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Human cerebrovascular function in health
and disease: insights from integrative
approaches
Erin D. Ozturk1,2 and Can Ozan Tan1,3*

Abstract

Background: The marked increase in the size of the brain, and consequently, in neural processing capability,
throughout human evolution is the basis of the higher cognitive function in humans. However, greater
neural, and thus information processing capability, comes at a significant metabolic cost; despite its relatively
small size, the modern human brain consumes almost a quarter of the glucose and oxygen supply in the
human body.
Fortunately, several vascular mechanisms ensure sufficient delivery of glucose and oxygen to the active
neural tissue (neurovascular coupling), prompt removal of neural metabolic by-products (cerebral vasoreactivity), and
constant global blood supply despite daily variations in perfusion pressure (cerebral autoregulation). The aim of this
review is to provide an integrated overview of the available data on these vascular mechanisms and their underlying
physiology. We also briefly review modern experimental approaches to assess these mechanisms in humans, and
further highlight the importance of these mechanisms for humans’ evolutionary success by providing examples of their
healthy adaptations as well as pathophysiological alterations.

Conclusions: Data reviewed in this paper demonstrate the importance of the cerebrovascular function to support
humans’ unique ability to form new and different interactions with each other and their surroundings. This highlights
that there is much insight into the neural and cognitive functions that could be gleaned from interrogating the
cerebrovascular function.
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Background
Among the most salient features of human evolution is
the dramatic increase in the brain size from early homi-
nins (e.g., genus Ardipithecus) to Homo sapiens. This in-
crease marks the basis of the higher cognitive function
attributed to humans, such as new and different interac-
tions with each other (e.g., social interactions) and their
surroundings (e.g., tool use), and underlies their ability
to face unfamiliar habitats. This level of the cognitive
function is uniquely “human”; compared to their primate
relatives, modern humans have far more white matter in

their prefrontal cortex [1, 2], reflecting denser neural
connectivity, and consequently, a greater ability to
process information.
However, greater neural, and thus information pro-

cessing capability, comes at a significant metabolic cost.
Despite its relatively small size compared to other or-
gans, the modern human brain consumes almost one
quarter of the glucose and oxygen supply in the human
body [3, 4]. The constraints imposed on the neural func-
tion by this demand are further compounded by the fact
that neural metabolism is almost entirely aerobic and
that neurons do not store enough glucose to function on
their own [3]. That is, neural cells rely on external glu-
cose and oxygen supply for metabolic activity (contrast
this to, e.g., muscle cells, which can briefly utilize carbo-
hydrates in the absence of sufficient oxygen for anaer-
obic metabolism). Therefore, there is a constant need for
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glucose and oxygen supply to the brain for sufficient
neural function. However, the evolution of brain size
and higher cognitive function was also coupled with the
evolution of bipedal movement, resulting in yet another
significant constraint to the blood, thus, glucose and
oxygen supply to the brain: the upright posture and con-
sequent gravitational force against the blood flow above
the heart level. Fortunately, several physiologic mecha-
nisms ensure sufficient delivery of glucose and oxygen to
active neural tissue, prompt removal of neural metabolic
by-products, and constant global blood supply despite
gravitational forces and daily variations in perfusion
pressure.
Study of cerebrovascular circulation dates back to the

mid-nineteenth century, when Donders observed that
asphyxia causes dilation of cerebral blood vessels [5].
Near the turn of the century, Roy and Sherrington ar-
gued that vasoconstrictor nerves cause constriction in
response to anoxia, but that metabolic bi-products lead
to dilation of cerebral blood vessels [6]. However, Hill
argued that cerebral blood flow was an entirely passive
function of changes in blood pressure [7], a perspective
that dominated physiologic inquiry for quite some time.
By the middle of the twentieth century, it was recog-
nized that there was evidence for increased blood flow
to areas of increased brain activity, but that total blood
supply remained remarkably constant [8, 9]. To assess
the underlying physiological mechanisms of this main-
tenance in flow, Guyton and associates [10, 11], in tech-
nically difficult physiological experiments yet to be
replicated, isolated the cerebral circulation of one dog
from his peripheral circulation, by supplying it from an-
other, donor dog. The carotid sinus nerves of the recipi-
ent dog were cut, eliminating baroreceptor and
chemoreceptor responses to pressure changes. Under
these circumstances, the recipient dog showed no signs
of maintenance of flow, but instead cerebral blood flow
simply tracked arterial blood pressure over a range of 20
to 140 mmHg. These studies established the groundwork
for the modern research to understand regulation of
cerebral blood flow.
In this paper, we will first review our current under-

standing of the components of cerebrovascular control
and the physiology that underlies them. Next, we will
provide a brief review of modern experimental ap-
proaches to assess these components in humans. An un-
derstanding of the strengths and weaknesses of these
approaches is necessary to better interpret the findings
of studies assessing the cerebrovascular function, the
focus of this review. Subsequently, we will highlight the
importance of the cerebrovascular function for humans’
evolutionary success by providing an overview of healthy
adaptations as well as pathophysiological alterations of
the cerebrovascular function and their consequences.

