer stage less than IIIb, screening delays, and proportions with normal scans at referral were all better in Phase II, but only the comparisons of screening delays and proportions with normal scans at referral were significant.

Table 4. Overall Prevalence and Incidence Screening Performance Characteristics According To Population Screened

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Screened Population (N = 4,348)</th>
<th>BRCA1/2 Mutation Carriers Only* (n = 804)</th>
<th>Unknown Mutation Status at Recruitment (n = 3,580)</th>
<th>P (BRCA carriers to unknown mutation status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (%) of women who underwent screen-positive surgery</td>
<td>162 (3.7)</td>
<td>25 (3.1)</td>
<td>141 (3.9)</td>
<td>.307</td>
</tr>
<tr>
<td>No. (%) of those undergoing surgery of screen-detected OC/FTC</td>
<td>13 (8.0)</td>
<td>9 (36.0)</td>
<td>9 (6.4)</td>
<td>< .001</td>
</tr>
<tr>
<td>No. (%) of RRSO occult cancers diagnosed < 1 year of screen</td>
<td>6 (0.1)</td>
<td>5 (0.6)</td>
<td>1 (0.1)</td>
<td>.007</td>
</tr>
<tr>
<td>No. of interval cancers diagnosed < 1 year of screen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

*Abbreviations: FTC, fallopian tube cancer; NA, not applicable; NPV, negative predictive value; OC, ovarian cancer; PPV, positive predictive value; RRSO, risk-reducing salpingo-oophorectomy.

†Specificity does not depend on false-negative or true-positive rate.

These UK FOCSS Phase II results suggest that in a high-risk population, ROCA-based multimodal screening every 4 months, alongside reminders of the effectiveness of RRSO, is associated with high sensitivity, significantly lower high-volume disease, and a high zero residual disease rate after surgery compared with women from the same cohort in whom cancer was diagnosed > 1 year after screening ended. Two similar US studies were published while this paper was in press as a combined analysis, with three of six incident cancers found at stage I/II.

The strengths of this study are its size, multicenter setting, centralized screening with a validated algorithm, and reliable multiple-source follow-up. A limitation is the nonrandomized design. However, data about OC diagnosed after screening ended allowed comparisons in the absence of a nonscreening arm. Other limitations include the unknown mutation status of many participants and the small number of incident cancers, which limited power. Although screening delays were effectively eliminated (median, 6 days), the median interval between abnormal results and surgery continued to be > 2 months (82 days in this Phase II study vs 79 days in Phase I). There were still some long intervals as a result of patient reluctance to undergo surgery and falsely reassuring imaging associated with an abnormal ROC at referral, as seen in UKCTOCS.

During and within 1 year of UK FOCSS screening, no patients with interval cancers presented with symptoms, sensitivity was...
The high compliance with blood tests and TVS suggests that the protocol is feasible and acceptable. However, compliance might not be maintained outside a trial. A parallel psychological study found the lower cancer incidence in women with an unknown status.2,30 The overall study was associated with more primary surgery and with higher residual disease achieved with less complex surgery. Published complete cytoreduction rates in clinically presenting BRCA1/2 carriers ranged from 28% to 30%. The overall findings suggest a screening-mediated reduction in disease volume. It is likely this would translate into reduced surgical morbidity and fewer incomplete resections. It remains unknown whether this would improve survival in screened high-risk women. We were unable to analyze survival, because there were only three deaths in the 37 women with invasive OC/FTC/PPCs at censorship on March 14, 2016. Although this is encouraging, medium-term survival of OC in BRCA1/2 carriers is better than that of BRCA1/2-negative patients.

The performance characteristics of screening every 4 months were encouraging; overall incident sensitivity was 94.7%, with occult cancer detection modeled, and PPV was 10.8% (ie, greater than the suggested 10% level for general-population screening).6 However, PPV is less relevant in high-risk populations for whom RRSO is already recommended as optimal management. As expected, PPV was better in BRCA1/2 carriers (42.9%) than in women who had an unknown mutation status (7.7%) because of the lower cancer incidence in women with an unknown status.

The high compliance with blood tests and TVS suggests that the protocol is feasible and acceptable. However, compliance might not be maintained outside a trial. A parallel psychological study found moderate cancer distress at 1 week in women with abnormal ROCA and/or scan results, which led to higher withdrawal from screening.31 However, there was no significant effect on general anxiety and/or depression on return to routine screening or at 9 months.

