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Abstract

We present an algorithm for the two-dimensional translational containmentproblem: �nd translations

for k polygons (with up tom vertices each) which place them inside a polygonal container (with n vertices)

without overlapping. The polygons and container may be nonconvex. The containment algorithm consists

of new algorithms for restriction, evaluation, and subdivision of two-dimensional con�guration spaces.

The restriction and evaluation algorithms both depend heavily on linear programming; hence we call our

algorithm an LP containment algorithm. Our LP containment algorithm is distinguished from previous

containment algorithms by the way in which it applies principles of mathematical programming and also

by its tight coupling of the evaluation and subdivision algorithms. Our new evaluation algorithm �nds

a local overlap minimum. Our distance-based subdivision algorithm eliminates a \false" (local but not

global) overlap minimum and all layouts near that overlap minimum, allowing the algorithm to make

progress towards the global overlap minimum with each subdivision.

In our experiments on data sets from the apparel industry, our LP algorithm can solve containment

for up to ten polygons in a few minutes on a desktop workstation. Its practical running time is better

than our previous containment algorithms and we believe it to be superior to all previous translational

containment algorithms. Its theoretical running time, however, depends on the number of local minima

visited, which is O((6kmn + k

2

m

2

)

2k+1

=k!). To obtain a better theoretical running time, we present a

modi�ed (combinatorial) version of LP containment with a running time of

O

�

(6kmn+ k

2

m

2

)

2k

(k � 5)!

log kmn

�

;

which is better than any previous combinatorial containment algorithm. For constant k, it is within a

factor of logmn of the lower bound.

We generalize our con�guration space containment approach to solve minimal enclosure problems.

We give algorithms to �nd the minimal enclosing square and the minimal area enclosing rectangle for k

translating polygons. Our LP containment algorithm and our minimal enclosure algorithms succeed by

combining rather than replacing geometric techniques with linear programming. This demonstrates the

manner in which linear programming can greatly increase the power of geometric algorithms.
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1 Introduction.

A number of industries generate new parts by cutting them from stock material: cloth, leather (hides),

sheet metal, etc. These industries require good solutions to containment or minimal enclosure problems.

Containment is the question of whether a given set of part shapes can be �t, without overlapping, into a

given container. Minimal enclosure is the problem of minimizing the size (area, length, or other measure)

of the container for a given set of parts. One might think that a few good layouts might su�ce for a given

industry, but such is not the case. One large apparel manufacturer \solves" about 1500 minimal enclosure

problems per week. As illustrated in Figure 1, these are strip-packing problems: �nd an enclosure with �xed

width and minimumlength. Human employees generate these near-optimal layouts by hand, and we estimate

that their total compensation is about three million dollars per year for that one company. Large companies

are highly automated, and they could easily substitute software for humans. However, no current software

(even our own) can reliably �nd enclosures within one percent

1

of those generated by expert humans for the

number of part shapes they routinely lay out (one to �ve hundred). (See [4, 9, 11, 34] for a survey of current

results.)

Material such as cloth has a grain, and it sometimes has a \nap" (e.g. velvet or corduroy) or a colored

pattern (e.g. stripes or plaid). A part cut out of such material has only one, two, four, or possibly eight

allowed orientations, not arbitrary rotation. For such materials, containment can be decomposed into two

subproblems: 1) selection of discrete orientations and 2) translational containment. Translational contain-

ment, containment with �xed orientations, is clearly an important subproblem. Textile manufactures use

polygonal representations for their shapes because their cutting accuracy is not high enough to require spline

curve representations. Therefore, it is reasonable to assume that the shapes are polygons. The focus of this

paper is translational containment and translational minimal enclosure of polygonal shapes.

Containment is (of course) NP-hard (Section 1.2).

2

Because continuous rotations make containment nonlin-

ear, it is not clear whether containment is in NP, even for polygonal shapes. Discrete orientation selection

(Section 1.2) and translational polygon containment [4, 26] are both \merely" NP-complete. Techniques of

combinatorial optimization such as integer or dynamic programming have been successfully applied to NP-

complete problems such as the traveling salesman or the layout of rectangles [14, 1, 19]. However, nonconvex

shapes appear to be too irregular to permit direct application of mathematical programming. Approximating

individual nonconvex shapes by rectangles or even their convex hulls leads to very nonoptimal approximating

enclosures or solutions to containment.

Unless P=NP, there can be no practical exact algorithm for containment or minimal enclosure when the

number of parts is in the hundreds. However, it is our hope that we can eventually develop approximation

algorithms as has been done for packing rectangles. Towards that end we have focused on developing exact

algorithms which are practical for the largest possible number of shapes. (The algorithm presented here can

handle up to ten shapes quickly.) Also, even a heuristic strategy for hundreds of shapes can bene�t from a

\subroutine" that can solve containment or �nd the minimal enclosure for smaller groups of shapes [4]. For

example, a common layout strategy is to cluster irregular polygons into a rectangle

3

and then apply rectangle

packing algorithms. As we stated in the previous paragraph, replacing individual nonconvex shapes by an

enclosing rectangle results in poor packing densities. However, replacing an entire group of �ve to ten pieces

by the minimum area rectangular enclosure (for the group under translation) yields a much higher density

packing. In our work, we have noted that most applications of containment involve at least as many infeasible

inputs as feasible inputs, and thus it is important that the \subroutine" detect infeasibility quickly. In the

language of mathematical programming, it is just as important to establish a lower bound (no solution), as

it is to establish an upper bound (�nd a solution).

1

One percent is about the break-even point of labor vs. material costs.

2

The reader will recognize that containment is the \feasibility question" for minimal enclosure, and thus the appropriate

complexity question is the hardness of containment.

3

The sides of the rectangle are parallel to the x and y axes.

1



1.1 New Containment Algorithm.

This paper presents a new algorithm for translational containment based entirely on the principles of math-

ematical programming:

Restriction : establish lower bounds through relaxation and the solution of linear programs;

Evaluation : establish upper bounds by �nding potential solutions;

Subdivision : branch, when necessary, by introducing a cutting plane.

The objective that the containment algorithmminimizes is the overlap among the placed polygons. Naturally,

we are seeking a layout with zero overlap. We refer to the �rst operation as restriction since we throw away

any region of the solution space for which we establish a non-zero lower bound on the overlap. Hence, we

restrict the search to regions in the solution space for which the lower bound might still be zero.

The new algorithm is called the linear programming based containment algorithm or LP containment al-

gorithm. Strictly speaking, we should say mathematical programming but, in fact, all mathematical pro-

gramming in the algorithm is reduced to linear programming.

4

The algorithm employs a new LP restriction

algorithm for restriction, a new LP local overlap minimization algorithm for evaluation, and a new distance-

based subdivision algorithm. It also uses a geometric restriction algorithm [5, 6, 4] on the initial solution

space. The subdivision algorithm does not use linear programming. The evaluation and subdivision methods

are tightly coupled. Distance-based subdivision eliminates a \false" (local but not global) overlap minimum

and all layouts near that minimum, allowing the containment algorithm to make progress towards the global

overlap minimum with each subdivision. We generalize our LP containment approach to �nd minimal en-

closures for a collection of translating polygons.

In our experiments on data sets from the apparel industry, our LP algorithm can solve containment for up

to ten polygons in a few minutes on a desktop workstation. Its theoretical running time, however, depends

on the number of local minima visited. To improve the theoretical running time of LP containment, we

also present a modi�ed (combinatorial

5

) version of LP containment. The combinatorial version does not

use geometric restriction on the initial solution space. In the evaluation step, it only searches for a local

minimum on a discrete subset of the solution space. It does not use distance-based subdivision. Instead, it

uses the central ideas of LP restriction to tightly integrate restriction, evaluation, and subdivision. It uses a

modi�cation of the simplex method. Its subdivision method is combinatorial.

As Section 1.5 explains, the LP containment algorithm is not the �rst to use restriction, evaluation, and

subdivision. Nor is it the �rst containment algorithm to use linear programming. However, it uses new al-

gorithms for restriction, evaluation and subdivision, and it rigorously applies the principles of mathematical

programming to show that either the upper bound of the objective (overlap) is exactly zero or the lower

bound is greater than zero. Hence, it gives an exact solution to the containment problem. Furthermore, it is

the �rst algorithm that can provide an exact solution to minimum area rectangular enclosure. The practical

running time of LP containment is better than our previous containment algorithms and we believe it to

be superior to all previous translational containment algorithms. The combinatorial version has a better

theoretical running time bound than any other combinatorial containment algorithm. LP containment is

not \pure" mathematical programming, and, of course, running times depend greatly on the implementa-

tion. Nevertheless, our experiments de�nitely establish the value of the new mathematical programming

techniques.

An implementation of our LP containment algorithm has been licensed by Gerber Garment Technologies,

the largest provider of textile CAD/CAM software in the U.S., and they are incorporating it into an existing

CAD/CAM software product.

The following section establishes lower bounds on containment and discrete orientation selection. Section 1.3

provides notations and de�nitions which permit a rigorous theoretical basis for describing and analyzing

4

Our implementation of the LP containment algorithm uses a commercial linear programming library.

5

The running time of a combinatorial algorithm depends only on the complexity of the input: the number of vertices, edges,

lines, and so forth. The running time of a numerical algorithm also depends on the numerical values of the input coordinates

and coe�cients.
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containment algorithms. Section 1.4 describes related work, and Section 1.5 explains how LP containment is

related to our previous work on containment algorithms. Finally, Section 1.6 outlines the rest of the paper.

1.2 Lower Bounds.

In previous work, we established that marker making is NP-hard [28]: given 1) a set of shapes, 2) allowed

orientations for each shape (rotations and re
ections), and 3) a rectangle of �xed width and indeterminate

length, �nd the nonoverlapping layout of minimum length. It was shown that translational marker making

is NP-complete: each shape is allowed only a single orientation. The same proof works for nonrectangular

containers [4, 5] to show that translational containment is NP-complete. This section establishes three new

results.

1. Containment with unrestricted orientations is NP-hard.

2. Containment with discrete orientations is NP-complete.

3. Selection of discrete orientations is NP-complete, even if the resulting translational containment prob-

lem can be solved in polynomial time.

Result 1: Containment with unrestricted orientations is NP-hard by reduction from PARTITION. Let

a

1

; a

2

; : : : ; a

n

be a list of integers. For i = 1; 2; : : :; n, construct a 1�a

i

rectangular shape which is permitted

any orientation. Construct a container with two rectangular components, each with dimensions 1�(

P

a

i

) =2.

Since each rectangular shape is at least 1 unit long, it can only �t into the container with no orientation

change or an equivalent change (rotation by 180 degrees, for example). The rectangles can all be placed if

and only if there is a way of partitioning the list into two sublists with equal sum.

Result 2: Clearly, the preceding argument also works if only discrete orientations are allowed. Containment

with discrete orientations is in NP since translational containment is in NP: one can nondeterministically

choose the set of orientations. Note that this argument does not work for continuous orientations because

the \correct" angle for a shape could be irrational and not representable in polynomial space.

Result 3: Even by itself, discrete orientation selection is NP-hard by reduction from PARTITION. Let

a

1

; a

2

; : : : ; a

n

be a list of integers. For i = 1; 2; : : :; n, construct a 1�a

i

rectangular shape which is permitted

to rotate 90 degrees. Construct a container with two rectangular components: 1�(

P

a

i

) =2 and (

P

a

i

) =2�1.

Selecting an angle, 0 or 90 degrees, for each shape is equivalent to partitioning a

1

; a

2

; : : : ; a

n

into two lists

with equal sum. Again, since one can nondeterministically choose a set of discrete orientations, discrete

orientation is in NP and therefore is NP-complete.

1.3 Notation and De�nitions.

1.3.1 Minkowski Sum.

The Minkowski sum [30, 18, 32, 33] of two point-sets (of R

2

in the case of this paper) is de�ned

A�B = fa+ b j a 2 A; b 2 Bg:

For a point-set A, let A denote the set complement of A and de�ne �A = f�a j a 2 Ag. For a vector t,

de�ne A+ t = fa+ t j a 2 Ag. Note that A + t = A� ftg. Let jAj denote the number of vertices of A. It is

well-known that jA� Bj = �(jAj

2

jBj

2

) [21].

1.3.2 Con�guration Spaces.

This paper presents algorithms for translating k polygonal regions P

1

; P

2

; : : : ; P

k

into a polygonal container

C without overlap. If we denote P

0

= C to be the complement of the container region, then containment is

3



equivalent to the placement of k+1 polygons P

0

; P

1

; P

2

; : : : ; P

k

in nonoverlapping positions. For translations

t

i

and t

j

, P

i

+ t

i

and P

j

+ t

j

do not overlap if and only if t

j

� t

i

2 U

ij

, where

U

ij

= P

i

��P

j

; 0 � i; j � k; i 6= j: (1)

The set U

ij

is the two-dimensional con�guration space for placing P

j

with respect to P

i

. Clearly, U

ij

= �U

ji

.

Let P and U denote the lists of all P

i

and U

ij

, respectively. A con�guration of P is a list ((k + 1)-tuple) of

translations ht

i

j 0 � i � ki where t

0

is arbitrarily set to (0; 0) since the container cannot move. The set of

all con�gurations is the solution space of the containment problem. A valid con�guration of P satis�es

t

j

� t

i

2 U

ij

; 0 � i < j � k: (2)

A valid con�guration is an exact solution to a translational containment problem.

Within the context of this paper, a partial con�guration is a list ht

i

j 0 � i � k

0

i where k

0

< k. A valid

partial con�guration satis�es Equation 2 for 0 � i < j � k

0

, and it corresponds to a valid placement of

P

1

; P

2

; P

3

; : : : ; P

k

0

into the container.

1.3.3 Valid and Invalid Restriction.

A restriction of U replaces one or more U

ij

in U by a subset of itself. A valid restriction does so in a way

that does not eliminate any valid con�gurations: it only eliminates con�gurations with nonzero overlap. In

previous work [5, 6], we show that the following direct

6

geometric restriction

U

ij

 U

ij

\ (U

ih

� U

hj

); 0 � h; i; j � k; h 6= i 6= j; (3)

is always valid. Section 2 de�nes a new type of valid restriction called LP restriction. When U has been

restricted in any fashion, we denote the initial U

ij

of Equation 1 by U

init

ij

.

Subdivision makes use of invalid restrictions. In particular, the subdivision algorithm performs two di�erent

invalid restrictions on U , yielding U

+

and U

�

. Taken together, U

+

and U

�

must cover the same set of

con�gurations as U . For example, subdivision can introduce a cutting plane � which separates the set of all

con�gurations into two half-spaces. One half-space corresponds to U

+

, and the other to U

�

.

In this paper, the term restriction generally refers to valid restriction only, unless it is clear from context

that it refers to both valid and invalid restrictions.

1.3.4 Size Analysis.

Our containment/enclosure algorithms and the earlier containment algorithms of Avnaim, Boissonnat, and

Devillers (see Section 1.4) all use two-dimensional con�guration spaces and both valid and invalid restrictions

of these spaces. For any particular algorithm, the allowed restrictions are chosen from a small class of

operations, although di�erent algorithms will not necessarily use the same class. For example, our geometric

containment algorithm [5, 6, 4] uses two types of operations: 1) Equation 3 and 2) intersection of some U

ij

with a vertical or horizontal half-plane. By de�nition, a restriction operation reduces the size of one or more

U

ij

in U . It usually but not necessarily reduces the number of vertices. Given a containment algorithm and

the class of restriction operations used by that algorithm, we de�ne the following complexity measure s: s is

the largest number of vertices of any of the two-dimensional con�guration spaces generated by any sequence

of restriction operations taken from the class and applied to the initial con�guration spaces generated by

the algorithm. For some pathological classes of restriction operations (such as intersection with arbitrary

half-planes), s is clearly in�nite. With some theoretical justi�cation [4], we believe that s is �nite for the

classes of restrictions used by actual containment algorithms.

Expressing the running time in terms of s is what we call s-analysis or size analysis of the algorithm. As

stated in Section 1.3.1, the Minkowski sum can be fourth degree in the size (number of vertices) of the input

polygons. However, except in pathological cases, the complexity is between linear and quadratic. In practice,

6

A direct restriction operates on U, not an approximation of U.
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we observe that jU

init

ij

j is no more than quadratic in jP

i

j and jP

j

j. Subsequent restrictions of U may increase

the number of vertices somewhat, but the number is still never more than quadratic in max jP

i

j. Hence,

in practice, s is somewhere between linear and quadratic in the actual size of input. For this reason, size

analysis yields a good measure of the practical running time of a containment algorithm.