Physiology of cerebrovascular control
The brain seems to lack the survival advantage of other
organs that are more tolerant to fluctuations in blood
flow due to its dependence on aerobic metabolism and
constraints imposed by bipedal posture on blood supply.
However, a large number of studies have shown that this
disadvantage is compensated by three mechanisms to
ensure that brain perfusion is maintained and regulated
appropriately: neurovascular coupling, cerebral vasoreac-
tivity, and cerebral autoregulation.

Neurovascular coupling
The distribution of cerebral flow is regulated according
to the functional activity of different brain regions. This
link between increased metabolic demand and increased
blood flow is termed neurovascular coupling. Alterations
in this mechanism can impair the ability of the brain
vasculature to provide sufficient flow to active regions,
leading to neural dysfunction [12].
It is generally thought that regional cerebral blood

flow and cerebral metabolic rate are normally coupled
because neuronal activity requires delivery of adequate
glucose and oxygen to specific brain regions [12]. How-
ever, it should be noted that the increase in regional
cerebral blood flow in response to local neural brain ac-
tivation is not altered by mild to moderate hypoglycemia
(low blood glucose concentration) [13], and regional
cerebral blood flow does not appear to be affected by el-
evated arterial oxygen concentration neither at rest nor
in response to somatosensory stimulation [14]. More-
over, regional responses of cerebral blood flow to physio-
logic or pathophysiologic neuronal activation appears to
be independent of the level of oxygen transported to the
tissue [15]. Thus, the lack of glucose alone does not fully
explain regional blood flow responses, and a shortage of
oxygen may not be among the primary drivers of vaso-
dilation (hence, the increase in regional blood flow) dur-
ing increased neuronal activity.
Instead, vascular responses to neural activation appear

to be tightly controlled by the afferent inputs to the acti-
vated region, and astroglial signals appear to be the pri-
mary effectors in conveying integrated neural signals
and neuronal activity into a vascular response [16]. As-
trocytes directly contact endothelial cells on the vascular
smooth muscle and release a number of vasodilatory
substances, such as nitric oxide [17]. While the vasodila-
tory effects in the local microcirculation alone may be
insufficient to effectively increase local blood flow, the
vasodilatory signal are propagated back to upstream pial
arterioles via gap junctions of neighboring endothelial
cells. This is necessary as pial arterioles offer the greatest
resistance to blood flow. Thus, the vascular endothelial
function and smooth muscle responsiveness appear to
be critical in transducing the signals so that cerebral
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vasculature acts in concert to increase regional cerebral
flow to support neural activation.

Cerebral vasoreactivity
A second component of cerebrovascular control, termed
cerebral vasoreactivity, is the high sensitivity of cerebral
vasculature to changes in arterial CO2 and oxygen (O2)
levels. High CO2 (hypercapnia) leads to vasodilation and
increases flow. In contrast, low CO2 (hypocapnia) leads
to vasoconstriction and decreases in flow. This highly
sensitive flow response is a vital homeostatic function as
arterial CO2 can fluctuate widely from one breath to the
next and can change significantly with everyday postural
changes.
This response to arterial CO2 appears to be global. For

example, in response to a breath-hold maneuver, which
increases arterial CO2 roughly proportionally to the
length of breath-hold (but see the next section for ca-
veats), there is approximately 1.7- to 1.9-fold increase in
cerebral blood flow in the middle cerebral, as well as
basilar arteries for every second of breath holding, with-
out any apparent lateral differences [18]. Moreover, this
response is primarily due to the change in blood acidity:
global cerebral blood flow increases in a dose-dependent
fashion and for up to 15 min in response to systemic ad-
ministration of acetazolamide, though the dose depend-
ency does not appear to be the case for regional blood
flow responses [19]. Acetazolamide inhibits carbonic
anhydrase, the catalyzer of the hydration reaction of car-
bon dioxide, thereby elevating blood acidity without any
change in blood gas concentrations [20]. Thus, vasodila-
tion in response to hypercapnia “washes out” CO2 from
brain tissue, thereby attenuating the rise in blood pH,
and conversely, vasoconstriction in response to hypocap-
nia attenuates the fall in brain pH.
While the mechanism underlying these CO2-mediated