In conclusion, our protocol achieves encouraging performance characteristics, is associated with a low rate of high-volume disease at primary surgery, and had a high zero residual disease rate at low levels of surgical complexity. RRSO remains the treatment of choice for women at high-risk of OC/FTC. In those not ready or willing to undergo surgery, multimodal screening using ROCA every 4 months and TVS (at an interval determined by the ROCA), with regular discussions about the effectiveness of RRSO, appears to be a better option than symptom awareness alone. Such screening should not be viewed as an alternative to surgery, but it does seem to offer a better chance of avoiding a diagnosis of advanced incompletely resectable OC/FTC in the interim.

Table 5. Key Comparisons Between UK FOCSS Phase I and Phase II

<table>
<thead>
<tr>
<th>Screening Strategy</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Annual CA-125 (with cutoff)</td>
<td>ROCA Every 4 Months Plus</td>
</tr>
<tr>
<td></td>
<td>Plus TVS, Arranged Locally</td>
<td>Annual TVS, Arranged Centrally</td>
</tr>
<tr>
<td>Time period</td>
<td>May 6, 2002 to January 1, 2008</td>
<td>June 14, 2007 to May 15, 2012</td>
</tr>
<tr>
<td>No. of participants</td>
<td>3,563</td>
<td>4,348</td>
</tr>
<tr>
<td>Women-screen years</td>
<td>11,366</td>
<td>13,728</td>
</tr>
<tr>
<td>Median age (range), years</td>
<td>44.6 (35-81)</td>
<td>45.5 (34-84)</td>
</tr>
<tr>
<td>No. (%) of known BRCA1/2 mutation carriers as a proportion of population</td>
<td>807 (17.0)</td>
<td>804 (18.5)</td>
</tr>
<tr>
<td>No. (%) of occult cancers in known BRCA carriers who underwent RRSO</td>
<td>3 (1.8) in 169</td>
<td>9 (4.0) in 227</td>
</tr>
<tr>
<td>No. (%) of incident screen-detected cancers diagnosed at stage IIIa or earlier</td>
<td>5 (38.5) in 13</td>
<td>6 (50.0) in 12</td>
</tr>
<tr>
<td>Modelled incident sensitivity, (%)</td>
<td>82.4</td>
<td>88.9</td>
</tr>
<tr>
<td>No. (%) of incident screen-detected cancers that had zero residual disease</td>
<td>8 (61.5) in 13</td>
<td>11 (91.7) in 12</td>
</tr>
<tr>
<td>No. (%) of cancers that had zero residual disease < 365 days after last screen</td>
<td>19 (70.4) in 27</td>
<td>18/19 (94.7%)</td>
</tr>
<tr>
<td>Proportion of incident cancers presenting clinically</td>
<td>2 of 18 (n = 1, stage I; n = 1, stage IV)</td>
<td>0 of 18</td>
</tr>
<tr>
<td>Proportion (%) of incident screen-detected cancers with a normal scan at referral</td>
<td>0 of 13 (0)</td>
<td>5 of 12 (41.7)</td>
</tr>
<tr>
<td>Median incident screen delay prior to detection (range), days</td>
<td>88 (6-737)</td>
<td>6 (0-87)</td>
</tr>
<tr>
<td>Median interval between detection screen and surgery (range), days</td>
<td>77 (15-184)</td>
<td>80 (9-209)</td>
</tr>
</tbody>
</table>

Abbreviations: NA, not applicable, because statistical comparison was not appropriate (eg, because the Phase II denominator included proportion of those in Phase I denominator); RRSO, risk-reducing salpingo-oophorectomy; TVS, transvaginal scan.

*Identified by a combination of National Health Service clinical genetics testing and next-generation sequencing.
†By using a generalized linear model with a gamma distribution and log link.

Disclosures provided by the authors are available with this article at jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: Adam N. Rosenthal, James Mackay, Steven J. Skates, Usha Menon, Ian J. Jacobs
Collection and assembly of data: Adam N. Rosenthal, Lindsay S.M. Fraser, Sue Philpott, Ranjit Manchanda, Philip Badman, Richard Hadwin, Ivana Rizzuto, Elizabeth Benjamin, Naveena Singh, D. Gareth Evans, Diana M. Eccles, Andy Ryan, Robert Liston, Anne Dawnay, Jeremy Ford, Richard Gunu, James Mackay, Usha Menon, Ian J. Jacobs
Data analysis and interpretation: Adam N. Rosenthal, Lindsay S.M. Fraser, Sue Philpott, Ranjit Manchanda, Matthew Burnell, Richard Hadwin, Ivana Rizzuto, Elizabeth Benjamin, Naveena Singh, D. Gareth Evans, Diana M. Eccles, James Mackay, Steven J. Skates, Usha Menon, Ian J. Jacobs

Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors
REFERENCES

Affiliations

Adam N. Rosenthal, Lindsay S.M. Fraser, Susan Philpott, Ranjit Manchanda, Matthew Burnett, Philip Badman, Richard Hadwin, Ivana Rizzuto, Andy Ryan, Robert Liston, Jeremy Ford, Richard Gunu, Usha Menon, and Ian J. Jacobs, University College London
Elizabeth Garrett Anderson Institute for Women’s Health; Elizabeth Benjamin, University College London; Naveena Singh, Barts Health National Health Service Trust; Ranjit Manchanda, Barts Cancer Institute, Queen Mary University of London; Anne Dawnay, University College London Hospital; James Mackay, The University College London Cancer Institute, London; D. Gareth Evans, University of Manchester, St Mary’s Hospital Manchester, Manchester; Diana M. Eccles, Southampton General Hospital, Southampton, United Kingdom; Steven J. Skates, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Ian J. Jacobs, University of New South Wales Australia, Sydney, New South Wales, Australia.

Support
Supported by Cancer Research UK (C1005/A6383, C1005/A7749), The Eve Appeal, and the United Kingdom National Institute for Health Research (NIHR). Researchers at University College London were supported by the NIHR Biomedical Research Centre at University College London Hospitals National Health Service Foundation Trust and University College London.

Prior Presentation
Previously presented in part at the Annual Meeting of the American Society of Clinical Oncology, Chicago, IL, May 31-June 4, 2013; the British Gynaecological Cancer Society Annual Meeting, Belfast, Northern Ireland, June 20-21, 2013; and the 18th Annual Meeting of the European Society of Gynaecological Oncology, Liverpool, United Kingdom, October 19-22, 2013.
Evidence of Stage Shift in Women Diagnosed With Ovarian Cancer During Phase II of the United Kingdom Familial Ovarian Cancer Screening Study

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Adam N. Rosenthal
Honoraria: Roche
Consulting or Advisory Role: Myriad Genetics, Abcodia
Speakers' Bureau: Roche
Travel, Accommodations, Expenses: Roche

Lindsay S.M. Fraser
No relationship to disclose

Sue Philpott
No relationship to disclose

Ranjit Manchanda
Other Relationship: Barts and the London Charity; The Eve Appeal; Cancer Research UK; Israel National Institute for Health Policy Research

Matthew Burnell
No relationship to disclose

Philip Badman
No relationship to disclose

Richard Hadwin
No relationship to disclose

Ivana Rizzuto
No relationship to disclose

Elizabeth Benjamin
No relationship to disclose

Naveena Singh
No relationship to disclose

D. Gareth Evans
Honoraria: AstraZeneca

Diana M. Eccles
Consulting or Advisory Role: AstraZeneca

Andy Ryan
No relationship to disclose

Robert Liston
No relationship to disclose

Anne Dawnay
Consulting or Advisory Role: Abcodia
Travel, Accommodations, Expenses: Roche

Jeremy Ford
No relationship to disclose

Richard Gunu
No relationship to disclose

James Mackay
Employment: Myriad Genetics, CIS Oncology
Honoraria: Myriad Genetics International
Consulting or Advisory Role: Company: Myriad Genetics, Abcodia, CIS Oncology

Steven J. Skates
Stock or Other Ownership: SISCAPA Assay Technologies
Consulting or Advisory Role: Abcodia
Patents, Royalties, Other Intellectual Property: Abcodia

Usha Menon
Stock or Other Ownership: Abcodia
Research Funding: Abcodia (Inst)

Ian J. Jacobs
Employment: Women's Health Specialists
Leadership: Abcodia
Stock or Other Ownership: Abcodia
Consulting or Advisory Role: Abcodia
Patents, Royalties, Other Intellectual Property: ROC Algorithm
Acknowledgment

We thank the participants, without whom the study would not have been possible. We thank the lead clinicians at collaborating centers and their research, administrative, and sonography colleagues for their hard work and support over so many years. We thank the independent data monitoring committee (Max Parmar [chair], Shehla Mohammed, Karina Reynolds) and trial steering committee (Julietta Patnick [chair], Diana Eccles, Stephen Duffy, Derek Cruikshank, Louise Bayne). We also thank departmental colleagues Lisa Hinton, Michelle Johnson, Sarah Chamberlain, Jessica Mozersky, Lisa Perreault, Lesley Hague, and Tracy Pearmain and the laboratory team.