1.3.5 Classi�cation.

The paper focuses on the kNN problem: �nd a valid con�guration of k nonconvex polygons in a nonconvex

container. Variations replace \N" with either \C" (convex), \R" (rectangle), or \P" (parallelogram). The

container C has jCj = n vertices, and jP

i

j = m

i

, 1 � i � k. We de�ne m = max

1�i�k

m

i

. Almost always

m < n. In general, we express the running time of a containment algorithm in terms of m, n, s, and k. For

our applications: 4 � m � 100, 100 � n � 300, and 1 � k � 10, (and m � s � mn in practice).

1.4 Related Work.

In general, industrial systems use heuristics which cannot detect infeasibility or determine if they have

found the optimal enclosure. These systems use practical e�ciency techniques such as inner and outer

approximations, and thus the running time increases with the tightness of the �t.

7

We have licensed our

software, including the LP containment algorithm described here, and we believe it to be superior to what

is currently available.

8

The set of valid con�gurations for kNN containment has 
((mn)

2k

) components, and so solving kNN requires


((mn)

2k

) time in the worst case [27]. It may not require this much time to generate a single solution. The

\practical" algorithm described in this paper only generates a single solution. It can easily be modi�ed to

generate \all" solutions (\all" meaning at least one from each component of the solution space), but we do

not claim that it would remain practical. The \theoretical" version of the algorithm has the same running

time bound whether it generates a single solution or \all" solutions. It is easy to write down a \naive"

kNN algorithm that generates \all" solutions in O((mn + m

2

)

2k

logmn) time, assuming \constant" k, by

iterating over all choices of 2k contacting pairs among the polygons and container. In terms of size analysis,

the running time is something like O(s

4k

). On all infeasible inputs, the running time is at least a constant

times (mn)

2k

, which is thoroughly impractical, and the \naive" algorithm is impractical for feasible inputs

also.

Fortune [13] gives a O(mn logmn) time solution to 1CN by computing the Minkowski sum using a generalized

Voronoi diagram. Avnaim and Boissonnat [3, 2] use the Minkowski sum and convex decomposition to

solve 1NN and 2NN in O(m

2

n

2

logmn) and O(m

4

n

4

logmn) (both O(s log s) under size analysis) time,

respectively, and Avnaim [2] gives a O(m

14

n

6

logmn) (O(s

5

log s)) time algorithm for 3NN. Devillers [8]

gives faster algorithms (in terms of m and n, not s) for 2CN and 3CN with running times O(m

2

n

2

logm)

(O(s

2

log s)) and O(m

3

n

3

logm) (O(s

3

log s)). Avnaim and Boissonnat also give a solution to the 3NP

problem, three nonconvex polygons in a parallelogram container, using time in O(m

60

logm) (O(s log s))

[3, 2].

In earlier work, Milenkovic, et al. [7] o�er three approaches to translational containment. The �rst is fast

algorithms for convex shapes: O(mn logn) (or O(s log s)) for 2CN and O(m

3

n logn) (or O(m

2

s log s)) for

3CN [6, 26]. The second approach is an MIP (mixed integer programming) model for kNN containment [23].

The MIP method takes a minute or two on a typical workstation for k � 3 polygons, but is slow for k � 4.

The third approach is the aforementioned geometric algorithm for kNN which can �nd a layout with at most

2� overlap using time in O((�

�k

log �

�1

)k

6

s log s) [4, 6, 26]. More recently, we presented a kNN algorithm,

which we now call the naive LP algorithm, with running time

O

�

(2kmn+ k

2

m

2

)

2k+1

k!

LP(2k; 2kmn+ k

2

m

2

)

�

;

7

Incidentally, although we do not currently do so, we also could apply these practical e�ciency techniques.

8

Companies closely guard their products, and so it is di�cult to compare our algorithms to others.

5



where LP(a; b) is the time to solve a linear program with a variables and b constraints [6, 26]. A version of

the naive LP algorithm can solve kCN in O((mn)

k+1

) time (the constant factor depends on k). Both the

geometric and the naive LP algorithms can handle four or �ve nonconvex polygons in practice (see Tables 1

and 2, page 30).

In her Ph.D. thesis [4], Daniels presents the geometric containment algorithm. She also proposes a number

of ways of improving the naive LP algorithm: using overlap minimization [23, 29] to improve evaluation

and introducing distance-based subdivision (a di�erent algorithm from the one presented in this paper).

The thesis summarizes the LP containment algorithm described here, which uses these ideas and others, and

compares its running time to the geometric containment algorithm. In a conference paper, Milenkovic proves

an 
((mn)

2k

) lower bound on the running time for kNN containment, gives an abbreviated description of

the combinatorial version of the LP containment algorithm presented here, and shows that it can also solve

kCN in O((mn)

k

log(mn)) time and that it can determine minimal convex enclosures with �xed orientation

edges [27]. To �nd the minimum area rectangle enclosing k m-gons, the running times are O(m

k�1

logm)

for convex polygons and O(m

4k�4

logm) for nonconvex polygons.

1.5 Contributions of New Algorithm.

In this section we describe the contributions of the new LP containment algorithm and compare it to the

geometric algorithm, which has running time

O((�

�k

log �

�1

)k

6

s log s);

and to the naive LP algorithm, which has running time

O

�

(2kmn+ k

2

m

2

)

2k+1

k!

LP(2k; 2kmn+ k

2

m

2

)

�

:

In comparison, the practical running time of LP containment is much faster than the practical running

time of the geometric and the naive LP algorithms. The running time of the combinatorial version of LP

containment is

O

�

(6kmn+ k

2

m

2

)

2k

(k � 5)!

log kmn

�

:

For all these algorithms, the list U encodes the entire placement/containment problem, and one can think

of it as the input to and current state of the containment algorithm.

9

We refer to U as the hypothesized

solution space or hypothesis. A solution within the current hypothesis consists of ht

0

; t

1

; t

2

; : : : ; t

k

i, where

t

0

= (0; 0), satisfying Equation 2 for the current list U . Within the context of these containment algorithms,

restriction, evaluation, and subdivision have the following meanings:

(Valid) Restriction Replace each U

ij

in U by a subset such that if the initial hypothesis has a solution

then the restricted hypothesis does also.

Evaluation Try to �nd a solution within the given hypothesis. If possible �nd a valid con�guration or,

failing that, �nd a partial con�guration or �nd an overlapping con�guration.

Subdivision Divide a hypothesis. 1) Choose some U

ij

. 2) Partition it into U

�

ij

and U

+

ij

. 3) Create two

subhypotheses U

�

and U

+

by replacing U

ij

in U by either U

�

ij

or U

+

ij

.

Given these operations, a containment algorithm is straightforward. 0) Start with the hypothesis U given

by Equation 1. 1) Restrict the current hypothesis. 2) If the result of restriction is not null, evaluate the

restricted hypothesis. 3) If the resulting con�guration is valid, output it; otherwise, subdivide the hypothesis

and recurse (Step 1) on the two subhypotheses.

9

As shown in Section 5.3.2, U can also encode generalized containment problems such as: \Place the shapes into any rectangle

with area A." This is a separate contribution of this paper.
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1.5.1 Geometric Containment Algorithm.

The geometric algorithm [5, 6, 4] performs restriction and evaluation using Equation 3. Evaluation is done

in a greedy fashion: �x some t

i

, restrict, and repeat until all t

i

's are �xed or until some U

ij

in the hypothesis

is restricted to \null". In the latter case, the list of �xed t

i

is a valid partial con�guration. The algorithm

subdivides by cutting the largest U

0i

, 1�i�k, into two halves using a vertical or horizontal line. It stops

when the largest dimension of any U

0i

, 1�i�k, in U is smaller than �=

p

2.

Since it makes no use of the partial con�gurations it generates, the geometric algorithm can get \stuck in a

rut", subdividing without actually eliminating the bad choices of greedy evaluation. Geometric restriction is

often much stronger than LP restriction, particularly when the con�guration spaces are highly nonconvex.

For this reason, our practical implementation of the LP containment algorithm always applies geometric

restriction to the initial hypothesis. In her Ph.D. thesis [4], Daniels observes that, for a test suite of

18 examples,

10

the total number of hypotheses examined by geometric containment is less than the total

number of hypotheses examined by LP containment. Daniels also observes that geometric containment

visits from 3 to 15 times fewer hypotheses than LP containment on infeasible problems with k = 4. These

results demonstrate the strength of geometric restriction. Unfortunately, we have yet to implement optimal

algorithms for geometric restriction. Currently, for k = 4, geometric restriction is about 10 times slower

than LP restriction, which uses a highly optimized commercial linear programming package. Daniels also

shows that it is possible to apply geometric restriction to each hypothesis visited by the LP containment

algorithm without increasing the combinatorial bound on the number of hypotheses. When we implement

optimal geometric restriction, we will apply both geometric and LP restriction to each hypothesis.

1.5.2 Naive LP Containment Algorithm.

The naive LP containment algorithm [6, 26] can be thought of as the simplest possible way to use linear

programming to solve containment. It is a predecessor of the much more sophisticated LP containment

algorithm presented here. For each hypothesis, it solves a single constraint linear program (CLP) which

is a relaxation of Equation 2 (see Section 2.1.1). If the CLP is infeasible, it restricts the hypothesis to

null, otherwise it does not restrict it at all. If the CLP is feasible, the output is either a valid or invalid

con�guration. If the con�guration ht

0

; t

1

; t

2

; : : : ; t

k

i is invalid, it selects a pair i; j such that t

j

� t

i

62 U

ij

,

and it subdivides U

ij

and generates two subhypotheses.

The naive LP algorithm visits many more hypotheses than the geometric algorithm and the LP algorithm.

It also has many \near misses": invalid con�gurations which have very little overlap. In other work, Li

and Milenkovic [23, 29] developed methods to eliminate overlaps in layouts. In her Ph.D. thesis[4], Daniels

proposed the idea of applying overlap elimination to each near miss of the naive LP algorithm. This com-

bination could solve feasible problems much faster than naive LP alone. Unfortunately, applying overlap

elimination in this manner is of no help in the case of infeasible inputs.

Naive LP subdivision is only loosely coupled with evaluation: it uses the result of evaluation to determine

the indices i; j of the U

ij

to be split, but it does not use the value of t

j

� t

i

to determine the splitting line.

As a consequence, it can fall into the same local overlap minimum over and over again. One of the reasons

that its combinatorial running time bound is much worse than the O((mn+m

2

)

2k

logmn) \naive" algorithm

(Section 1.4) is that it can visit the same set of 2k contacting pairs O(kmn+ k

2

m

2

) times in the worst case.

1.5.3 New LP Containment Algorithm.

The new LP containment algorithm has new methods for restriction, evaluation, and subdivision. The

algorithm employs a new LP restriction algorithm for restriction, a new LP local overlap minimization

algorithm for evaluation, and a new distance-based subdivision algorithm.

11

Unlike naive LP plus separate

10

We implemented LP containment in December 1994, well in advance of this writing. Values of k range from 4 to 7. The

test suite includes �ve infeasible examples.

11

Our implementation of LP containment uses distance-based subdivision, introduced by Daniels [4]. In this paper we present

a distance-based subdivision algorithm which improves upon the running time of the algorithm given by Daniels.
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overlap minimization, the new algorithm is a true application of mathematical programming to the problem

of �nding the con�guration with minimum overlap. In contrast to both the geometric algorithm and the

naive LP algorithm, our LP containment algorithm uses the overlap minimization results of evaluation to

determine the splitting line. We believe that this tight coupling of evaluation with subdivision is one of the

main reasons the LP containment algorithm is faster in practice than the geometric and naive LP algorithms.

The combinatorial version of our LP algorithm uses the central ideas of LP restriction to tightly integrate

restriction, evaluation, and subdivision. This tight integration guarantees that it makes progress after each

subdivision. In contrast, the naive LP algorithm might require many subdivisions before it eliminates a bad

con�guration, and thus it visits O(m(m+n)) times as many hypotheses as the combinatorial LP containment

algorithm.

The combinatorial running time bound matches the naive containment algorithm (for constant k); and it is

a factor of logmn worse than the lower bound. Furthermore, the LP containment algorithm visits only �

local minima. Currently, we can only show that � = O((6kmn+k

2

m

2

)

2k+1

=k!), but this second bound gives

us another mathematical avenue to give an output-sensitive running time bound. Intuitively, we expect �

to depend mostly on the number of planar graphs on k objects and be mostly independent of m and n.

Finally, we mention that the LP restriction is complementary to the geometric restriction of Equation 3:

there are hypotheses which geometric restriction \shrinks" more and vice versa [4]. It is possible to use both

without losing the combinatorial bounds on the number of hypotheses visited by the \pure" LP containment

algorithm [4].

1.6 Outline.

Section 2 describes our new LP restriction method. The restriction intersects each U

ij

with a convex polygon

C

ij

which is computed using O(jC

ij

j) solutions to a linear program. This section also de�nes and gives an

e�cient algorithm for combinatorial LP restriction. Combinatorial LP restriction is weak enough to permit

an e�cient algorithm yet strong enough to give combinatorial LP containment a near-optimal worst case

running time bound.

Section 3 presents the new overlap minimization evaluation method and proves its convergence. It has an

exponential worst case but requires only a constant number of linear program solutions in practice. This

section also discusses evaluation techniques for the combinatorial version of LP containment.

Section 4 describes our new distance-based subdivision algorithm. It also gives the combinatorial subdivision

algorithm used in the combinatorial version of LP containment. Both algorithms move the containment

algorithm away from invalid (overlapping) con�gurations.

The �nal section of the paper has four parts. Section 5.1 describes our implementation of LP containment,

presents running times, and compares the experimental running time of the LP containment algorithm to

our previous containment algorithms. Section 5.2 proves that the running time of the combinatorial version

of LP containment is

O

�

(6kmn+ k

2

m

2

)

2k

(k � 5)!

log kmn

�

:

Section 5.3 shows how to extend the LP containment algorithm to solve interesting minimal enclosure

problems. Section 5.4 summarize our results and draws conclusions.

2 Restriction.

The LP containment algorithm has three phases: (valid) restriction, evaluation, and subdivision. As in-

dicated in Section 1.3.3, subdivision uses invalid restrictions. Depending on how one counts them, LP

containment uses three or four types of restriction. It uses a valid LP restriction and two invalid restric-

tions: half-plane restriction and component restriction. As Section 2.2 shows, LP restriction is actually a

combination of two valid restrictions: convex hull restriction and combinatorial LP restriction.
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Our currently implemented LP containment uses all three types of restriction. Section 2.1 de�nes and de-

scribes all these restrictions. It gives an algorithm for LP restriction that makes use of linear programming.

Our implementation calls a commercial linear programming library to solve the linear programs. LP restric-

tion is iterated until it converges to a \steady state". The number of iterations is determined by a numerical,

not a combinatorial, condition. Strictly speaking, the LP containment is not a combinatorial algorithm.

As often happens, practice moves ahead of theory. We have been able to prove a combinatorial running

time bound for a modi�ed (combinatorial) version of LP containment which does not use all the types of

restriction used by LP containment. As shown in here and in Section 5.2, the running time bound of the

combinatorial version is within a log factor of optimal. Of course, this is a worst case bound, which is why

we use additional types of restriction in practice (even though they make the algorithm noncombinatorial).

Section 2.2 shows that LP restriction is actually a combination of two types of restriction: convex hull

restriction and combinatorial LP restriction. Individually, each of these types of restriction converges after

one iteration and is combinatorial. When these two types of restrictions are alternated, we know of no

combinatorial bound on the number of iterations required for convergence. The combinatorial version of LP

containment uses only combinatorial LP restriction and half-plane restriction. It does not use convex hull

restriction and component restriction. Section 2.2 shows that combinatorial LP restriction has a running

time bound within a log factor of optimal if a specialized version of the simplex method is used to solve the

linear programs.

2.1 Restrictions for LP Containment.

This section �rst summaries our previous algorithm for restriction/evaluation of a hypothesis U , and then

it describes how to generalize it into a new restriction method, LP restriction. The invalid restrictions

used by distance-based subdivision are also given. LP containment uses all these types of restrictions. Our

implementation solves the linear programs by calling a commercial package (see Section 5.1).