blood flow changes has not been entirely elucidated,
CO2/pH-induced alterations in vasoactive factors, such
as endothelial release of nitric oxide (NO), are essential.
However, it is important to note that the brain (i.e.,
neural), and not vascular (i.e., endothelial) NO, may have
an important role in the response to hypercapnia, al-
though the latter may have a permissive role in this re-
sponse [21]. In addition, autonomic sympathetic outflow
appears to impact cerebral vasoreactivity. For example,
in an elegant study in dogs, Harper and Glass [22] low-
ered arterial pressure (by controlled hemorrhage), which
is expected to elevate sympathetic outflow, and reported
that cerebral vasoreactivity was blunted. This is consist-
ent with data from humans; cerebral vasoreactivity is re-
ported to increase by almost 50% during ganglionic (i.e.,
sympathetic and cholinergic) blockade in humans [23].
Thus, sympathetic outflow, which is primarily vasocon-
strictive, may restrain CO2-mediated vasodilation. On

the other hand, alpha-adrenergic agonist ephedrine [24]
or alpha/beta-adrenergic antagonist labetalol [25] do not
appear to impact cerebral vasoreactivity. Therefore, the
exact mechanisms that underlie cerebral vasoreactivity
remain unclear.

Cerebral autoregulation
The third mechanism—cerebral autoregulation—coun-
teracts the fluctuations in systemic arterial pressure that
occur in everyday activities. For example, changes in
posture can result in as much as a 50% drop in systolic
pressure and produce vasovagal syncope with brief loss
of consciousness, if blood flow to reticular brain cells
falls rapidly [6]. Cerebral circulation is a high-flow vas-
cular bed encased in a non-distensible skull; inadequate
blood flow leads to brain damage and neural degener-
ation, and increased perfusion leads to increased intra-
cranial pressure that can also lead to neural
degeneration and cell death due to blood vessel and tis-
sue compression. Fortunately, cerebral vasculature is
able to regulate perfusion in response to hypotension
and to swings in arterial pressure [26–28]. This mechan-
ism—autoregulation—ensures that transient fluctuations
in pressure (e.g., due to respiration) are transmitted to
the cerebral circulation almost linearly, whereas slower
fluctuations that may result in greater sustained impact
on neurophysiological health (by causing prolonged
changes in cerebral perfusion) are effectively buffered
against. Thus, intact cerebral autoregulation is critical to
neurophysiologic health.
Original observations of cerebral flow responses

[29] supported a counter-regulation against changes
in arterial pressure encompassing the time scale from
minutes to hours. Effective autoregulation results in
maintained cerebral blood flow via cerebrovascular re-
sistance changes that fully counteract changes in ar-
terial pressure [30, 31]. In the modern literature, a
distinction has been made between this “static” and
“dynamic” autoregulation; the latter takes place over
several seconds or beats. This is based on recent
work showing that there is a close linear relation be-
tween changes in arterial pressure and cerebral blood
flow that occur almost synchronously when arterial
pressure fluctuations are relatively fast (faster than ~
10 s), and that this linear relation gradually disap-
pears as fluctuations become slower [27, 28, 32].
However, there may be no compelling physiological
or pragmatic evidence to indicate that static and dy-
namic autoregulation are distinctly different mecha-
nisms [32].
There are strong inferential data suggesting that the

autonomic (sympathetic and cholinergic) nervous system
plays a role in cerebrovascular regulation. For example,
the magnitude of spontaneous fluctuations in flow in
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relation to those in pressure is related to the severity of
carotid stenosis [33], which can markedly impair auto-
nomic control [34]. In addition, in response to acute
sympathoexcitatory stimuli (e.g., isometric exercise [35],
simulated orthostatic stress [36], cold pressor test [37]),
cerebrovascular resistance increases. Moreover, after
ganglionic blockade with trimethaphan [38], or systemic
pharmacologic blockade of alpha-adrenergic [39] or
muscarinic cholinergic receptors [40], the gain (i.e.,
transfer function magnitude) between cerebral flow and
systemic pressure almost doubles, indicating that the de-
gree of cerebral counter-regulation to pressure fluctua-
tions was reduced. These data are strongly suggestive of
an autonomic role in cerebral blood flow control. In fact,
more recently, we have shown that in humans, auto-
nomic sympathetic and cholinergic control is responsible
for homeostatic maintenance of cerebral blood flow in
response to arterial pressure fluctuations within physio-
logic range, and local myogenic (i.e., calcium channel-
mediated) control may be neuroprotective against ische-
mia and hemorrhage when swings in pressure are rapid
and large [41]. Therefore, intact autonomic function is
critical to normal cerebrovascular responses to changes
in arterial pressure.

Interactions between the components of the
cerebrovascular function
It is important to note that individual components of
the cerebrovascular function do not act in isolation,
but interact to ensure proper neural perfusion. For
example, we have recently shown that fluctuations in
CO2 along with those in cardiac output determine the
magnitude of slow fluctuations in cerebral blood flow
and that cerebrovascular responses to arterial blood
pressure fluctuations become pronounced only when
central volume shift is pronounced [42]. In addition,
recent data show that in healthy volunteers, engage-
ment of cerebral autoregulation appears to blunt neu-
rovascular coupling [43]. Thus, there is a significant
interaction between the mechanisms that underlie
neurovascular coupling, autoregulation, and vasoreac-
tivity. Changes in mean arterial pressure and those in
partial pressure of CO2 demonstrate a strong positive
correlation only during ganglionic blockade in
humans [23], and in those with autonomic dysfunc-
tion, visually evoked increases in cerebral blood flow
are reduced [44] and cognitive performance is some-
what reduced [45, 46] during orthostatic stress. These
data are highly suggestive of autonomic control as the
mediator of the interaction between components of
the cerebrovascular function. Nonetheless, specifics of
these interactions and physiology that underlies them
remain largely unknown.

Experimental approaches to assess the
cerebrovascular function in humans: a brief
overview
To measure cerebral blood flow, earlier studies of auto-
regulation relied on inert gas and dilution methods
which are limited by both a poor time resolution and, in
some cases, by very few observations [47]. Because of
these limitations, earlier studies of the cerebrovascular
function actually pooled data across subjects. Despite
evident limitations of such techniques, this work did
shed light on cerebral blood flow regulation and lay the
groundwork for more recent work exploiting real-time
measurements of pressure and flow.
The recent availability of instrumentation with high

temporal resolution, such as finger photoplethysmogra-
phy coupled with transcranial Doppler ultrasound im-
aging in the 1980s, allowed utilization of rapid, beat-by-
beat measurements of arterial pressure and cerebral
blood flow to explore cerebrovascular function cerebral
autoregulation within individuals. Assuming that, at least
in healthy individuals, cerebrospinal fluid pressure is
roughly constant [48], the pressure difference between
the cerebral arteries and veins (i.e., intracranial pressure)
drives cerebral blood flow, and the pressure in cerebral
and peripheral veins is usually very close to the atmos-
pheric pressure [49]. Thus, photoplethysmographic ar-
terial pressure at the level of the head (e.g., at the finger
in the supine position) is usually adequate to represent
cerebral perfusion pressure. Using transcranial Doppler
ultrasonography (TCD), cerebral blood flow velocity can
be measured at one of the major cerebral arteries (anter-
ior cerebral, posterior cerebral, middle cerebral, or verte-
bral artery), although middle cerebral artery (MCA) is
most common in the literature. It should be noted that
the recorded signal is velocity and not flow. Fortunately,
at least for the MCA in healthy individuals, the diameter
remains relatively constant despite hypercapnic [50, 51],
hypocapnic [50, 52], and orthostatic [53] challenges
within physiological range. While acute physical activity
and exercise may impact MCA diameter, the extent of
the change in MCA does not appear to be more than 2%
[54, 55]. Thus, in general, flow velocity can be used as
an adequate surrogate for cerebral flow. Once adequate
signals are obtained, one can use appropriate stimuli to
engage neurovascular coupling, vasoreactivity, and/or
autoregulation to assess the components of the cerebro-
vascular function.