2.1.1 Naive LP Restriction and Evaluation.

The naive LP method for restriction/evaluation [6, 26] is as follows: 1) For each U

ij

in U , calculate its

convex hull CH(U

ij

). 2) Set up a containment linear program (CLP) with 2k variables corresponding to

the coordinates of t

1

; t

2

; : : : ; t

k

(t

0

= (0; 0), as always) and constraints to enforce t

j

� t

i

2 CH(U

ij

) for

0 � i < j � k. Note that this requires jCH(U

ij

)j half-plane constraints for each U

ij

. 3) If the CLP is

infeasible, restrict the hypothesis to \null". Otherwise, the result of evaluation is the con�guration generated

by the linear program. This con�guration may or may not be valid with respect to the \unrelaxed" Equation 2

(page 4).

2.1.2 New LP Restriction Algorithm.

Mathematically, the new LP restriction is as follows. Let F be the set of feasible values for the variables of

the CLP. Let C

ij

be the projection of F into CH(U

ij

) under

ht

0

; t

1

; t

2

; : : : ; t

k

i ! t

j

� t

i

:

In other words, C

ij

is the set of values for t

j

�t

i

that permit a solution to the CLP. The new restriction replaces

U

ij

with C

ij

\U

ij

. This entire restriction process can be iterated until U stops changing (C

ij

= CH(U

ij

) for

all i; j). In practice, one applies restriction until the percent decrease in area is less than some threshold.

Since it is not clear how many iterations are required, LP restriction is not necessarily a combinatorial

algorithm.

To calculate C

ij

, it is not necessary to computeF (which would require exponential time). Instead, we use the

CLP as an oracle to return vertices of C

ij

. Let v be any vector. To determine the vertex ORACLE(U ; i; j; v)

of C

ij

that maximizes v � u over all u 2 C

ij

, simply add the following objective to the CLP: maximize

v � (t

j

� t

i

).

9



If calling the oracle with v = (1; 0), v = (0; 1), v = (�1; 0), and v = (0;�1) yields the same point each time,

then C

ij

is a single point. Otherwise, it will yield at least two distinct vertices of an inner approximation

Q � C

ij

(Q might be a degenerate \biangle"). For each edge ab of Q, let v be the outer normal vector to

ab, and let c = ORACLE(U ; i; j; v). If c2ab, then ab is an edge of C

ij

. Otherwise, replace ab of Q by ac and

cb. This algorithm requires 2jC

ij

j calls to the oracle: one for each vertex of C

ij

and one for each edge. If

this many calls is too costly in practice, then for any set V of query directions v, the following intersection

of half-planes is a superset of C

ij

:

S(V ) =

\

v2V

f(x; y) j v � (x; y) � v �ORACLE(U ; i; j; v)g: (4)

Replacing U

ij

with S(V ) \ U

ij

is also a valid (albeit less severe) restriction.

2.1.3 Invalid Restrictions.

LP restriction, as described in the previous section, is a valid restriction. Section 1.3.3 indicated that a

containment algorithm also uses invalid restriction, particularly when it is performing subdivision. It applies

two invalid restrictions to the hypothesis U to yield two subhypotheses U

�

and U

+

. Individually, these

restrictions are invalid, but taken together, U

�

and U

+

cover the same set of con�gurations as U . Section 4.1

gives the details of the distance-based subdivision algorithm for LP containment. This subdivision uses two

types of invalid restriction: component restriction and half-plane restriction.

Component restriction deletes one or more connected components from (exactly) one U

ij

in U . When

subdivision employs component restriction, it sets U

�

ij

equal to (the disjoint union of) some of the components

of U

ij

, and it sets U

+

ij

equal to the remaining components. It creates U

�

and U

+

by replacing U

ij

by U

�

ij

or U

+

ij

. Actually, subdivision sets U

�

ij

equal to one component and U

+

ij

equal to all the others. Section 4.1

gives the details on how this component is selected.

Half-plane restriction intersects one U

ij

in U with a half-plane. When subdivision employs half-plane restric-

tion, it chooses a line L. It sets U

�

ij

equal to the subset of U

ij

to the left side of L, and it sets U

+

ij

equal to

the subset of U

ij

to the right side of L. Section 4.1 describes how to select the line L.

2.2 Restrictions for Combinatorial Version.

The restriction algorithms themselves for half-plane restriction and component restriction are both combina-

torial. Component restriction appears quite logical: why cut U

ij

when it already consists of several pieces?

However, we have not been able to prove a good theoretical running time bound for LP containment when

it uses component restriction. Hence, the combinatorial version of LP containment does not use component

restriction.

LP restriction is not necessarily combinatorial because it is not clear how many iterations are required before

it converges. This section separates LP restriction into convex hull restriction and combinatorial LP restric-

tion. Doing this requires a change of notation. By themselves, both of these restrictions are combinatorial

and converge in one iteration. The combinatorial version of LP containment uses only combinatorial LP

restriction, not convex hull restriction.

Section 2.2.1 gives a new notation for representing a hypothesis. Under this notation, LP restriction can be

separated into convex hull restriction and combinatorial LP restriction. Section 2.2.2 gives a version of the

simplex algorithm that is applicable to a CLP and shows how to use this algorithm as part of an algorithm

for combinatorial LP restriction. The simplex algorithm uses only logarithmic time per vertex of F , but a

vertex may appear in many di�erent hypotheses. Section 2.2.3 shows how to restrict a hypothesis using only

logarithmic time per new vertex of F . Clearly, this is within a log factor of optimal. This algorithm for

combinatorial LP restriction is an important part of the combinatorial version of LP containment.
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2.2.1 New Notation.

If the only types of restriction we use are LP restriction and half-plane restriction, then each U

ij

will be the

intersection of a convex region with U

init

ij

(Section 1.3.3). We will call this polygon C

ij

:

U

ij

= C

ij

\ U

init

ij

; 0 � i; j � k:

Component restriction does not have this property because the components of U

ij

might be nonconvex and

not separable by convex separating polygons.

In the modi�ed notation, the list C = hC

ij

j 0 � i; j � k; i 6= ji acts as the hypothesis instead of the list of

U

ij

regions. Whenever we need the value of U

ij

, we intersect C

ij

with U

init

ij

. LP restriction and half-plane

restriction act on the C

ij

regions in C, replacing one or more by subsets.

Under the modi�ed notation, LP restriction is a combination of convex hull restriction and combinatorial

LP restriction. Convex hull restriction replaces C

gh

by the convex hull of U

gh

:

C

gh

 CH(C

gh

\ U

init

gh

):

Combinatorial LP restriction acts in the same way on C

gh

, 0 � g < h � k, as ordinary LP restriction acts

on CH(U

gh

). Each C

gh

is replaced by the range of t

h

� t

g

over all con�gurations ht

0

; t

1

; t

2

; : : : ; t

k

i which

satisfy t

j

� t

i

2 C

ij

, 0 � i < j � k.

Under this new notation and these de�nitions, one \iteration" of LP restriction is equivalent to a single

application of convex hull restriction followed by a single application of combinatorial LP restriction. Note

that if we do not apply convex hull restriction, then combinatorial LP restriction converges in one \iteration":

after restriction, C

gh

is the full range of t

g

� t

h

. Therefore, the constraint t

g

� t

h

2 C

gh

is no more restrictive

after C

gh

is restricted than before C

gh

is restricted.

2.2.2 Simplex Algorithm.

This section gives an algorithm for employing the simplex method to solve the CLP and to apply combina-

torial LP restriction to a hypothesis C. Let F � R

2k+2

be the set of feasible con�gurations with respect to

the CLP:

F = fht

0

; t

1

; t

2

; : : : ; t

k

i j t

0

= (0; 0) and t

j

� t

i

2 C

ij

; 0 � i < j � kg:

Note that even though F is embedded in R

2k+2

, it is actually only 2k-dimensional because t

0

is set equal

to (0; 0). This section �rst shows how to step from one vertex of F to all neighboring vertices using time

logarithmic in

jCj =

X

0�i<j�k

jC

ij

j:

This \simplex step" algorithm is then used to apply combinatorial LP restriction to C.

A vertex f = ht

0

; t

1

; t

2

; : : : ; t

k

i of F is the intersection of 2k faces. Each face corresponds to (the boundary

of) one of the (half-space) constraints of the CLP. We can represent a constraint as a triple hi; j; ei, meaning

t

j

� t

i

lies to the left of the line LINE(e) containing edge e of C

ij

(\left" means on the same side as the

interior of C

ij

). The constraint hi; j; ei is a half-plane constraint in the 2D \space" of C

ij

, and it is a half-

space constraint in R

2k+2

. The half-plane in 2D (half-space in R

2k+2

) is bounded by the line (hyper-plane)

t

j

� t

i

2 LINE(e). The face itself is the set of con�gurations which \project" onto e: t

j

� t

i

2 e. Hence, a

vertex of F projects onto 2k edges and lies on 2k hyper-planes corresponding to these edges. The constraints

corresponding to these edges/hyper-planes are the critical constraints of that vertex.

Stepping from vertex f = ht

0

; t

1

; t

2

; : : : ; t

k

i to a neighboring vertex f

0

= ht

0

0

; t

0

1

; t

0

2

; : : : ; t

0

k

i of F is equivalent

to replacing exactly one of the critical constraints hi; j; ei by a di�erent constraint hi

0

; j

0

; e

0

i. For each critical

constraint hi; j; ei of f , there is a unique constraint hi

0

; j

0

; e

0

i which can replace it. This replacement constraint

corresponds to the unique face which touches vertex f

0

but does not touch vertex f .

Lemma 2.1 Given a vertex f of F and a critical constraint hi; j; ei of f , the replacement constraint hi

0

; j

0

; e

0

i

corresponding to a neighboring vertex f

0

can be computed in O(k

3

+ k

2

log jCj) time.
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Proof: Eliminating hi; j; ei leaves 2k � 1 constraints. Using standard techniques of linear algebra, the

2k � 1 corresponding hyper-planes (plus the constraint t

0

= (0; 0)) can be intersected in O(k

3

) time. The

intersection is a line in R

2k+2

. We can parameterize this line by s as � (s) = ht

0

(s); t

1

(s); t

2

(s); : : : ; t

k

(s)i,

where � (0) = f and where t

j

(s) � t

i

(s) is to the left of LINE(e) for s > 0.

For 0 � g < h � k, we intersect the ray t

h

(s) � t

g

(s), s > 0, with the boundary of C

gh

. Using standard

techniques of computational geometry, this can be done in O(log jC

gh

j) time. Let i

0

; j

0

be the pair such that

t

j

0

(s) � t

i

0

(s) exits C

i

0

j

0

with the minimum value s

min

of s, and let e

0

be the edge through which the ray

exits C

i

0

j

0

. Because s

min

is the minimum \exit parameter", t

h

(s

min

)� t

g

(s

min

) 2 C

gh

for all other pairs g; h.

Therefore, f

0

= � (s

min

) is feasible; it projects onto edge e

0

of C

i

0

j

0

; and it projects onto the 2k � 1 edges

corresponding to the constraints we did not eliminate.

Total time is O(k

3

) plus the sum of O(log jC

gh

j) over all pairs g; h. Since jC

gh

j < jCj, this gives the bound

claimed in the lemma.

Lemma 2.2 Given a feasible starting con�guration, each C

ij

in C can be LP restricted using total time

O(jFj(k

3

+ k

2

log jCj+ k

2

log jFj)).

Proof: In the following proof, C

ij

denotes the unrestricted region and C

?

ij

denotes the restricted region.

The algorithm is partitioned into several tasks.

I. Determining the critical constraints. The feasible starting con�guration ht

0

; t

1

; t

2

; : : : ; t

k

i projects

into each C

ij

. For 0 � i < j � k, we can determine on which, if any, edges of C

ij

, t

j

� t

i

lies. Each such

edge corresponds to a critical constraint. Since C

ij

is convex, each edge can be determined in O(log jC

ij

j)

time using standard techniques of computational geometry.

II. Finding a vertex of F . In case ht

0

; t

1

; t

2

; : : : ; t

k

i does not project onto 2k edges, we need to add more

constraints. This can be done using a simple modi�cation of the \simplex step" algorithm of Lemma 2.1.

Since there are less than 2k constraints, a \feasible" ray � (s) = ht

0

(s); t

1

(s); t

2

(s); : : : ; t

k

(s)i, s > 0, can be

chosen. If there are less than 2k � 1 constraints, this ray is not unique, and so we choose one arbitrarily.

Standard techniques of linear algebra accomplish this in O(k

3

) time. We do not remove a constraint, but

we add the constraint corresponding to the minimum-s \exit edge". This modi�ed simplex step is repeated

until there are 2k constraints. Note: we only have to repeat it at most 2k times.

III. Does vertex f of F project onto a vertex or edge of C

?

ij

? For a vertex f = ht

0

; t

1

; t

2

; : : : ; t

k

i

of a convex 2k-dimensional polytope, determining the 2k directions of the edges out of f is equivalent to

inverting the 2k � 2k matrix of normal vectors to the 2k faces which meet at f . This can be done in O(k

3

)

time. The projection of the 2k edge vectors yields 2k vectors in C

ij

pointing out of t

j

� t

i

, the projection of

f . The projection t

j

� t

i

lies on the boundary of C

?

ij

if and only if there is a line L through t

j

� t

i

such that

all the projected vectors lie on or to the left of L. If L can be chosen such that the heads of the vectors all

lie strictly to the left of L, then t

j

� t

i

is a vertex. Consider the two vectors out of t

j

� t

i

which form the

largest angle between them. These point along the two edges of C

?

ij

which meet at t

j

� t

i

. If t

j

� t

i

lies on

an edge e of C

?

ij

, then L will equal LINE(e), and two of the vectors will point along e. The cost of testing

this half-plane condition and �nding the largest-angle pair of vectors is O(k). Therefore, the total cost over

all C

ij

, 0 � i < j � k, is O(k

3

).

IV. Finding a vertex of C

?

ij

. As each C

gh

, 0 � g < h � k is restricted, the algorithm visits new vertices

of F . Each new vertex is tested to see if it projects onto a vertex or edge of any C

?

ij

. Unfortunately, when

it comes time to restrict a particular C

ij

, the algorithm might not yet have seen a point on the boundary

of C

?

ij

. In this case, out of the vertices of F it has seen, it chooses the vertex f of F which projects to the

rightmost point in C

ij

: (1; 0) � (t

j

� t

i

) is maximal. It then applies the standard simplex technique to �nd

the unseen vertex of F which project to the rightmost point in C

ij

: 1) �nd an edge direction out of f whose

projection into C

ij

has positive x-component 2) move to the vertex f

0

of F at the other end of that edge.

These two steps are repeated until the rightmost vertex, which will be a vertex of C

?

ij

, is found. Note: since

the algorithm starts at the rightmost \seen" vertex, each vertex of F it generates has never been seen before.

V. Given a point v on the boundary of C

?

ij

, �nd the two neighboring vertices on the boundary

of C

?

ij

. One way or another, v is generated as the projection of a vertex f of F , and we know the two edge

directions out of f whose projections point out of v and along the boundary of C

?

ij

. Pick either of these edge

12



directions and �nd the vertex f

0

at the other end. Its projection into C

ij

will be a vertex v

0

of C

?

ij

that is a

neighbor of v on the boundary of C

?

ij

.

It is important not to generate each vertex of F more than once. When it comes time to construct C

?

ij

, the

algorithm looks into C

ij

and sees what vertices of C

?

ij

have already been generated. If there are none, it has

to generate one (the rightmost) using Algorithm IV. It computes the convex hull of the existing vertices.

Since it knows the directions of the edges out of each vertex, it knows whether two of these vertices are

actually neighbors. If C

?

ij

is missing vertices, it uses Algorithm V to �ll in the missing vertices.

The running time is O(k

3

+ k

2

log jCj) to generate each vertex of F and O(k

3

) to check if it projects onto

the boundary of any C

?

ij

. Computing the convex hull of existing vertices of C

?

ij

adds a cost of O(log jC

?

ij

j)

per vertex, and since the vertices of C

?

ij

are projections of vertices of F , this cost is O(log jFj). Since each

vertex of F can project onto a vertex of O(k

2

) regions, the extra cost per vertex is O(k

2

log jFj).

2.2.3 Reducing the Cost per Vertex.

The simplex algorithm of the previous section reduced the time for restriction to

O(k

3

+ k

2

log jCj+ k

2

log jFj)

per vertex of F . Section 5.2 shows that this bound is O(k

3

log kmn). Unfortunately, the same con�guration

may appear as a vertex of the feasible region of a di�erent hypothesis. This means that we may have to

spend O(k

3

logkmn) many times per vertex. This section shows how to restrict C using logarithmic cost

per new vertex that is generated. This algorithm is necessary to obtain our near optimal bound for the

combinatorial version of LP containment.