Neurovascular coupling
The link between increased metabolic demand and in-
creased blood flow—neurovascular coupling—in humans
has commonly been explored using functional magnetic
resonance imaging (fMRI). However, this may not be al-
ways feasible due to the high cost and logistical issues
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associated with MR imaging, and TCD has been utilized
as an alternative measurement of global cerebral blood
flow responses to neural activity. It should be noted,
however, that spatial and temporal resolution of fMRI
and TCD are completely different. Moreover, fMRI and
TCD rely, respectively, on blood oxygenation and blood
flow velocity, and there is data suggesting that blood
oxygenation (measured by near infrared spectroscopy)
and blood flow velocity (measured by TCD) responses to
neural activity do not always match [56, 57]. Therefore,
observations based on MR imaging (or near infrared
spectroscopy) and those based on TCD may not always
be directly comparable.
For assessment of neurovascular coupling, it is crit-

ical to ensure that the stimulus (in this case, cognitive
demand) is comparable across individuals. This is es-
sential if one were to compare cerebrovascular re-
sponses across different individuals or populations.
Moreover, the intensity of the stimuli should be read-
ily measurable (e.g., reaction time and/or percent cor-
rect performance), neural areas engaged should be
well known (to ascertain that measurements are made
from the artery that supplies the neural regions that
the stimuli engages), and the time-course of neural
activation should be unambiguously defined (so that
blood flow responses can be reliably interpreted vis-à-
vis metabolic demand). One stimulus that meets these
criteria and commonly used in the literature is the
“n-back” task.
During the n-back task, a series of single letters ap-

pear in succession on the screen, and volunteers are
asked to click the button each time they see a letter
repeated (1-back), each time they see a letter repeated
every other letter (2-back), and so on. The number of
letters the subject must remember (i.e., the “n”) in-
creases until the subject’s performance drops below
random chance level (i.e., 50%). This ensures that at
the end of the n-back task, the cognitive demand is
similar and that any difference in cerebral blood flow
responses between subjects cannot be attributed to
different cognitive efforts. It is also necessary to in-
clude two control conditions, especially if neurovascu-
lar coupling is assessed across different populations
with potentially different attention or motor control
abilities (e.g., healthy controls vs individuals with mild
cognitive impairment, or individuals with spinal cord
injury). An “identify the letter” task, wherein volun-
teers are asked to click on a button each time they
see a letter, can be used to control for cerebral blood
flow responses to attentional demand. A motor task,
e.g., a sequential finger movement task, can be used
to control for cerebral blood flow responses to motor
commands. This way, cerebral blood flow responses
to neural activity and consequent metabolic demand,

i.e., neurovascular coupling can be reliably assessed
(Fig. 1).

Cerebral vasoreactivity
Cerebrovascular responses to arterial CO2—cerebral
vasoreactivity—is a standard test of cerebrovascular
vasodilatory responses. This is typically accomplished by
altering arterial CO2 concentration by an appropriate
maneuver: breath-holding, step changes in CO2 (CO2 re-
breathing to induce hypercapnia and hyperventilation to
induce hypocapnia), and progressive increases in CO2

induced by air rebreathing.
While breath-holding is perhaps the simplest approach

to elicit hypercapnia, it also induces a number of other
hemodynamic responses—called the diving reflex—in-
cluding a reduction in heart rate (bradycardia), a marked
reduction in cardiac output, and an increase in arterial
blood pressure [58], in addition to acute elevations in
sympathetic neural outflow. These responses are partly
due to increased intrathoracic pressure. Note that any of
these hemodynamic changes can alter cerebral blood
flow responses independent of, or at least in addition to
arterial CO2 (see also above) [38, 39, 41, 42]. In fact,
there is evidence that intrathoracic pressure changes
alone can alter cerebral blood flow and oxygenation in a
way that is similar to the changes associated with breath
holding [59]. Therefore, cerebrovascular responses to
breath-hold maneuver do not always reflect responses to
CO2 and should be interpreted carefully.
Two alternative approaches are CO2 or air rebreathing.

Both approaches essentially increase the level of CO2.
However, the latter has the advantage of allowing assess-
ment of vascular responses to gradual changes in CO2.
During air rebreathing, volunteers rebreathe air from a
~ 5-l rebreathing bag until the end-tidal CO2 concentra-
tion reaches to ~ 6–7% (or ~ 50 mmHg), which typically
takes roughly ~ 2 min. Continuous end-tidal CO2 levels,
measured by a gas analyzer through a sampling tube on
the expired side, can then be used to assess breath-by-
breath cerebral flow responses (Fig. 2).