Recall that the combinatorial version of LP containment applies only half-plane restrictions and combinatorial

LP restriction. It applies neither component restriction nor convex hull restriction. Recall also that, in

this version, restriction is tightly integrated with combinatorial subdivision. To accomplish combinatorial

subdivision, the algorithm picks some pair i; j and a line L, and it splits C

ij

intoC

�

ij

and C

+

ij

(see Section 4.2).

The combinatorial version of LP containment recurses on the two subhypotheses C

�

and C

+

which result

from replacing C

ij

in C by either C

�

ij

or C

+

ij

. When it recurses on C

�

, the �rst thing it does is apply

combinatorial LP restriction. This replaces C

gh

by the new range of t

h

� t

g

given that C

ij

has been replaced

by C

�

ij

. Let us denote this restriction of C

gh

as C

�

gh

. Similarly, when the algorithm recurses on C

+

, let the

restriction of C

gh

be C

+

gh

. Note that this notation is unambiguous with respect to C

ij

: with respect to the

constraints t

h

� t

g

2 C

gh

, 0 � g < h � k and g 6= i or h 6= j, the range of t

j

� t

i

is una�ected. Therefore,

C

�

ij

and C

+

ij

are una�ected by combinatorial LP restriction.

To construct C

�

gh

, the running time of the simplex LP restriction algorithm of the previous section is, for

each vertex:

O(k

3

+ k

2

log(jCj+ 1) + k

2

log jF

�

j):

(We add 1 to jCj because C

�

ij

might have one more edge than C

ij

.) However, C

�

gh

may have many vertices

in common with C

gh

which the simplex algorithm generates a second time. Therefore, the simplex LP

restriction algorithm may be far from optimal.

De�ne C

0

ij

to be L \ C

ij

. Since L is a line and C

ij

is a convex region, C

0

ij

is a line segment. De�ne C

0

gh

to be the result of restricting C

gh

after C

ij

has been replaced by C

0

ij

. As before, this restriction does not

shrink C

0

ij

any further, and so this notation is unambiguous. Let F

0

denote the feasible con�gurations of

the hypothesis C

0

which result from replacing C

ij

by C

0

ij

in C. If � denotes the plane in R

2k

corresponding

to the constraint t

j

� t

i

2 L, then F

0

= � \ F . Each vertex of F

0

is new.

12

The following lemma indicates

that it is possible to restrict C

�

and C

+

using log time per vertex of F

0

.

Lemma 2.3 Hypotheses C

�

and C

+

can be restricted in time O(jF

0

j(k

3

+k

2

log(jCj+1)+k

2

log(jFj+jF

0

j))).

12

Actually, if � passes through a vertex of F, then some of the vertices of F

0

might already belong to F. For the sake of

simplicity, we assume that L is in general position and thus � does not pass through any vertex of F. Standard techniques

show that it su�ces to prove a running time bound under the assumption of general position.

13



Proof: We describe how to construct C

�

gh

. Constructing C

+

gh

is analogous.

We apply the simplex algorithm of Lemma 2.1 to restrict C

0

. To apply this lemma, it is necessary to generate

an initial feasible con�guration for C

0

. This can be done in O(k+log jC

ij

j) time, where C

ij

is the hypothesis

that is split by line L. Using standard techniques, determine an edge e of C

ij

which L intersects. Since C

ij

is restricted, each of its vertices corresponds to a vertex of F . The endpoints of e will correspond to vertices

on opposite sides of hyper-plane �. A simple linear interpolation generates a feasible con�guration which

lies on � and hence in F

0

. The rest of the proof shows how to restrict C

gh

to C

�

gh

given C

0

gh

in the restricted

hypothesis C

0

.

Since C

0

is a restriction of C, it follows that C

0

gh

� C

gh

. For each vertex a of C

0

gh

, determine if a lies on the

boundary of C

gh

, and if it does, split the boundary of C

gh

at a. Assuming the vertices of C

gh

are stored in a

balanced search structure, then standard techniques of computational geometry can perform these operations

in O(log jC

gh

j) time per vertex of C

0

gh

.

Let a and b be two vertices of C

0

gh

that lie on the boundary of C

gh

such that no vertex of C

0

gh

between a

and b also lies on the boundary of C

gh

. Both C

0

gh

and C

gh

have an \arc" joining a to b. Vertices a and b

will also lie on the boundary of C

�

gh

, and the arc ab of C

�

gh

will either be the arc ab of C

0

gh

or the arc ab of

C

gh

. To determine which, consider any vertex v of arc ab of C

gh

. Vertex v equals t

h

� t

g

for some feasible

(for C) con�guration ht

0

; t

1

; t

2

; : : : ; t

k

i which the LP containment algorithm generated when it restricted C.

If t

j

� t

i

lies to the left of L, then the arc ab of C

gh

belongs to C

�

gh

. If t

j

� t

i

lies to the right of L, then the

arc ab of C

0

gh

belongs to C

�

gh

. Incidentally, if no vertices of C

0

gh

lie on the boundary of C

gh

, then one can

test any vertex v of C

gh

. If t

j

� t

i

lies to the left of L, then C

�

gh

= C

gh

. If t

j

� t

i

lies to the left of L, then

C

�

gh

= C

0

gh

.

Clearly, there are O(jC

0

gh

j) pairs of arcs to be considered, and determining the correct arc from each pair

requires O(jC

0

gh

j) time. However, the vertices of C

�

gh

need to be in the same sort of balanced search structure

that was used to store the vertices of C

gh

. For the appropriate structure, the time to join O(jC

0

gh

j) arcs is

O(jC

0

gh

j log jC

0

gh

+ C

gh

j). Putting together this time with the time to generate C

0

gh

gives the time bound

claimed in the lemma.

3 Evaluation.

A solution ht

0

; t

1

; t

2

; : : : ; t

k

i to a CLP is a potential solution to containment, but it might not satisfy Equa-

tion 2 (page 4) because t

j

� t

i

2 CH(U

ij

) does not imply t

j

� t

i

2 U

ij

. If t

j

� t

i

62 U

ij

, translated polygons

P

i

+ t

i

and P

j

+ t

j

overlap. We de�ne the amount of overlap of P

i

+ t

i

and P

j

+ t

j

to be the shortest

distance from t

j

� t

i

to the boundary of U

ij

. For any given con�guration ht

0

; t

1

; t

2

; : : : ; t

k

i, the overlap of

the con�guration is the maximum amount of overlap over all pairs of polygons.

This section gives an algorithm that calculates a local overlap minimum: a con�guration ht

0

; t

1

; t

2

; : : : ; t

k

i

such that the amount of overlap is at a local minimum. In particular, every con�guration ht

0

0

; t

0

1

; t

0

2

; : : : ; t

0

k

i

in some open ball about the minimum ht

0

; t

1

; t

2

; : : : ; t

k

i has larger overlap. Naturally, one would prefer the

global overlap minimumbecause that would be a nonoverlapping con�guration (if one exists). Unfortunately,

�nding the global minimum is NP-hard. Still, a local minimum is more likely, at least in a practical sense,

to be a valid con�guration than an arbitrary solution to the linear program. Thus, this algorithm represents

a new method for evaluating a hypothesis (Section 1.5).

Finding an overlap minimum, even a local minimum, is a nonconvex problem. Fortunately, it is possible to

rapidly �nd a local minimum in practice through iterated solution of an overlap linear program (OLP). For

the problems we encounter in practice, minimization appears to require at most six iterations, and usually

it requires only three or four. The following section lays out the general framework for the de�nition of

the OLP. Sections 3.2 and 3.3 
esh out the details. Section 3.4 describes the actual overlap minimization

algorithm and proves its convergence and correctness. The LP containment algorithm uses this algorithm.

Unfortunately, it does not appear to have constant or logarithmic cost per vertex of the feasible polytope

F of the CLP. In fact, the solution to the OLP does not necessarily lie at a vertex of F . Section 3.5 gives
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some alternate methods of overlap minimization, at least one of which has logarithmic cost per vertex of F .

These alternate methods are used in the combinatorial version of LP containment.

3.1 The General Framework for Overlap Minimization.

Ideally, we would like to add constraints and an objective to the CLP so that the resulting program would

minimize

max

0�i<j�k

�(t

j

� t

i

; U

ij

);

where �(t

j

� t

i

; U

ij

) is the Euclidean distance from t

j

� t

i

to U

ij

. Such a program would minimize the

maximum overlap and thus �nd a nonoverlapping layout, if one exists.

Unfortunately, two properties of this objective prevent us from expressing the program as a linear program.

First, the Euclidean distance � is not linear. Second, U

ij

is not necessarily convex. We replace � with

a linearized distance function �

8

and replace U

ij

with a local convex approximation I(t

0

j

� t

0

i

; U

ij

), where

T

0

= ht

0

0

; t

0

1

; t

0

2

; t

0

3

; : : : ; t

0

k

i is the current con�guration. With these substitutions, we can de�ne an overlap

linear program (OLP) which minimizes

max

0�i<j�k

�

8

(t

j

� t

i

; I(t

0

j

� t

0

i

; U

ij

));

under the constraints of the CLP. Iterating the solution to this OLP yields a local overlap minimum for

the linearized distance �

8

and the nonconvex U

ij

. We do not necessarily �nd an overlap minimum for the

Euclidean distance function, but the �

8

distance di�ers from the Euclidean distance by at most 10%. The

only overlap value which really matters is zero overlap, and this is the same for both distance functions.

3.2 The Linearized Distance Function.

To simplify notation, this section and the next consider a speci�c i; j and refer to t

j

� t

i

and U

ij

as t

and U , respectively. This section de�nes the linearized distance function �

8

and proves that it is a good

approximation to the Euclidean distance. This distance function is a generalization of the standard convex

distance function

13

based on the regular octagon. We could generalize any convex distance function in the

same manner, but since �

8

serves our purposes, we leave these other generalizations as an exercise for the

reader. In what follows, we assume that each vertex of U is simple: it is an endpoint of exactly two edges.

The region U itself can have multiple components and/or holes. In the implementation, if the contour of U

passes through the same point more than one, each instance is considered a separate vertex.

For each point u on the boundary of U , de�ne NORMALS(u; U ) to be a set of outward pointing unit normal

vectors to U at u given as follows. If u lies on an edge, then NORMALS(u; U ) contains only one element

perpendicular to the edge. If u is a concave vertex of U , then NORMALS(u; U ) is empty. Otherwise, if u is

a convex vertex of U , let v and w be the unit normal vectors to the edges of U that meet at u. In this case,

NORMALS(u; U ) contains v, w and all the unit vectors in the angle between v and w (the angle which is

less than 180 degrees).

Point t projects onto p on the boundary of U if vector t� p points in the same direction as some element of

NORMALS(p; U ). If p lies on an edge, this is an ordinary perpendicular projection. The usual de�nition of

the Euclidean distance �(t; U ) from a point t to a set U is

�(t; U ) = min

u2U

jt� uj:

It is well known that the point u 2 U which minimizes jt � uj is a point of projection of t onto U . Hence,

�(t; U ) is the distance to the nearest point of projection of t onto U . In order to motivate the de�nition of

�

8

below, we observe that if p is a point of projection, then the Euclidean distance jt� pj satis�es,

jt� pj = max

v2NORMALS(p;U)

v � (t� p): (5)

13

We are referring to the metric whose unit ball is a given convex polygon instead of a circle.
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The vector v 2 NORMALS(p; U ) which yields the maximum value of v � (t � p) is the one which points in

the same direction as t� p.

The set NORMALS

8

(u; U ) � NORMALS(u; U ) is de�ned as follows. If u lies on an edge, then NORMALS

8

(u; U )

equals NORMALS(u; U ). If u lies at a convex vertex of U , then NORMALS

8

(u; U ) is de�ned to contain v

and w (the outward unit normals to the edges of U which meet at u) plus all vectors in

S

8

=

��

cos

2�i

8

; sin

2�i

8

�

j i = 0; 1; 2; : : : ; 7

�

which lie in the angle between v and w. In other words, take a discrete sample of unit normal vectors every

45 degrees.

If p is a point of projection of t, then de�ne,

�

8

(t; p; U ) = max

v2NORMALS

8

(p;U)

v � (t� p): (6)

De�ne �

8

(t; U ) to be the �

8

-distance to the nearest point of projection of t onto U .

Lemma 3.1 0:91�(t; U ) � �

8

(t; U ) � �(t; U ).

Proof: For each point of projection p of t onto U ,

NORMALS

8

(p; U ) � NORMALS(p; U ):

Therefore, by Equations 5 and 6, �

8

(t; p; U ) � jt� pj. This establishes the upper bound on �

8

(t; U ).

There must always be some v 2 NORMALS

8

(p; U ) such that the angle between v and t� p is less than half

of 2�=8. Therefore,

v � (t � p) � jt� pj cos

�

8

� 0:91jt� pj:

This establishes the lower bound on �

8

(t; U ).

Finally, the distance function �

8

has a nice formulation for convex polygons. We will need this when we

de�ne the OLP in Section 3.4.

Lemma 3.2 If Q is a convex polygon and t lies outside Q, then �

8

(t; Q) is the maximum value of

max

v2NORMALS

8

(q;Q)

v � (t� q);

over all vertices q of Q.

Proof: Let p be the projection of t onto Q (since Q is convex, the projection is unique), and let v

p

2

NORMALS

8

(p;Q) be the normal such that �

8

(t; Q) = v

p

�(t�p) (Equation 6). Let v

min

; v

max

2 NORMALS(p;Q)

be the two elements the largest angle between them, where the angle between v

min

and v

max

is counterclock-

wise and less than 180 degrees. If p lies in the interior of an edge e of Q, then v

p

, v

min

, and v

max

are all

equal to the outward normal vector to e.

Let q be any vertex of Q where q 6= p if p is a vertex. Let v

q

be any vector in NORMALS

8

(q;Q). We claim

that

v

q

� (t� q) � v

p

� (t � p):

Since v

q

2 NORMALS(q;Q), v

q

is an outward normal to a line of support for Q through q. Every point

p 2 Q lies on the side of this line that satis�es,

v

q

� (p � q) � 0: (7)
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Next, observe that NORMALS(p;Q) and NORMALS(q;Q) do not overlap. At most, they have either v

min

or v

max

in common (but not both). Therefore, v

q

is not in the interior of NORMALS(p;Q). On the other

hand, t� p does point in the same direction as some element of NORMALS(p;Q). Therefore, either v

min

or

v

max

lies in the proper (� 180 degree) angle formed by v

q

and t� p. It follows that

v

q

� (t� p) � max(v

min

� (t� p); v

max

� (t� p)):

Since v

min

; v

max

2 NORMALS

8

(p;Q), it follows from Equation 6 that

v

q

� (t � p) � v

p

� (t� p): (8)

Adding Equations 7 and 8 proves the claim.

If the projection p is a vertex of Q, then the lemma follows directly from the claim: set q = p and v = v

p

,

and for this choice of q and v, �

8

(t; Q) = v � (t � q). Hence the maximum is equal to �

8

(t; Q). If p lies in

the interior of edge e, set q equal to one of the endpoints of this edge and set v = v

p

. Since v

p

is the outward

normal to e, v 2 NORMALS

8

(q;Q). Since p� q is perpendicular to t� p, v � (t� p) = v

p

� (t� q) = �

8

(t; Q),

and again the maximum is equal to �

8

(t; Q).

3.3 Local Convex Approximation.

This section de�nes the notion of a local convex approximation I(t; U ) to U near t. We prove some properties

of local convex approximations that are crucial to the correctness and convergence of the overlap minimization

algorithm.

3.3.1 Discussion.

We would like to de�ne an inner approximation to be a convex set Q � U that looks like U near t from the

point of view of t. Furthermore, we would like �

8

(t; Q) to be an upper bound for �

8

(t; U ) for all t 2 U . In

this way, minimizing the distance from t to Q will also move t closer to U . Unfortunately, the �rst goal is

counterproductive and the second goal is unattainable. Hence, these unrealistic goals need to be modi�ed.

This section discusses these goals and their modi�cation into realistic goals.

Imagine that U is a thin crescent and t can see the convex part of the boundary of U . Necessarily, any

convex subset Q � U can only cover a small portion of U . From the point of view of t, using Q = CH(U )

is a much better convex approximation to U . In particular, if t is near the middle of the convex part of

the boundary of U , then only a very large motion of t will enable it to see the \back side" of Q where it

di�ers from the concave \back side" of U . This example shows that the goal that Q be a subset of U can be

counterproductive.

Even if Q � U , the second goal is unattainable for the �

8

metric. The second goal is attainable for the

Euclidean metric. Clearly, if Q � U , then �(t; Q) � �(t; U ) for all t 2 U . Unfortunately, the �

8

metric

does not have this property. The counterexample is somewhat complicated, and we do not present it here.

The next section de�nes I(t; U ) in a way that satis�es a modi�ed version of these goals. First, I(t; U ) will

be a subset of U , but only inside some limited region. Second, �

8

(t

0

; I(t; U )) will be an upper bound for

�

8

(t

0

; U ) for t

0

su�ciently near to t.

3.3.2 De�nition.

A local convex approximation to a region U relative to a point t 62 U is a convex set I(t; U ) with two

properties:

14

1) Its boundary must contain the �

8

-nearest point p to t on U . If the nearest point is not

unique (more than one point of projection is at the same minimum�

8

-distance), then I(t; U ) must contain

one of these nearest points. 2) For some radius � > 0 and for all balls B about p with radius less than �,

B \ I(t; U ) = B \ U .

14

The \I" stands for \inner": from the point of view of t, I(t;U) is a convex subset of U .
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Lemma 3.3 Let Q = I(t; U ) be a local convex approximation to U near t. There exists some ball B

t

about

t such that t

0

2 B

t

implies �

8

(t

0

; U ) � �

8

(t

0

; Q). If the �

8

-nearest point to t on U is unique, then there

exists some ball B

t

about t such that t

0

2 B

t

implies �

8

(t

0

; U ) = �

8

(t

0

; Q).

Proof: By de�nition, the boundary of Q contains p, a �

8

-nearest point to t on U . Since Q is convex,

the projection of t onto Q is unique, and we denote it as PROJECTION(t; Q). Clearly, p is equal to

PROJECTION(t; Q). Let B

p

be a ball about p which satis�es the condition of the de�nition of I(t; U ); let

B

t

be a ball centered at t with radius

min(�(t; U );RADIUS(B

p

))

and let t

0

range over the points in B

t

. It is clear that PROJECTION(t

0

; Q) is a continuous function of

t

0

, and for some regions in B

t

, PROJECTION(t

0

; Q) is �xed at a vertex, and for other regions in B

t

,

PROJECTION(t

0

; Q) moves along an edge ofQ. We claim that PROJECTION(t

0

; Q) never moves faster than

t

0

: in the worst case, PROJECTION(t

0

; Q) is moving along an edge and its velocity is equal to the component

of the velocity of t

0

parallel to that edge. As a consequence, t

0

2 B

t

implies PROJECTION(t

0

; Q) 2 B

p

.

Furthermore, if PROJECTION(t

0

; Q) is in B

p

, then it stays on the boundary of U which is identical to the

boundary of Q inside B. Since the de�nition of projection is a local property, it remains a projection of t

0

onto U . Since �

8

(t; U ) is a minimum over all projections onto U , �

8

(t

0

; U ) � �

8

(t

0

; Q) for t

0

2 B

t

.

Suppose p is a unique �

8

-nearest projection of t onto U . The set of points which project onto a given vertex

v or edge e of U is closed, and therefore its complement is open. Therefore if t does not project onto v (or

e), there is a ball about t such that t

0

in the ball does not project onto v (or e). If t does project onto v (or

e) outside B

p

(if e is partially inside B

p

, then we ignore it because it is an edge of Q), we observe that the

�

8

distance of t to v (or e) is continuous. In the case of an edge, it is the true distance. In the case of a

vertex, it is the maximum of a collection of continuous functions, which is continuous. This is true within

the domain of points which project onto v (or e). Since t is closer to Q than v (or e) and since the �

8

distance is continuous, then there exists a ball B

v

(or B

e

) about t such that for t

0

in B

v

(or B

e

), t

0

either

does not project onto v (or e), or t

0

is still closer to Q than v (or e). We choose B

t

to be the ball about t

whose radius is

min(�(t; U );RADIUS(B

p

);RADIUS(B

v

);RADIUS(B

e

))

as v and e range over all vertices and edges of U outside B

p

. For t

0

2 B

t

, PROJECTION(t

0

; Q) remains the

unique �

8

-nearest projection of t onto U , and therefore �

8

(t

0

; U ) = �

8

(t

0

; Q).

3.3.3 Constructing I(t; U ).

There is more than one way one can construct I(t; U ) to satisfy the de�nition of the previous section. As

Section 3.3.1 discussed, it may be counterproductive to insist that I(t; U ) � U . In fact, it is often useful to

allow I(t; U ) to be unbounded.

As Figure 2 illustrates, our current implementation generates I(t; U ) as follows. It starts with the point p

on the boundary of U which is nearest to t under the �

8

metric. Next, it \walks" along the boundary of

U in both directions. For each direction, as long as it encounters convex vertices, it adds the next edge to

the boundary of I(t; U ). If it encounters a concave vertex, it extends the current edge to in�nity or until it

intersects the chain of edges generated in the other direction. It also stops and extends the current edge if

the next edge normal is rotated more than 180 degrees with respect to the direction of t� p.

Since p either lies in the middle of an edge or at a convex vertex of U , this extension process will always

include a neighborhood of the boundary of U visible from t near p. Therefore, the region I(t; U ) will satisfy

the de�nition of the previous section.
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3.4 Overlap Minimization Algorithm.

This section describes the overlap linear program (OLP) and the overlap minimization algorithm. This

algorithm �nds a local minimum of the �

8

-overlap,

max

0�i<j�k

�

8

(t

j

� t

i

; U

ij

):

It also proves convergence of the algorithm.

3.4.1 The OLP.

Suppose we are currently at an overlapping con�guration

T

0

= ht

0

0

; t

0

1

; t

0

2

; t

0

3

; : : : ; t

0

k

i:

For each pair of overlapping polygons P

i

+ t

0

i

and P

j

+ t

0

j

the overlap minimization algorithm computes a

local convex approximation I(t

0

j

� t

0

i

; U

ij

). It sets up an OLP to minimize,

APPROX-DIST(T;U ; T

0

) = max

0�i<j�k

�

8

(t

j

� t

i

; I(t

0

j

� t

0

i

; U

ij

)); (9)

under the constraints of the CLP (Section 2.1.1), where T = ht

0

; t

1

; t

2

; : : : ; t

k

i. To do this it adds the

constraints,

v

ij

� (t

j

� t

i

� q

ij

) � d;

for each overlapping i; j, for each vertex q

ij

of I(t

0

j

� t

0

i

; U

ij

), and for each normal vector

v

ij

2 NORMALS

8

(t

j

� t

i

; q

ij

; I(t

0

j

� t

0

i

; U

ij

)):

It also sets the objective to minimize d. This is the OLP. By Lemma 3.2, the minimum value of d, which

is the maximum value of v

ij

� (t

j

� t

i

� q

ij

), is the maximum distance from t

j

� t

i

to I(t

0

j

� t

0

i

; U

ij

) for

0 � i < j � k. Therefore, this OLP does indeed minimize APPROX-DIST(T;U ; T

0

).

3.4.2 Subdividing the Interval.

Let T

1

= ht

1

0

; t

1

1

; t

1

2

; t

1

3

; : : : ; t

1

k

i be the output of the OLP. It follows that APPROX-DIST(T

1

;U ; T

0

) �

APPROX-DIST(T

0

;U ; T

0

). If the two are equal, the algorithm terminates. Otherwise, it does the fol-

lowing. It sets T

0

= T

1

. While the �

8

-overlap of con�guration T

0

is not less than that of T

0

, it sets T

0

equal

to the midpoint of T

0

T

0

. As we show below, this loop terminates, and when it does, the algorithm makes

T

0

the new current con�guration and goes back to the OLP step.

15

3.4.3 Convergence and Correctness

Theorem 3.4 The OLP algorithm converges to a con�guration which is either a local �

8

-overlap minimum

of U or of a perturbed hypothesis U

0

which can be made arbitrarily close to U .

Proof: Convergence. If T

1

has smaller APPROX-DIST than T

0

, then by linearity, every T

0

2 T

0

T

1

, T

0

6=

T

0

will have smallerAPPROX-DIST. Lemma3.3 implies that for T

0

su�ciently close to T

0

, APPROX-DIST(T

0

;U ; T

0

)

is an upper bound on the �

8

-overlap of T

0

. Remember that APPROX-DIST(T

0

;U ; T

0

) equals the �

8

-overlap

of T

0

. Therefore, after su�cient interval halving, T

0

will have smaller �

8

-overlap than T

0

.

Local minimum. Suppose the algorithm converges to a con�guration T . If for each i; j, t

j

� t

i

has a

unique nearest point on the boundary of U

ij

, then Lemma 3.3 implies that APPROX-DIST(T

0

;U ; T ) equals

the �

8

-overlap of T

0

in the vicinity of T . Since T is a (global) minimum of APPROX-DIST, it must at

least be a local minimum of the �

8

-overlap. If for some t

j

� t

i

, U

ij

does not have a unique nearest point

of projection, then we can create an perturbation U

0

ij

which moves the \wrong" points of projection farther

away and which is arbitrarily close to U

ij

.

15

In practice, we stop the algorithm when the �

8

-overlap diminishes by less than a �xed fraction.
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3.5 Evaluation Methods for Combinatorial Version.

In order to establish the desired running time for the combinatorial version of LP containment, it is necessary

that evaluation have constant or logarithmic cost per vertex of F , the feasible polytope of the CLP, just as

the combinatorial LP restriction algorithm does in Sections 2.2.2 and 2.2.3. Unfortunately, the overlap mini-

mization algorithm in the previous section does not have this property. This section gives some alternatives,

one of which has this property.

By computing the Voronoi diagram of U

init

ij

, it is possible to create a data structure that allows us to

determine the (Euclidean) distance of any point t

j

� t

i

to U

init

ij

using O(log jU

init

ij

j) time. For each vertex f of

F generated by the LP restriction algorithm, we can compute the overlap of the corresponding con�guration

in O(k

2

log jU

init

j) time. This cost is logarithmic per vertex. Using O(k

3

log jU

init

j) time per vertex f , we

could also determine if moving along any edge of F out of f diminishes the overlap. Hence, a modi�cation

of the simplex step algorithm of Section 2.2.2 can �nd a local overlap minimum relative to the set of vertices

and edges of F . This algorithm would not have to visit vertices that had already been seen. Of course,

a true local minimum might be on a face of F or in its interior. Nevertheless, this disadvantage might be

outweighed by the speed of the simplex algorithm on vertices of F .

Another slight disadvantage of this evaluation method is that t

j

� t

i

might be \attracted" to a portion of

U

init

ij

which lies outside C

ij

. The solution to this problem is to use the Voronoi diagram of U

ij

= C

ij

\U

init

ij

.

It is probably not possible to prove that that one can construct this Voronoi diagram using logarithmic time

per vertex of F . Nevertheless, it could be quite fast in practice since it still makes use of the fast simplex

algorithm for F .

4 Subdivision.

Subdivision divides the current hypothesis into two subhypotheses. Speci�cally, subdivision splits one U

ij

in

U into two parts U

�

ij

and U

+

ij

. It creates two subhypotheses by replacing U

ij

with U

�

ij

or U

+

ij

. Subdivision

has two goals. The �rst goal is to make the convex hull CH(U

ij

) \stick out" of U

init

ij

less (see Section 1.3.3).

In particular, if we de�ne the maximum overlap of CH(U

ij

) to be,

max

u2CH(U

ij

)

�(u; U

init

ij

);

then subdivision should make the maximum overlap of CH(U

�

ij

) and CH(U

+

ij

) smaller. It does not matter

whether we use the Euclidean metric � or the linearized metric �

8

. The second goal is to drive the OLP

evaluator \away" from the current overlapping con�guration. Since the current con�guration is at a local

overlap minimum, the only way to prevent the evaluator from \falling into" the same local minimum is to

move to a con�guration outside CH(U

�

ij

) and CH(U

+

ij

), as far outside as possible.

Note that if CH(U

ij

) � U

init

ij

, then U

ij

need not be split: if the output of the CLP satis�es t

j

� t

i

2 CH(U

ij

),

then it will satisfy t

j

� t

i

2 U

init

ij

. If each U

ij

in the current hypothesis U satis�es CH(U

ij

) � U

init

ij

,

0 � i < j � k, then the output of the CLP must be a solution to containment [4]. In such a case, we say that

U is pseudo-convex. Note that U can be pseudo-convex even if each U

ij

in U is nonconvex. Any algorithm that

subdivides down to pseudo-convex hypotheses will be a combinatorial containment algorithm. Furthermore,

we can add geometric (Equation 3) or other restrictions to the algorithm without spoiling the combinatorial

running time [4]. The running time is, of course, increased by the time to perform the geometric restrictions,

but the number of hypotheses is the same in the worst case. Geometric restriction might introduce new

concave vertices into the con�guration spaces, but it makes some of the U

ij

smaller, and therefore it will not

change a pseudo-convex hypothesis into a non-pseudo-convex hypothesis.

The �rst goal of subdivision is accomplished by almost any reasonable splitting algorithm. The second goal is

the focus of this section. Section 4.1 gives a distance-based subdivision algorithm that creates subhypotheses

which are the maximum possible distance from the current con�guration. Because it fragments the regions

as little as possible, this algorithm is the one we use in our LP containment algorithm. This subdivision

algorithm runs in linear time, but we cannot prove that a containment algorithm that uses it necessarily
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has a good theoretical running time bound. Section 4.2 gives a combinatorial subdivision algorithm that

drives the evaluator to a con�guration which is combinatorially di�erent. The combinatorial version of LP

containment uses this combinatorial subdivision algorithm.

4.1 Subdivision for LP Containment.

Overlap minimization computes a con�guration ht

0

; t

1

; :::; t

k

i which is a local overlap minimum. If the

overlap is zero, this is a valid con�guration, and there is no need to subdivide. If the overlap is not zero, the

subdivision algorithm selects the pair i; j such that P

i

+t

i

and P

j

+t

j

are the most overlapped: �

8

(t

j

�t

i

; U

ij

)

is maximal. It then subdivides U

ij

into U

�

ij

and U

+

ij

. Note that U

ij

may have multiple components and holes.

There are three cases:

1. U

ij

has multiple components. It sets U

�

ij

equal to the component of U

ij

which is closest to t

j

� t

i

.

It sets U

+

ij

equal to the union of the other components.

2. U

ij

is connected and every ray out of t

j

� t

i

intersects U

ij

. It selects the vertex u of U

ij

which

is nearest to t

j

� t

i

. It splits U

ij

into U

�

ij

, the closure of H

�

\ U

ij

, and U

+

ij

, the closure of H

+

\ U

ij

,

where H

�

and H

+

are the open half-planes to the left and right of LINE((t

j

� t

i

)u), respectively.

16

3. U

ij

is connected and t

j

� t

i

can \see to in�nity" along some ray. It selects a line L through

t

j

� t

i

which splits U

ij

into U

�

ij

and U

+

ij

. The line is chosen to maximize

d(L) = min(�(t

j

� t

i

;CH(U

�

ij

)); �(t

j

� t

i

;CH(U

+

ij

))); (10)

the minimum Euclidean distance from t

j

� t

i

to the convex hulls of the two \halves" of U

ij

.

For cases 1 and 2, the closest component or vertex of U

ij

to t

j

� t

i

can clearly be located in O(jU

ij

j) time.

The remainder of this section shows how to determine in O(jU

ij

j) time whether t

j

� t

i

can \see to in�nity"

when U

ij

is connected (case 2 or 3) and, if so, how to compute the line described in case 3. To simplify

notation, let t denote t

j

�t

i

, U denote U

ij

and L

max

denote the splitting line which maximizes the expression

for d(L) in Equation 10.

To maximize d(L), it su�ces to consider lines in the set L = fLjd(L) 6= 0g. Each L 2 L contains a ray out

of t along which t can \see to in�nity." Section 4.1.1 shows how to �nd L in O(jU j) time. If L = ;, then U

and t satisfy case 2; otherwise they satisfy case 3. Section 4.1.1 also shows how to construct in O(jU j) time

an ordered list E of O(jU j) subedges of the boundary of U , where E is the part of the boundary of U which

is visible to t. It also shows how to �nd a sublist G of E such that CLOSURE(L) = fLINE(tu)ju 2 e for e 2

Gg.