Cerebral autoregulation
In the literature, it is somewhat common to assess cere-
bral blood flow responses to changes in arterial blood
pressure—cerebral autoregulation—by observing the re-
lation between spontaneous blood pressure changes and
cerebral blood flow at rest. However, it is important to
note that spontaneous pressure fluctuations can be in-
consistent due to their small amplitude [60]. As a result,
while the observed spontaneous pressure–cerebral blood
flow relationship entails periods of low correlation where
fluctuations in blood flow may appear with no apparent
arterial pressure drive [61], it is not possible to ascertain
whether this low correlation is indicative of
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cerebrovascular counter-regulation or randomness (i.e.,
noise). To examine the relationship between two signals
accurately, one needs fluctuations with sufficient ampli-
tude, often absent in resting steady-state data.
Among the methods commonly used to generate suffi-

ciently large fluctuations is lower body pressure (LBP).
Standard application of negative pressure effectively dis-
tends the veins in the lower body, causing a caudal shift
in blood volume proportional to the level of LBP. This
allows study of cardiovascular responses to central blood
volume shifts similar to that which occurs during stand-
ing, but in a controlled and graded manner without ac-
companying muscle contraction. While these
fluctuations are not greater than those that occur during
everyday activities, both negative [27, 28, 32, 42, 43] and
positive [42, 62] LBP have been used successfully to
probe cerebral autoregulation. As an alternative, several
studies used deflation of thigh cuffs to elicit transient
blood pressure changes. However, while both the thigh-
cuff maneuver and LBP elicit transient changes in arter-
ial pressure, the cerebrovascular responses to the former
are not always consistent with those predicted from the
relationship derived during the latter, and there is a con-
siderable inter-individual variability in cerebrovascular

responses that makes simple averaging of observed re-
sponses inappropriate [27]. Baroreflex engagement, con-
comitant with the sudden caudal blood volume shift
consequent to release of ischemic thigh-cuffs [63], may
explain some of this discrepancy. Although LBP may
also engage the baroreflex, this engagement is inconsist-
ent within and across subjects [64], whereas cerebral
blood flow responses to LBP are highly consistent [27].
Thus, moderate LBP is a useful technique for augment-
ing arterial pressure oscillations at distinct frequencies
to generate sufficiently large fluctuations and to engage
physiological effectors of autoregulation.
Nonetheless, using LBP in some populations (espe-

cially in clinical studies) can be technically very challen-
ging. An alternative approach is to use low resistance
breathing to elicit oscillations in arterial blood pressure
to characterize the cerebral blood flow response [65].
Volunteers may be asked to breathe through a mouth-
piece attached to a standard impedance threshold device
set-up to moderate resistance (10–20 cmH2O), while
their ventilation is closely monitored and coached (so as
to avoid hyperventilation, and thus, hypocapnia). Resist-
ance breathing typically requires volunteers to breath
deep and slow, providing sufficiently large and consistent

Fig. 1 Cerebrovascular responses and task performance (% correct) of one volunteer during baseline, a motor task, an attention task
(0-back), and cognitive tasks of increasing difficulty (1-back to 3-back). Note that cerebral blood flow velocity increases in parallel to
the increase in neural demand
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arterial pressure fluctuations (due to intrathoracic pres-
sure change as a result of increased tidal volume
changes) that are also slow enough to engage cerebral
autoregulatory mechanisms (see Fig. 3).

Healthy adaptations and pathophysiological
alterations of human cerebrovascular control
The importance of the cerebrovascular function is per-
haps best understood by exploring adaptations of this
function in response to changing environmental condi-
tions. For example, exposure to high altitude results in a
number of hemodynamic adaptations: sympathetic activ-
ity and systemic blood pressure increase [66], and the
ventilatory and blood pressure responses to hypoxia are

elevated [67]. Each of these systemic changes can impact
the cerebrovascular function, and the cerebral vascula-
ture must adapt.
While there is some data suggestive of changes in the

cerebrovascular function with high altitude, the nature
of this change is equivocal. For example, Willie et al.
measured cerebrovascular blood flow patterns during as-
cent to ~ 5000-m altitude, and in the first 2 weeks of
acclimatization to this altitude [68]. They reported that
total cerebral blood flow (both internal carotid and ver-
tebral flow and MCA flow) steadily increased by over
50% during the ascent, but gradually returned to ~ 15%
of that at the sea level after ~ 2 weeks of acclimatization,
without any significant differences in regional cerebral
blood flow patterns. Though this may indicate a cerebro-
vascular adaptation to high altitude, the change in total
blood flow was somewhat related to arterial oxygen sat-
uration. This suggests that the alterations in total cere-
bral blood flow may also be simply due to ventilatory
acclimatization. That is, initial increase in global cerebral