17

Section 4.1.2 shows that binary search on the edge index inG can determine the edge in the list which contains

u

max

such that L

max

= LINE(tu

max

). It also observes that binary search can be used on any partition G

0

of

G. Section 4.1.3 creates a partition G

0

of G with the property that, with O(jU j) preprocessing time, we can

evaluate a given vertex of any edge in G

0

in O(1) time within the binary search. It shows that G

0

contains

O(jU j) edges and can be constructed in O(jU j) time. Section 4.1.3 also shows that, if the binary search

determines that u

max

is in the interior of an edge in G

0

, then O(jU j) preprocessing allows us to retrieve,

in O(1) time, the information necessary to calculate u

max

. Section 4.1.4 shows that, in this case, u

max

can

be calculated in O(1) time in a real arithmetic model and in O(log(log �

�1

)) time in a rational arithmetic

model, where � is the accuracy. Section 4.1.5 concludes that L

max

can be computed in O(jU j) time in a real

arithmetic model and in O(jU j+ log(log �

�1

)) time in a rational arithmetic model.

16

A point p is on the left of LINE(ab) if (b� a)� (p� a) > 0: left is from the point of view of an observer standing at a and

facing toward b.

17

The set of lines through t is a metric space under angle, so closure is well-de�ned. Taking the closure adds the two lines

which \bound" the set of lines in L.
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4.1.1 Finding L.

Lemma 4.1 If U is connected, then in O(jU j) time we can �nd L = fLjd(L) 6= 0g.

Proof: L 2 L if and only if it contains a ray out of t which does not intersect U . First we show how to �nd

all such rays and then we show they can be found in O(jU j) time. The set of rays RAYS(t; U ) out of t that

hit U is connected

18

because U is connected. Therefore, the set of rays RAYS(t; U ) = RAYS(t)nRAYS(t; U )

that do not intersect U is also connected; these are the rays we need. Because t is part of the output of a

CLP, t 2 CH(U ). Since t 2 CH(U ), each ray in RAYS(t; U ) must pass through the boundary of CH(U ). The

(connected) set f� 2 RAYS(t; U )j(� \ BOUNDARY(CH(U ))) 6= ;g must be a subset S of a single edge e of

CH(U ): if the set contained a vertex of CH(U ), then we could move this vertex towards t and make CH(U )

smaller. The edge e is not an edge of U . Furthermore, let H be the component of CH(U )\U which contains

t, and let V be the visibility polygon of H with respect to t. If V has an edge which is not collinear with t

and which is not a subset of an edge of U , then the interior of that edge is S and L = fLINE(st)js 2 Sg.

Otherwise, S does not exist and L = ;.

Now we establish the running time. Region U is connected, and its outer boundary is simple. The convex

hull of the outer boundary equals CH(U ) and can be computed in linear time [25, 10, 16]. The point u

nearest to t on the boundary of U can be found in O(jU j) time. To determine the boundary of H, walk

along the boundary of U in each direction away from u. Either the two paths will meet, or they will both

reach (the same edge of) the boundary of CH(U ). In the latter case, join these two endpoints; the interior

of this segment is S. Since U is connected, it has no \islands" inside H, and thus H is a simple polygon.

The visibility polygon V for a simple polygon H can be found in O(jHj) (� O(jU j)) time [15, 22, 20].

The remainder of this section assumes that L is non-null, so that U and t satisfy case 3. Figure 3 illustrates

an example of U , t, and V for which t can see to in�nity through S. Note that S is a proper subset of an

edge of the convex hull of U . Some of the edges of V other than CLOSURE(S) might be collinear with t, and

these may or may not be subsets of the boundary of U . All the non-collinear edges except CLOSURE(S) lie

on the boundary of U .

Lemma 4.2 If U and t satisfy case 3, then in O(jU j) time we can construct: 1) an ordered list E of O(jU j)

subedges of the boundary of U , where E is the part of the boundary of U that is visible to t and 2) a sublist

G of E such that CLOSURE(L) = fLINE(tu)ju 2 e for e 2 Gg.

Proof: Let V be the visibility polygon from the proof of Lemma 4.1. To form E, remove the single edge

CLOSURE(S) of V which is a subset of the boundary of CH(U ). Remove edges of V which are collinear

with t. The result is a list of edges E which we can assume are ordered clockwise with respect to t.

19

The

list E can be represented as: A

1

A

2

; A

3

A

4

; : : : ; A

2n�1

A

2n

, where A

1

and A

2n

are the endpoints of S and

RAY(tA

2i

) equals RAY(tA

2i+1

), 1 � i � n � 1. Because U is connected and t 2 CH(U ), both LINE(A

1

t)

and LINE(A

2n

t) intersect E beyond t at least once (and at most twice if A

1

t (or A

2n

t) passes through A

2i

and A

2i+1

and these are not the same point). If an intersection point is in the interior of an edge in E, split

that edge and reindex E. Let the intersection points of LINE(A

2n

t) with E (beyond t) be A

2��1

and A

2��2

(which may be the same point) and the intersection points of LINE(A

1

t) with E (beyond t) be A

2�

and

A

2�+1

(which also may be the same point). Let G be the following sublist of E: A

2��1

A

2�

; : : : ; A

2��1

A

2�

.

Because L is connected

20

and, from the proof of Lemma 4.1, L = fLINE(st)js 2 Sg, we conclude that

CLOSURE(L) = fLINE(tu)ju 2 e for e 2 Gg, as required. The construction time is O(jU j) for two reasons:

1) Lemma 4.1 guarantees that V can be constructed in O(jU j) time and 2) V , being the visibility polygon

of the simple polygon H of size O(jU j), has O(jU j) edges. The second reason also guarantees that E has

O(jU j) edges.

Figure 4 shows gives an example of A

2��1

, A

2�

and the edges of G.

18

The union of the rays is a single wedge.

19

We know the order of these edges because we know the order of the edges of V .

20

The union of lines in L is a double wedge through t, bounded by two lines.
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4.1.2 Binary Search.

Here we show that binary search on the value of the edge index i in G, � � i � �, can determine the edge

in G which contains u

max

such that L

max

= LINE(tu

max

). This result also holds for any partition of G.

Let U

�

(L) denote U

�

when U is split by L, and de�ne U

+

(L) analogously. Let d

�

(L) = �(t;CH(U

�

(L)))

and d

+

(L) = �(t;CH(U

+

(L))). The functions d

�

(L) and d

+

(L) are discontinuous where L intersects both

A

2i

and A

2i+1

but A

2i

6= A

2i+1

(this occurs where L intersects an edge of V which is collinear with t).

Unfortunately,

d

�

(LINE(tA

2i

)) = d

�

(LINE(tA

2i+1

)) and d

+

(LINE(tA

2i

)) = d

+

(LINE(tA

2i+1

)); (11)

so d

�

(L) and d

+

(L) cannot reveal if L

max

occurs at a discontinuity. To overcome this problem we de�ne

d

�

(u) and d

+

(u), for u 2 A

2i�1

A

2i

, as follows:

d

�

(u) = �(t;CH(A

1

; A

2

; : : : ; A

2i�1

; u)) and d

+

(u) = �(t;CH(A

2n

; A

2n�1

; : : : ; A

2i

; u)):

Below we present the binary search and then Lemma 4.3 proves its correctness.

BINARY-SEARCH(t, E, �, �)

i

lower

 �

if ((result EVALUATE(t, E, i

lower

)) 6= NULL) return result

i

upper

 �

if ((result EVALUATE(t, E, i

upper

)) 6= NULL) return result

while (i

upper

� i

lower

> 1)

i (i

lower

+ upper)=2

if ((result EVALUATE(t, E, i)) 6= NULL) return result

if (d

�

(A

2i�1

) > d

+

(A

2i�1

)) then

i

lower

= i

else

i

upper

= i

EVALUATE(t, E, i)

if (d

�

(A

2i�1

) > d

+

(A

2i�1

) and d

�

(A

2i

) < d

+

(A

2i

)) return edge A

2i�1

A

2i

if (d

�

(A

2i

) � d

+

(A

2i

) and d

�

(A

2i+1

) � d

+

(A

2i+1

)) return vertex A

2i

if (d

�

(A

2i�2

) � d

+

(A

2i�2

) and d

�

(A

2i�1

) � d

+

(A

2i�1

)) return vertex A

2i�1

return NULL

Lemma 4.3 BINARY-SEARCH() yields either the vertex A

j

of G such that d(A

j

) maximizes d(L) for L 2 L

or the edge A

2i�1

A

2i

of G such that d(u) maximizes d(L) for L 2 L for some u 2 INTERIOR(A

2i�1

A

2i

).

Proof: We claim that the search maintains the following invariant:

d

�

(A

2i

lower

�1

) > d

+

(A

2i

lower

�1

) and d

�

(A

2i

upper

) < d

+

(A

2i

upper

)

and that the \ordering"

21

of d

+

(u) and d

�

(u) changes exactly once for i

lower

� i � i

upper

. The �rst part of

the invariant is true at the start of the search because

d

�

(A

2��1

) > d

+

(A

2��1

) = 0 and 0 = d

�

(A

2�

) < d

+

(A

2�

):

The updates of i

lower

and i

upper

for each i maintain this part of the invariant. The second part of the

invariant relies on the following monotonicity result by Daniels [4]. Parameterize the line segment A

1

A

2n

by

the linear function 
(� ), for � 2 [0; 1], such that 
(0) = A

2n

and 
(1) = A

1

. Daniels shows that the distance

21

We cannot guarantee intersection of d

�

(u) and d

+

(u) because d

�

(u) and d

+

(u) are discontinuous where edges of the

visibility polygon V are collinear with t. Hence, we discuss ordering change instead of intersection.
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function d

�

(LINE(
(� )t)) is non-increasing for � over [0; 1]. For �; �

0

2 [0; 1] and �

0

> � , LINE(
(�

0

)t) is

rotated clockwise from LINE(
(� )t). Her proof shows that, as a consequence, \more" of U

�

lies to the left

of LINE(
(�

0

)t) than LINE(
(� )t), and thus

CH(U

�

(LINE(
(� )t))) � CH(U

�

(LINE(
(�

0

)t)));

which implies that

d

�

(LINE(
(� )t)) � d

�

(LINE(
(�

0

)t))

and therefore establishes that d

�

(LINE(
(� )t)) is non-increasing. A similar argument shows that d

+

(LINE(
(� )t))

is non-decreasing for � over [0; 1].

Given u 2 A

2i�1

A

2i

in G, it is easily shown that

d

�

(u) = d

�

(LINE(tu)) unless u = A

2i+1

(6= A

2i

): (12)

Furthermore, if d

�

(A

2i+1

) 6= d

�

(LINE(tA

2i+1

)), then d

�

(A

2i

) � d

�

(A

2i+1

) and d

�

(A

2i+1

) � d

�

(u) for

u 2 A

2i+1

A

2i+2

. These two facts imply that d

�

(u) has the same monotonicity property as d

�

(LINE(tu)).

A similar argument shows that d

+

(u) has the same monotonicity property as d

+

(LINE(tu)).

If the binary search returns the edge A

2i�1

A

2i

, then the invariant guarantees that the ordering of d

�

(u)

and d

+

(u) changes exactly once for some u 2 INTERIOR(A

2i�1

A

2i

). Similarly, if the search returns A

2i

,

then the ordering changes once between A

2i

and A

2i+1

and if the search returns A

2i�1

, then the ordering

changes once between A

2i�2

and A

2i�1

. Monotonicity guarantees that the minimum of d

�

(u) and d

+

(u)

is maximized where the ordering changes. We claim that the minimum of d

�

(L) and d

+

(L) is maximized

where the minimum of d

�

(u) and d

+

(u) is maximized. This follows from Equation 11 and Equation 12.

Note: Daniels uses her monotonicity result to conclude that L

max

can be found to any degree of accuracy by

binary search on the value of � . This leads to an approximate algorithm with running time O(jU j log �

�1

).

4.1.3 Preprocessing.

Lemma 4.3 allows us to �nd the vertex or edge in G associated with L

max

using binary search on the value

of the index of G. The running time of the binary search is dominated by O(log(jGj)X) = O(log(jU j)X),

where X is the time required to calculate d

+

(A

j

) and d

�

(A

j

) for a given vertex A

j

of G. This allows L

max

to be found in time O(jU j+log(jU j)X+Y ), where Y is the time to �nd u 2 INTERIOR(A

2i�1

A

2i

) such that

d(u) maximizes d(L) for L 2 L (if the binary search returns an edge instead of a vertex). This section shows

how to preprocess G in O(jU j) time so that X = O(1) and so that Y = O(1) in a real arithmetic model and

Y = O(log(log �

�1

)) in a rational arithmetic model with accuracy �. (Finding u 2 INTERIOR(A

2i�1

A

2i

)

such that d(u) maximizes d(L) for L 2 L is addressed in Section 4.1.4.) This allows us to �nd L

max

in

O(jU j) time in a real arithmetic model and in O(jU j + log(log �

�1

)) time in a rational arithmetic model.

Some of the preprocessing involves partitioning G in O(jU j) time into G

0

which has O(jU j) edges. Clearly,

any partition G

0

of G also satis�es Lemma 4.3 and, since G

0

has O(jU j) edges and is constructed in O(jU j)

time, the asymptotic running time of the overall algorithm is una�ected by the partitioning.

Our discussion of preprocessing has three parts. The �rst part introduces a modi�cation of an existing convex

hull algorithm. The second part shows how to build the convex hulls we need for the distance calculations

from the convex chain which is maintained during the modi�ed convex hull algorithm. This part also involves

partitioning G. The third part shows how to quickly update the closest point of the convex hulls to t as the

hulls are constructed.

Before treating each of these parts, we introduce more notation. If u is in edge A

2i�1

A

2i

, of G, (� � i � �),

then denote by C

�

(u) the portion of CH(A

1

; A

2

; : : : ; A

2i�1

; u) which is visible from t. Let c

�

(u) be the

closest point of C

�

(u) to t. Similarly, de�ne C

+

(u) to be the portion of CH(A

2n

; A

2n�1

; : : : ; A

2i

; u) which

is visible from t and de�ne c

+

(u) be the closest point of C

�

(u) to t.

Figure 5 illustrates LINE(tu), C

�

(u), C

+

(u), c

�

(u), and c

+

(u) for a particular u.

Lemma 4.4 d

�

(u) = �(t; C

�

(u)); and d

+

(u) = �(t; C

+

(u)).
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Proof: Both the closest point of CH(A

1

; A

2

; : : : ; A

2i�1

; u) to t and the closest point of CH(A

2n

; A

2n�1

; : : : ; A

2i

; u)

to t are visible to t. If either lies in the interior of an edge of the respective convex hull, then the entire edge

is visible because the hull is convex.

The rest of our discussion uses C

�

(u) andC

+

(u) instead of CH(A

1

; A

2

; : : : ; A

2i�1

; u) and CH(A

2n

; A

2n�1

; : : : ; A

2i

; u).

Consider u 2 A

2i�1

A

2i

; � � i � �. The vertices of C

�

(u) are a subsequence of A

1

; A

2

; : : : ; A

2i�1

plus the

last (clockwise most)

22

vertex is u. Similarly, the vertices of C

+

(u) are a subsequence of A

2n

; A

2n�1

; : : : ; A

2i

plus the �rst (counter-clockwise most) vertex is u. De�ne the �xed part R

�

(u) of C

�

(u) to be the chain

which is a subset of C

�

(u) and whose vertices form the set VERTICES(C

�

(u)) n fug. Let r

�

(u) be the

closest point of R

�

(u) to t. Let s

�

(u) be the last vertex of R

�

(u). De�ne the �xed part R

+

(u) of C

+

(u),

r

+

(u), and s

+

(u) analogously. Figure 6 shows gives an example of R

�

(u), R

+

(u), r

�

(u), r

+

(u), s

�

(u) and

s

+

(u). For the u in this example, it happens to be the case that r

�

(u) = s

�

(u) and r

+

(u) = s

+

(u).

We say that C

�

(p) and C

�

(q) are combinatorially equivalent if R

�

(p) = R

�

(q). The analogous de�nition

holds for C

+

(p) and C

+

(q). We say that two points p and q are hull equivalent if C

�

(p) and C

�

(q) are

combinatorially equivalent and C

+

(p) and C

+

(q) are combinatorially equivalent.

Modi�ed Graham Scan.

Here we describe a clockwise scan of E = A

1

A

2

; : : : ; A

2n�1

A

2n

which is a modi�cation of Graham's scan

[17]. Graham's scan constructs the convex hull of a set of points in linear time once they are in sorted order

about an internal point O. As observed in [31], in Graham's scan, \if a point is not a vertex of the convex

hull, it is internal to some triangle Opq where p and q are consecutive hull vertices." If points are ordered

clockwise about O, then this implies that the point is in the wedge which is on the right of Op and on the

left of Oq and the point is on the right of pq. When the scan encounters a triple of consecutive points prq

in the ordering about O such that prq is a left turn, it pops vertices o� the current hull until convexity is

restored.

We modify Graham's scan so that it correctly constructs the visible part of a convex chain when O (t in our

case) is external to the chain. In this case, if a point is not a vertex of the convex chain, it is in a wedge

which is on the left of pO and Oq and the point is on the left of pq. Thus, we need only change the left turn

test for a triple prq to a right turn test in order to perform a clockwise scan about t. A counter-clockwise

scan about t from A

2n

to A

1

requires only minor modi�cations to the scan. In both cases, the modi�ed

scan has the same asymptotic running time of O(jU j) as Graham's scan. To simplify the remainder of our

discussion, we insist that the chain which is built during the modi�ed scan is convex at all times. Hence, we

do not add a new point to the chain until all vertices which must be removed have been removed. This does

not a�ect the running time or correctness of the algorithm.

Partitioning.

During a given step of one direction of the modi�ed Graham scan, denote by C the current state of the convex

chain which is maintained by the scan. We describe a partitioning process which produces a partition G

0

of G, where the new index of A

2�

is 2�

0

. The partition can be generated during the modi�ed scan of E by

marking edges of A

2��1

A

2�

; : : : ; A

2��1

A

2�

as vertices are removed from C. In the clockwise scan, suppose

we are processing A

2i

, � � i � �, and that A

g

A

h

A

2i

is a right turn, where A

g

A

h

is the last edge of C.

Before deleting A

h

, extend ray A

g

A

h

. If it intersects A

2i�1

A

2i

, then \mark" A

2i�1

A

2i

at the intersection

point. Note that no marking need be done when processing A

j

if j is odd.

23

Use the same marking process

during the counterclockwise scan of A

2n

A

2n�1

; : : : ; A

2

A

1

. When the second scan is complete, split the edges

of G at the marks to produce the partition G

0

= A

0

2��1

A

0

2�

; : : : ; A

0

2�

0

�1

A

0

2�

0

.

Lemma 4.5 G

0

has O(jU j) edges and can be constructed in O(jU j) time.

Proof: We �rst argue that jG

0

j 2 O(jU j). This is true because, during each of the two scans, each vertex of

E is added to the convex chain C at most once and is therefore removed at most once. Because jG

0

j 2 O(jU j)

and we spend O(1) time per vertex of G

0

, G

0

can be generated in O(jU j) time.

22

This is clockwise most from the point of view of t. For the standard de�nition of clockwise and counterclockwise on a

convex chain, this is counterclockwise most.

23

The vertex A

2i+1

is collinear with A

2i

t, so there is no edge to mark between A

2i

and A

2i+1

.
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Lemma 4.6 Immediately after the clockwise (counterclockwise) partitioning/modi�ed Graham scan pro-

cesses vertex A

0

j

of edge A

0

j

A

0

j+1

of G

0

, we can obtain, in O(1) time:

� C

�

(A

0

j

) (C

+

(A

0

j

)) from C and

� R

�

(u) (R

+

(u)) and s

�

(u) (s

+

(u)) from C, for u 2 INTERIOR(A

0

j

A

0

j+1

) if j is odd.

Proof: W.l.o.g. we treat only the clockwise scan. The �rst part is immediate because C = C

�

(A

0

j

).

To establish the second part of the lemma, let j = 2i � 1 and consider u 2 INTERIOR(A

0

2i�1

A

0

2i

) for

� � i � �

0

. There are no vertices of A

1

A

2

; : : : ; A

2n�1

A

2n

or partitioning points in INTERIOR(A

0

2i�1

A

0

2i

),

so C does not change after processing A

0

2i�1

and before processing A

0

2i

. There are two cases. In the �rst

case, A

0

2i�1

is a vertex of G; in the second case it is not. We start with the �rst case. The last three

vertices of C are A

g

, A

h

, and A

0

2i�1

. The absence of a partitioning point in INTERIOR(A

0

2i�1

A

0

2i

) implies

that u is left of LINE(A

g

A

h

) and that C up to and including A

h

is a subset of R

�

(u). If u is on or to

the right of LINE(A

h

A

0

2i�1

), then R

�

(u) is equal to C with A

0

2i�1

removed. Otherwise, u is on the left of

LINE(A

h

A

0

2i�1

) and therefore R

�

(u) = C. In the second case, the last two vertices of C are A

g

and A

h

. The

absence of a partitioning point in INTERIOR(A

0

2i�1

A

0

2i

) implies that u is left of LINE(A

g

A

h

) and that C

up to and including A

h

is a subset of R

�

(u). Since A

0

2i�1

is not a vertex of G, u is right of LINE(A

h

A

0

2i�1

).

This implies that R

�

(u) = C. In both cases, R

�

(u) (and s

�

(u), the last vertex of R

�

(u)), can be obtained

from C in O(1) time; this establishes the second part of the lemma.

Corollary 4.7 Given p; q 2 INTERIOR(A

0

2i�1

A

0

2i

) for � � i � �

0

, p and q are hull equivalent.

Closest Point Update.

Lemma 4.8 Let Q be a convex polygon and t be a point outside Q. Parameterize the portion of the boundary

of Q which is visible to t by the piecewise linear function 
(� ), � 2 [0; 1], where � increases clockwise about

t. The distance function d

Q

(� ) = �(t; Q(
(� ))) is unimodal.

Proof: If su�ces to prove that there exists � 2 [0; 1] such that, for � > � � � , d

Q

(�) � d

Q

(�) and, for

� < � � � , d

Q

(�) � d

Q

(�). As the arguments are similar in both cases, we prove the �rst case. To simplify

notation, let Q(� ) denote Q(
(� )). Let Q(� ) be a point where the largest circle S about t (empty with

respect to Q) touches Q. As Q is convex, Q(� )Q(�)Q(�) is either collinear or a left turn. Therefore, Q(�)

is on or to the left of the ray Q(� )Q(�). Furthermore, Q(�) is visible from t, so Q(�) is right of tQ(�).

Together, these two statements about Q(�) con�ne it to a wedge W . Now, let N be the line through Q(�)

which is perpendicular to the ray Q(�t). The emptiness of the circle S implies that Q(�) is not closer to t

than Q(� ); this implies that Q(� ) is on the same side of N as t. This, in turn, implies that W is on the

opposite side of N from t. Therefore, d

Q

(�) � d

Q

(�).

Lemma 4.9 In O(jU j) time it is possible to precompute r

�

(u) and r

+

(u) for u 2 INTERIOR(A

0

2i�1

A

0

2i

) of

G

0

, � � i � �

0

, as well as c

�

(u) and c

+

(u) for each vertex u of G

0

.

Proof: The modi�ed Graham scan repeatedly either adds or deletes a single edge from the current convex

chain C. Suppose we know the nearest point of C to t. If we add an edge to C, we can update the nearest

point in O(1) time. If we delete an edge from C, Lemma 4.8 implies that we can update the nearest point

in O(1) time. Now, the proof of Lemma 4.6 shows that R

�

(u) is either equal to C or else equal to C with

the last edge removed. Therefore, we can obtain r

�

(u) and r

+

(u) from the closest point of C to t in O(1)

time. The proof of Lemma 4.6 also shows that, for vertex u = A

0

2i

2 G

0

, C

�

(A

0

2i

) = C

�

(A

0

2i+1

) = C. We

can therefore obtain c

�

(u) and c

+

(u) for vertex u in O(1) time.

4.1.4 Locating the Intersection Point along an Edge.

Lemma 4.10 If L

max

intersects INTERIOR(A

0

2i�1

A

0

2i

), then we can �nd the intersection point in O(1)

time in a real arithmetic model, or in O(log(log �

�1

)) time in a rational arithmetic model with accuracy �.
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Proof: Consider u 2 INTERIOR(A

0

2i�1

A

0

2i

). The point c

�

(u) is either: 1) on R

�

(u) (and therefore equal

to r

�

(u)), 2) in the interior of s

�

(u)u, or 3) equal to u. A similar statement holds for c

+

(u). We show

that INTERIOR(A

0

2i�1

A

0

2i

) contains a constant number of subsegments, each having constant c

�

(u) and

c

+

(u) type. Consider c

�

(u). We treat type (1) �rst. Corollary 4.7 shows that r

�

(u) does not change within

INTERIOR(A

0

2i�1

A

0

2i

). Furthermore, the monotonicity of the distance function d

�

(u) (see Section 4.1.2),

guarantees that once c

�

(u) moves beyond s

�

(u) onto INTERIOR(s

�

(u)u), then it cannot move back onto

s

�

(u). Therefore, if type (1) applies to any point in INTERIOR(A

0

2i�1

A

0

2i

), then either c

�

(u) is the same for

all points u in INTERIOR(A

0

2i�1

A

0

2i

) or else there is one point w along it where c

�

(u) changes from s

�

(u) to a

point on (s

�

(u)u]. The point w, if it exists, is the intersection of INTERIOR(A

0

2i�1

A

0

2i

) with the line through

s

�

(u) perpendicular to s

�

(u)t. The nearest point of (s

�

(u)u] to t becomes u when tu is perpendicular to

ts

�

(u). The locus of points for which tu is perpendicular to ts

�

(u) is the circle with diameter ts

�

(u). This

circle has up to two intersections with INTERIOR(A

0

2i�1

A

0

2i

), and c

�

(u) is at u in between the two points of

intersection. Thus, changes in the type of c

�

(u) partition INTERIOR(A

0

2i�1

A

0

2i

) into at most four pieces. A

similar argument shows that changes in the type of c

+

(u) partition INTERIOR(A

0

2i�1

A

0

2i

) into at most four

pieces. We conclude that INTERIOR(A

0

2i�1

A

0

2i

) contains a constant number of subsegments, each having

constant c

�

(u) and c

+

(u) type.

In O(1) time we can retrieve, for a given i, the information necessary to locate the endpoints of the constant-

type subsegments. This relies on Lemma 4.6 and Lemma 4.9. The former gives us s

�

(u) and s

+

(u) and the

latter gives us r

�

(u) and r

+

(u). From this information, the endpoints of the subsegments can be located

in O(1) time for a given i, because they require only a constant number of algebraic operations, such as

intersecting a line and/or circle with a line.

Now we discuss �nding the intersection point on a constant-type subsegment. Parameterize the subsegment

by the linear function 
(� ), for � 2 [0; 1]. Consider c

�

(
(� )). By Lemma 4.4, d

�

(
(� )) is the distance from

c

�

(
(� )) to t. In case (2),

d

�

(
(� )) =

(t� q)� (
(� ) � q)

j
(� ) � qj

;

a continuous algebraic function. In case (3), d

�

(
(� )) = j
(� )�tj; this is also continuous. Analogous formulas

hold for d

+

(
(� )). We can intersect two pieces using algebraic operations. The case which dominates the

running time occurs when both c

�

(
(� )) and c

+

(
(� )) are of type (2). In this case, one can �nd the

intersection point by proceeding algebraically at �rst and then numerically. Setting d

+

(
(� )) = d

�

(
(� )),

squaring, and clearing fractions produces a fourth-degree polynomial equation in � . The intersection point

for � 2 [0; 1] is the root (in this interval) of the fourth-degree polynomial. Under a real arithmetic model,

we can represent the root exactly as an algebraic number. This requires the containment algorithm to

manipulate algebraic numbers. To avoid this, one can operate on a nearby rational approximation to the

root. This can be obtained using, for example, Newton's method. The quadratic convergence of Newton's

method adds only log(log �

�1

) to the running time of the algorithm, where � is the accuracy.

4.1.5 Running Time and Correctness.

Theorem 4.11 The line L

max

can be computed in O(jU j) time in a real arithmetic model, and in O(jU j+

log(log �

�1

)) time in a rational arithmetic model, where � is the accuracy.

Proof: First we establish the running time. By Lemma 4.2, the edge list E can be constructed in O(jU j)

time and contains O(jU j) edges. By Lemma 4.5, G can be partitioned into G

0

in O(jU j) time and G

0

contains

O(jU j) edges. By Lemma 4.6, O(jU j) preprocessing allows us to obtain d

�

(u) and d

+

(u) in O(1) time for

a vertex u of G

0

. Lemma 4.3 allows us to �nd the edge in G

0

associated with L

max

using binary search

on the value of the edge index of G

0

. The running time of the binary search is dominated by O(log(jU j))

due to Lemma 4.6. If the binary search returns an edge instead of a vertex, Lemma 4.10 allows us to �nd

u 2 INTERIOR(A

0

2i�1

A

0

2i

) such that d(u) maximizes d(L) for L 2 L in O(1) in a real arithmetic model and

O(log(log �

�1

)) in a rational arithmetic model with accuracy �. This allows us to �nd L

max

in O(jU j) time

in a real arithmetic model and in O(jU j+ log(log �

�1

)) time in the rational arithmetic model.
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Now we establish correctness. Lemma 4.2 shows that CLOSURE(L) = fLINE(tu)ju 2 e for e 2 Gg. Parti-

tioning G into G

0

does not eliminate any L 2 L from consideration. Binary search determines if L passes

through a vertex of G

0

or the interior of an edge in G

0

. The correctness of the binary search is guaranteed

by Lemma 4.3. The distances d

�

(u) and d

+

(u) are calculated correctly for each vertex u of G

0

during the

binary search because Lemma 4.4 guarantees that d

�

(u) = �(t; C

�

(u)), Lemma 4.6 shows how to obtain

C

�

(u), and Lemma 4.9 gives c

�

(u). If L

max

passes through the interior of an edge of G

0

, then the proof of

Lemma 4.10 guarantees correct calculation of L

max

.

4.2 Subdivision for Combinatorial Version.

Combinatorial subdivision is used to establish the running time of the combinatorial version of LP con-

tainment. It selects some pair i; j such that U

init

ij

has an edge e which intersects the interior of C

ij

. The

subdivision algorithm then splits C

ij

using LINE(e). If there is no such pair i; j and edge e, then a single

evaluation will �nd a solution because each C

ij

� U

init

ij

for 0 � i < j � k (see the discussion at the start of

Section 4).

It is essential to the combinatorial splitting algorithm that we be able to quickly determine if some part

of some edge e of U

init

ij

lies in the interior of C

ij

. If so, then we can use the line containing e as the next

splitting line. When we subdivide C into C

+

and C

�

, the time to answer this interior edge query for each

C

+

gh

and C

�

gh

in C

+

and C

�

must be at worst linear in jC

0

gh

j and logarithmic in jFj. This section describes

how we can accomplish this goal. It gives an algorithm for �nding i, j, and e using time logarithmic in the

number of new vertices in F (the number of vertices in F

0

, see Section 2.2.3).

It is possible to preprocess U

init

ij

so that a ray-shooting query can be answered in O(log jU

init

ij

j) time. A ray-

shooting query RAYSHOOT(p; v; U

init

ij

) asks the following question: given a point p and vector v, determine

the minimum value of t > 0 such that p + tv lies on the boundary of U

init

ij

. If there is no intersection, the

answer is \none" or t =1. It does not really matter how much the preprocessing costs because we only have

to do it once for each U

init

ij

, 0 � i < j � k. Using standard techniques of computational geometry, it clearly

can be accomplished in time polynomial in jU

init

ij

j. Note that jU

init

ij

j is O(m

2

n

2

) or O(m

4

), so log jU

init

ij

j is

O(logmn). Incidentally, our bound for log jC

ij

j is the same as log jFj, which by Section 5.2 is O(k logkmn).

Therefore, we can substitute log jFj for log jU

init

ij

j or log jC

ij

j in our upper bounds.

Given an edge ab (of C

ij

), a single ray-shooting query determines if ab intersects the boundary of U

init

ij

:

check if RAYSHOOT(a; b � a; U

init

ij

) � 1. In particular, we are interested in determining if an edge e of

U

init

ij

crosses into C

ij

through ab: e intersects ab and e intersects the interior of C

ij

. We assume we have

resolved the degenerate cases so that RAYSHOOT only captures edges which cross into U

init

ij

and are not,

for example, merely collinear with ab.