Fig. 3 The magnitude of fluctuations (i.e., spectral power) in end-tidal
CO2 (as a surrogate for respiration; top panel), systemic arterial blood
pressure (middle panel), and cerebral blood flow velocity (bottom panel)
during spontaneous breathing, paced breathing (at 0.25 Hz; 15 bpm),
and resistance breathing (~ 10–20 cmH2O resistance, lower panel). Note
the marked increase in the magnitude of arterial pressure fluctuations
below 0.1 Hz (i.e., slower than 10 s) during resistance breathing, due to
increased slow fluctuations in respiration, and thus in intrathoracic
pressure. Also note the lack of an increase in cerebral blood flow
fluctuations in the same frequency band, indicative of effective
cerebral autoregulation

Fig. 2 Systemic arterial blood pressure and cerebral blood flow velocity
responses to air rebreathing. Note the increase in cerebral blood flow
velocity (third panel) in response to increasing end-tidal CO2 (first panel)
without any apparent increase in arterial blood pressure. Bottom panel
shows the change in cerebrovascular conductance (i.e., flow/pressure; to
account for any change in pressure, which can alter cerebral blood flow
independently) during two separate trials of air rebreathing by the
same subject
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blood flow may be due to the initial hypoxia, which is
gradually offset by reduced partial CO2 due to increased
ventilation, without any adaptations in the cerebrovascu-
lar function. Two studies did report reduced vasoreactiv-
ity after 5 [69] and 14 days [70] at high altitude (~ 4300
to 5000 m). However, it is not clear whether this reduc-
tion is due to an actual change in cerebrovascular mech-
anisms or simply due to hypoxia-induced increase in
sympathetic nervous outflow [66], which may constrain
cerebrovascular vasodilation [22, 23]. On the other hand,
Fan et al. [71, 72] reported an elevated cerebral vasoreac-
tivity in response to both CO2 and acetazolamide with
prolonged exposure to high altitude. It is possible that
there may be a reduction in cerebral autoregulatory
function due to elevated sympathetic activity, i.e., a more
“pressure-passive” relationship between arterial pressure
and cerebral blood flow [73]. Indeed, there appears to be
proportional increases in arterial pressure and cerebral
blood flow, indicative of ineffective autoregulation,
among healthy high-altitude natives living at ~ 4200 m
[74]. In a more recent study, Fan et al. [75] showed that
compared to sea level, cerebral blood flow responses to
CO2 were exaggerated (by almost 80%) immediately after
ascent to ~ 5200 m and were further elevated (by an-
other 90%) after 16 days of acclimatization. However, it
is important to note that when cerebrovascular re-
sponses were assessed as cerebrovascular conductance
(flow over pressure), the latter elevation in responsive-
ness was no longer evident, suggesting that the apparent
increase in cerebrovascular responsiveness during
acclimatization may be due to further elevations in arter-
ial pressure, a reduction in the effectiveness of cerebral
autoregulatory function, or both. Note that none of these
studies explored the impact of high-altitude exposure
beyond 2–3 weeks, and limited data suggests that
native-born high-altitude residents generally show re-
duced cerebrovascular reactivity, particularly evident
among brain regions that are typically involved in cere-
bral modulation of respiration [76]. This may indicate
that mechanisms that underlie cerebrovascular control
can adapt to environmental conditions.
Another example of cerebrovascular adaptations is al-

terations in response to regular physical activity and fit-
ness. An acute bout of exercise requires integration of
the three mechanisms of the cerebrovascular function:
cerebral blood flow increases due to sustained muscle
engagement, consequent cortical activation, and elevated
metabolic activity in motor and sensorimotor areas (cf.
neurovascular coupling) [77]. However, this increase in
blood flow is not proportional to the intensity of exer-
cise. Blood flow increases up to approximately 60% of
the maximum exercise intensity and returns toward
baseline at higher intensities [78]. This is due to exercise
intensity-dependent levels CO2. During an acute bout of

aerobic exercise, there is an increase in CO2 production
that results in vasodilation due to hypercapnia (cf. vasor-
eactivity) [79]. During high intensity exercise, however,
there is a reduction in CO2 because ventilation increases
exponentially with exercise intensity as pH decreases.
Thus, during intense exercise, there is a reduction in
cerebral blood flow [80]. Moreover, while there is a pro-
gressive increase in arterial blood pressure during exer-
cise, cerebral vasculature appears to be effective in
limiting the increase in systolic cerebral blood flow vel-
ocity (cf. autoregulation) [81]. Thus, all components of
the cerebrovascular function are fully engaged during an
acute bout of exercise to ensure appropriate perfusion of
neural tissue. Perhaps as a result, frequent physical exer-
cise and better aerobic conditioning are associated with
better cerebral blood flow regulation and better cogni-
tive function [82], and conversely, prolonged inactivity
results in significant deficits in cerebrovascular control
[83]. In addition, there appears to be a modest (R2 ~
0.20) positive relation between cardiorespiratory fitness
and both total and regional cerebral blood flow in the
gray matter [84]. This may be related to improved cere-
brovascular function. In fact, cerebrovascular response
to CO2 (i.e., vasoreactivity) has been reported to be ap-
proximately 10% higher in endurance-trained individuals
compared to matching sedentary controls [85], in a way
that is modestly (R2 ~ 0.35) related to aerobic capacity
[86]. Thus, regular exercise and aerobic fitness may re-
sult in a “training effect” on cerebrovascular regulation.
A more in-depth review of cerebrovascular adaptations

to hypoxia, high-altitude and physical activity and fitness
is beyond the scope of this paper, and we refer the
reader to other reviews on these topics [87, 88].
Exploring pathophysiologic alterations in the cerebro-

vascular function in response to neural injuries can also
highlight the importance of this function. On one side of
the spectrum are the mild brain injuries (e.g., concus-
sions), which can lead to impaired cerebrovascular func-
tion [87–90, 92]. After a mild brain injury, optimal
cerebral blood flow is necessary to meet the metabolic
needs of the injured brain. However, cerebral blood flow
decreases even after a mild injury and can remain re-
duced for extended periods of time [89, 90]. There may
be a neurovascular “uncoupling” [91, 92] and a disrup-
tion in cerebral vasoreactivity [93, 94]. In fact, we have
recently shown a strong relation between symptom bur-
den and cerebral vasoreactivity after a mild brain injury
where higher vasoreactivity was associated with more se-
vere headaches and cognitive symptoms [95]. Moreover,
autoregulation may also be impaired with mild brain in-
juries. For example, one study within 48 h of injury
found that almost 30% of patients with mild injuries
have impaired or absent cerebral autoregulation [96].
Consistent with these data, in active boxers,
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autoregulation is impaired due to repetitive, sub-
concussive head impact incurred during sparring. These
impairments are associated with cerebral hypoperfusion,
neurocognitive dysfunction, and marked orthostatic
hypotension that manifests beyond the active boxing
career [97]. On the other side of the spectrum, in more
severe injuries, such as subarachnoid hemorrhage
(SAH), there is frequently dysfunction in the cerebrovas-
cular function, particularly in the acute phase [98–100],
and this dysfunction appears to be closely related to the
clinical and functional outcomes after initial
hemorrhage. For example, early impairment in cerebral
autoregulation is reported to be a risk factor for delayed
cerebral ischemia and subsequent cell death and infarcts
[101, 102], as well as for poor acute discharge outcomes
[103]. In fact, we have recently found that cerebral auto-
regulation dysfunction early (within 4 days) after the ini-
tial injury is a major factor that contributes to the
development of cerebral infarcts and neural cell death
[104, 105]. Moreover, the extent of this early dysfunction
appears to relate to the rate of functional recovery and
overall rehabilitation outcomes months beyond the ini-
tial injury: we have recently reported that the extent of
cerebral autoregulatory impairment, along with the se-
verity of SAH on admission explains 70–85% of the vari-
ation in rehabilitation efficiency and outcome [106].
These data clearly demonstrate the importance of intact
cerebrovascular function to mitigate short- and long-
term sequelae of both mild and severe brain injuries.

Conclusions
The data reviewed above show the importance of the
cerebrovascular function to support higher neural de-
mand and cognitive function in humans. The evolution-
ary advantage of higher cognitive function is clear. Yet,
even after decades of research, much of the physiology
that underlies the main components of the cerebrovas-
cular function—neurovascular coupling, cerebral vasor-
eactivity, autoregulation—remains only partly
understood. Perhaps as a consequence of increased rec-
ognition of the link between the cerebrovascular and
neural functions, there is a growing interest in under-
standing physiological underpinnings of the former.
There is still much insight into the neural and cognitive
functions that could be gleaned from interrogating cere-
brovascular function.
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