Assume below in Lemma 4.12 and Algorithm I that U

init

ij

has only one simply connected component. We deal

with multiple components and/or nonsimple connectivity later in Corollary 4.13 and Algorithm II. Recall

that C

init

ij

= CH(U

init

ij

). In the following lemma, U

init

ij

refers to the regularized complement of U

init

ij

: the

complement plus the boundary of U

init

ij

. We say that the boundary of U

init

ij

crosses into C

ij

if some edge e

crosses into C

ij

through some edge ab.

Lemma 4.12 If U

init

ij

is simple, then any convex set C

ij

� C

init

ij

must satisfy one of the following: C

ij

�

U

init

ij

, C

ij

� U

init

ij

, or the boundary of U

init

ij

crosses into C

ij

.

Proof: Clearly, the boundary of U

init

ij

touches the boundary of C

init

= CH(U

init

ij

). Therefore it touches the

boundary of or have some point exterior to C

ij

� C

init

. If the boundary of U

init

ij

intersects the interior of

C

ij

, then it must cross into C

ij

because it is simple.

Therefore, if the boundary of U

init

ij

does not cross into C

ij

, it must be a subset of C

ij

. The interior of C

ij

does not intersect the boundary of U

init

ij

and therefore it is a subset of either the interior or exterior of U

init

ij

.

Taking the closure, the lemma follows.
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Algorithm I: For each edge ab of each C

gh

of each restricted hypothesis C, the algorithm computes if any

edge e of U

init

gh

crosses into C

gh

using RAYSHOOT. The algorithm maintains a linked list of edges of U

init

gh

which have such a crossing edge. For the restricted version of C

init

(the restriction of the root hypothesis),

the algorithm computes this information from \scratch". When C is split and restricted into C

+

and C

�

and thus each C

gh

of C is split-restricted into C

+

gh

and C

�

gh

, the algorithm avoids recomputing RAYSHOOT

for una�ected edges. It computes RAYSHOOT only for edges of C

0

gh

and for new edges which appear in

C

+

gh

and C

�

gh

. Just as we split the edges of C

gh

into chains and reused these chains in C

+

gh

and C

�

gh

, this

algorithm splits the linked list of crossed edges and reuses them.

Running Time: Since a RAYSHOOT query uses O(log jFj) time, the cost of computing the list of crossed

edges from \scratch" for C

ij

is O(jC

ij

j log jFj). When the algorithm acts on C

+

gh

and C

�

gh

, it only runs

RAYSHOOT on each new edge, and there are only jC

0

gh

j of these. The total time for these calls to

RAYSHOOT is jC

0

gh

j log jFj. Finally, the time to create, split, and merge linked lists of crossed edges is

no more than the time to compute C

+

gh

and C

�

gh

: O(jC

0

gh

j log jFj).

Corollary 4.13 If each connected component of the boundary of U

init

ij

touches the boundary of CH(U

init

ij

),

then Lemma 4.12 still holds.

Proof: The only way the proof used the fact that U

init

ij

has a single component was the fact that the

boundary of U

init

ij

must touch the boundary of C

init

ij

.

Algorithm II: If U

init

ij

has multiple component and/or non-simply connected components, the algorithm

modi�es each component of the boundary of U

init

ij

that does not touch CH(U

init

ij

). First, it computes the

maximum-x vertex v of that component. Then it chooses one of the edges e with v as an endpoint. It creates

an edge e

0

collinear with e and on the \other side" (greater x) of v. It extends e

0

until it hits some other

component of the boundary of U

init

ij

or it hits the boundary of CH(U

init

ij

).

Running Time: Clearly, Algorithm II no more than doubles the number of edges of U

init

ij

. Furthermore, e

0

lies on the same line as e, and therefore it does not introduce any new potential splitting lines. Splitting on

e

0

is equivalent to splitting on e.

5 Running Time, Generalization, and Conclusion.

This section �rst discusses running time. Section 5.1 gives the practical running times of our implementa-

tion of LP containment. Section 5.2 establishes the theoretical running time of the combinatorial version.

Section 5.3 generalizes LP containment to solve minimal enclosure problems. Section 5.4 summarizes our

results and draws conclusions.

5.1 Practical Running Time of LP Containment.

We implemented the LP containment algorithm using the CPLEX 2.1 linear programming system (CPLEX

Optimization, Inc.).

24

Most of the examples we selected are from the apparel industry. We produced each

feasible containment example from an existing apparel layout by removing a group of neighboring items. To

create an infeasible example, we moved some of the remaining items a small distance into the container. No

examples were dropped.

Figure 7 illustrates the e�ect of our new LP restriction algorithm. The �gure shows two two-component

U

0j

s. The boundaries of the unrestricted U

0j

s are outlined in black, and the restricted U

0j

s are depicted as

black �lled regions. Restriction eliminates an entire component in the U

0j

on the left, and it decreases the

area of the U

0j

region on the right by more than 90%.

24

Currently, we are using CPLEX 3.0, but the experiments were all run using CPLEX 2.1.
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Type GEOM NAIVE LP LP

3NN 19 22 9

3NN 2 4 4

4CC 25 1 2

4CC 21 10 11

4CN 113 84 4

4NN 155 19 33

4NN 80 24 35

4NN 35 43 15

4NN 319 89 10

5CC 126 6 3

5NN > 300 > 300 24

6CC 75 53 5

6CN > 300 > 300 184

6NN > 300 > 300 86

6NN > 900 > 900 593

7CC 823 162 7

7CN > 300 > 300 72

7NN > 600 > 600 176

8CC > 300 > 300 34

10CC - - 14

10NN - - 183

Table 1: Running times for feasible examples in seconds

Type GEOM NAIVE LP LP

4NN 47 152 135

4NN 138 3037 493

4NN > 600 > 600 416

5NN > 600 > 600 103

Table 2: Running times for infeasible examples in seconds

We compared the performance of our new LP containment algorithm with two of our previous algorithms

[5, 6]: the geometric algorithm and the naive LP algorithm (see Section 1.4). All three implementations apply

geometric restriction (Equation 3 on page 4) to the initial hypothesis (Equation 1 on page 4). Table 1 gives

running times for feasible containment problems. Running times are in seconds on a 50 MHz SPARCstation.

25

Table 2 gives running times for infeasible containment problems. Our new algorithm clearly outperforms

both of the other algorithms. For �ve or more polygons, the di�erence is dramatic.

26

Table 3 compares

the number of hypotheses evaluated by the naive LP containment algorithm and the new LP containment

algorithm on some infeasible examples with k = 4 and no restriction applied. This experiment isolates the

bene�ts of overlap minimization followed by distance-based subdivision. Table 3 clearly demonstrates that

the new evaluation/subdivision combination is much \smarter" than naive subdivision, which simply extends

an edge of a U

ij

. Figure 8 and Figure 9 depict con�gurations obtained by our algorithm.

25

SPARCstation is a trademark of SPARC, International, Inc., licensed exclusively to Sun Microsystems, Inc.

26

Although the running time of LP containment is substantially less than that of geometric containment for k > 4, the number

of hypotheses examined by geometric containment can be less than the number examined by LP containment, as discussed in

Section 1.5.1. That discussion also points out that geometric restriction is currently much slower than LP restriction.
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Type NAIVE LP LP

4CN 32 27

4CN 42 11

4NN 493 153

4NN 1736 311

4NN 153 103

4NN 436 323

Table 3: Number of hypotheses evaluated for infeasible problems (no hypothesis restriction)

5.2 Theoretical Running Time of Combinatorial Version.

In this section we prove a running time bound for the combinatorial version of LP containment. This version

uses the combinatorial LP restriction algorithm of Section 2.2.3, the evaluation algorithm of Section 3.5,

and the combinatorial subdivision algorithm given in Section 4.2. The running time is faster than that of

naive LP containment (Section 2.1.1) and within a log factor of the 
((mn)

2k

) lower bound established by

Milenkovic [27].

Theorem 5.1 The combinatorial version of LP containment has running time in

O

�

(6kmn+ k

2

m

2

)

2k

(k � 5)!

log kmn

�

:

Proof: Recall from Section 1.3 that the container P

0

has n vertices, P

i

, 1 � i � k, has at most m vertices,

and the Minkowski sum A � B has O(jAj

2

jBj

2

) vertices. For i = 0 or j = 0, U

init

ij

has O(m

2

n

2

) edges.

However, each edge corresponds to a translation P

i

+ t

i

such that a vertex of P

i

+ t

i

touches an edge of

P

0

or an edge of P

i

+ t

i

touches a vertex of P

0

. There are at most 2mn ways this can happen. Therefore,

the O(m

2

n

2

) edges of U

init

ij

lie on (are covered by) only 2mn lines. Similarly, for 1 � i < j � k, U

init

ij

has

O(m

4

) edges which lie on 2m

2

lines. Let C

ij

be the convex hull of the initial U

init

ij

. Each line of U

init

ij

can

contribute at most two vertices to C

ij

. Furthermore, for 1 � i < j � k, U

init

ij

is unbounded, and so C

ij

is

the entire plane. Thus, the initial C

ij

polygons have a total of 4kmn vertices (and edges). Each edge-line

contributes a linear constraint to some of the CLPs, hence we claim: in total, the CLPs have as input at

most 6kmn+ k

2

m

2

(actually 6kmn+ k(k � 1)m

2

) linear constraints.

Since there are 2k degrees of freedom (remember t

0

= (0; 0)), each CLP-generated vertex corresponds to a

choice of 2k constraints. Hence, F (and each C

ij

) has O((6kmn + k

2

m

2

)

2k

=k!) vertices, and this in turn

implies that log jFj and log jCj are O(k log kmn).

Section 3.5 shows that evaluation requires O(k

3

log jU

init

j) time per new vertex of F , which is O(k

3

log kmn)

time per new vertex of F . Lemma 2.3 shows that using the simplex method (Section 2.2.2) to solve the CLP

allows us to restrict in time O(k

3

+ k

2

log jCj+ k

2

log jFj) per new vertex of F , which is O(k

3

log kmn) time

per new vertex of F . Now, recall that combinatorial subdivision (Section 4.2) selects some pair i; j such that

U

init

ij

has an edge which intersects the interior of C

ij

. Section 4.2 shows that the time to answer the interior

edge query for a given C

ij

is no more than the time to compute the restricted region C

ij

. Hence, the total

subdivision time is at most as large as the total restriction time.

When we restrict immediately after subdividing, we must compute the C

0

gh

polygons. However, all the

vertices of all the C

0

gh

polygons involve the \splitting" constraint t

j

� t

i

2 L, and this constraint is seen for

the �rst time. Hence all the vertices are \new." Of course, since there are k(k + 1)=2 C

0

gh

polygons, we

visit each new vertex O(k

2

) times.

The total time of all the evaluation, subdivision and restriction is therefore:

O

�

k

2

�

(6kmn + k

2

m

2

)

2k

k!

� k

3

log kmn

�

= O

�

(6kmn+ k

2

m

2

)

2k

(k � 5)!

log kmn

�

:
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5.3 Generalizing LP Containment to Find Minimal Enclosures.

Here we generalize LP containment to solve two types of minimal enclosure problems. Section 5.3.1 and

Section 5.3.2 show how to obtain the minimal area enclosing square and rectangle, respectively, for k trans-

lating polygons. In both cases the sides of the enclosure are parallel to the x and y axes. In both cases

we use binary search, but the parameter we search on is di�erent in each case. The area of a square varies

monotonically with a single \size" parameter such as the length of a side. Thus, binary search on a size

parameter can be used to �nd the minimal enclosing square. To decide if the polygons �t in a square of a

given size, we create a square of that size and then solve containment. A rectangle of arbitrary aspect ratio,

however, does not have this monotonicity property and so we cannot search on a size parameter. Instead,

we search on the area, asking, for a given area �, if the polygons �t in a rectangle of area �. This question

cannot be answered directly by calling containment. However, we generalize LP containment so that it may

answer the question.

5.3.1 Minimum Area Square Enclosure.

Given any containment algorithm, we can �nd the smallest square

27

that encloses translated copies of

P

1

; P

2

; : : : ; P

k

[4]. For a numerical algorithm: use binary search on the size of the square. Figure 10 shows

the minimal square for four polygons; this was obtained using a numerical algorithm. For a combinatorial

algorithm: given a feasible square, use compaction [24, 29, 23] to \shrink" the square to a local minimum.

Any more shrinking will guarantee either infeasibility (if it is the global minimum) or at least a change in

combinatorial structure. One can use symbolic perturbation [12, 35] to shrink the square an in�nitesimal

amount and force infeasibility or a change in structure. Compact again and repeat. In practice, we would

just compact the feasible squares and then continue the (numerical) binary search. Doubtless there is a

combinatorial way to do binary search using parametric searching.

5.3.2 Minimum Area Rectangle.

One cannot use containment and binary search to �nd the minimum area rectangular enclosure (of arbitrary

aspect ratio). We need to solve the following: given shapes P

1

; P

2

; : : : ; P

k

and area �, is there a rectangle of

area � which contains translated copies of the shapes? With this, one can �nd the minimum � numerically

by binary search.

Given P

1

; P

2

; : : : ; P

k

, let P

0

= f(x; y) jx � 0 or y � 0g and let P

k+1

= f(x; y) jx � 0 or y � 0g. Calculate

U

ij

, 0 � i; j � k+1 according to Equation 1 (page 4). Since P

0

and P

k+1

intersect no matter where you put

them, U

0;k+1

will be empty. \Arti�cially" set U

0;k+1

= f(x; y) jxy � �g. We claim 1) the hypothesis U has

a valid con�guration if and only if there is a rectangle of area � enclosing P

1

; P

2

; : : : ; P

k

, and 2) only one

minor modi�cation to our algorithm is required. If t

k+1

� t

0

is outside U

0;k+1

, then instead of taking the

closest edge, we take the closest point on the hyperbola. We set up the OLP using the tangent line at that

point. We have not tested this algorithm, but we expect it to have quadratic convergence once it \homes

in" on a con�guration.

5.4 Conclusion.

This paper has presented a new algorithm for two-dimensional translational containment based on math-

ematical programming principles. It also gives algorithms, based on the same approach, for �nding the

minimal enclosing square and the minimal area enclosing rectangle for a collection of translating polygons.

All of these algorithms provide exact solutions.

27

Or indeed the smallest similar copy of any star-shaped polygon.
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In our experiments, our new containment algorithm clearly outperforms purely geometric containment al-

gorithms. For data sets from the apparel industry, it can solve containment for up to ten nonconvex poly-

gons in a nonconvex container in practice. This important practical result is achieved by following our

restrict/evaluate/subdivide algorithmic paradigm, whose steps correspond to tightening upper and lower

bounds on the amount of overlap in a layout and introducing cutting planes when necessary. Some of our

new algorithms for the individual steps in the paradigm use linear programming as well as techniques from

computational geometry.

Combining the power of linear programming with techniques from computational geometry gives us a trans-

lational containment \tool" which can be used to perform many tasks related to layout, including ones for

which each item can have a discrete set of orientations. For example, we can pack multiple containers by

�rst generating groups which �t into each container and then matching groups to containers [4]. This type

of problem arises in a variety of settings, such as in the second phase of a two-phase layout problem. In

addition to using the containment tool directly, one can apply our approach to containment to solve a vari-

ety of previously unsolved problems. Our solutions to minimal enclosure problems in this paper and in [4]

illustrate this.

We believe that combining mathematical programming with computational geometry is a fruitful approach

for tackling many NP-hard geometric optimization problems. Our work with linear programming and our

brief experiments so far with mixed-integer programming are just the beginning of our exploration. Recent

results in integer programming may well provide a starting point for our future work.
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Pieces:
Cloth Utilization:

37457c
59.75 in
269.04 in
108

89.54%

Set of polygonal parts

Strip of fixed width and unknown length

Packing with 180 degree rotations and xy-flips allowed

Figure 1: A marker making task in the apparel industry
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Figure 2: Constructing the boundary of I(t; U )
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Figure 3: Case 3: U , t, visibility polygon V , and S � BOUNDARY(CH(U )).
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Figure 8: 4NN example: time = 15 seconds

Figure 9: 6NN example: time = 126 seconds
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Figure 10: Minimal enclosing square of four polygons, each with 65 vertices: time = 122 seconds (numerical

algorithm).
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