Simulations and Analytic Models of Magnetized Gamma-Ray Burst Jets: Beyond the Progenitor Star

Alexander (Sasha) Tchekhovskoy

with Ramesh Narayan and Jonathan McKinney

Harvard University

Tchekhovskoy et al. (2009, arXiv:0911.2228)
Gamma-ray bursts

Come in 2 flavors:

Short, \(\lesssim 2 \) s
- Coalescence of a compact object binary

Long, \(\gtrsim 2 \) s
- Death of a massive star (Woosley 1993)
Gamma-ray bursts (GRBs)

- **Acceleration**: ultra-relativistic velocity, Lorentz factor $\gamma \gtrsim 100$ Non-thermal prompt spectrum

- **Collimation**: opening angle $\theta \lesssim 0.1$

- **Relation between acceleration and collimation**: $\gamma \theta \gtrsim 20$ Jet breaks in afterglow emission

x Recent simulations of magnetized (MHD) continuously collimated jets (Komissarov et al. 2009):

$\gamma \theta \lesssim 1$

I will now present the first model of a magnetized GRB jet that correctly reproduces both collimation and acceleration

GRB jet quick facts:
1. **Ultra-relativistic**: $\gamma \gtrsim 100$
2. **Collimated**: $\theta = 0.04 - 0.2$
3. **Product**: $\gamma \theta \approx 20 \gg 1$
How do magnetic jets work?

Field toroidally-dominated

\[B_\phi \gg B_z \quad v_{\text{fluid}} = v_{\text{field}} \]

\[p = \frac{B_\phi^2}{8\pi} \]

\(\Omega \)

\(t=0 \)

\(t=t_1 \)

\(t=t_2 \)
Simulation setup

Confined Jet

\[\gamma \theta = 2 \]

Numerical Approach

Time-dependent ultrarelativistic MHD equations
Axisymmetry, perfect conductivity, and zero T

Problem setup

Perfectly conducting spinning compact object

Collimating wall of shape \(z \propto R^\alpha \)

Model parameters

Jet wall shape
Spin of compact object
Magnetic field strength
Surface mass loss rate

GRB jet quick facts:
1. Ultra-relativistic: \(\gamma \gtrsim 100 \)
2. Collimated: \(\theta = 0.04 - 0.2 \)
3. Product \(\gamma \theta \approx 20 \gg 1 \)
Why is $\gamma \theta \lesssim 1$ in confined jets?

- Communication is essential
- Jet boundary B needs to keep announcing its trajectory to the rest of the jet to avoid collisions
- All signals travel inside Mach cone ξ:
 \[\theta < \xi \approx \frac{1}{\gamma} \]
- Communication across jet $\rightarrow \theta < \xi$
- Robust conclusion: $\gamma \theta \lesssim 1$ in confined jets

GRB jet quick facts:
1. Ultra-relativistic: $\gamma \gtrsim 100$
2. Collimated: $\theta = 0.04 - 0.2$
3. Product $\gamma \theta \approx 10 \gg 1$
Simulation setup

Confined Jet

Deconfined Jet

$\gamma \theta = 2$ ×

$\gamma \theta = 20$ ✓
Simulation setup

Confined Jet

Deconfined Jet

Numerically-challenging problem

High magnetization and Lorentz factor (~ 1000): very stiff regime

Evolution over 10 orders of magnitude in distance

Our numerical method uses

Collimating grid that follows field lines at high resolution

1536x256

Equivalent resolution using non-collimating grid:

1536x100,000

Evolve only non-stationary region to speed up computation
Confined vs. Deconfined

GRB jet quick facts:
1. Ultra-relativistic: $\gamma \gtrsim 100$
2. Collimated: $\theta = 0.04 - 0.2$
3. Product $\gamma \theta \approx 20 \gg 1$

MHD models can produce jet breaks

\[5r_* \]
\[3r_* \]
\[r_* \]
\[-0.2r_* \]
\[0.2r_* \]
Understand this analytically

After jet loses ambient pressure support, it switches from the **fully confined** solution to the **fully unconfined** solution (AT+ 2009).

GRB jet quick facts:

1. Ultra-relativistic: $\gamma \gtrsim 100$
2. Collimated: $\theta = 0.04 - 0.2$
3. Product $\gamma \theta \simeq 20 \gg 1$

\[\gamma = 500\]
\[\theta = 0.04\]
\[\gamma \theta = 20\]
Understand this analytically (2/3)

Fully unconfined jet:
\[\gamma_3 \propto \log^{1/3} r \] (Tomimatsu 94)

Fully confined jet, large distance. Centrifugal force slows jet down (AT+ 2008):
\[\gamma_2 \approx \left(\frac{3R_c}{R} \right)^{1/2} \]

Fully confined jet, short distance. Linear increase:
\[\gamma_1 \approx \Omega R \] (Michel 1969)
Understand this analytically (3/3)

Centrifugal force slows jet down (approximate)

\[F_m = -\nabla p_m = \frac{\epsilon_m}{R} \]

\[F_c = \frac{\epsilon_m \gamma^2}{R_c} \]

\[\frac{\epsilon_m}{R} = \frac{\epsilon_m \gamma^2}{R_c} \]

\[\gamma = \left(\frac{R_c}{R} \right)^{1/2} \]
Required ingredients for GRB jets

Both propagation inside and outside the star are required for GRB jets:

1) Fully confined jets are too slow for their opening angles: $\gamma \theta \lesssim 1$

2) Fully deconfined jets have too large opening angles

Bottom line: need both
1) confinement to collimate the jet initially and
2) deconfinement to accelerate the jet
Conclusions

- **Numerical & analytical** models of magnetized deconfined ultra-relativistic jets, extending over 10 orders of magnitude in distance well into the afterglow region.

- Just outside the star, our jets undergo an **abrupt period of acceleration** during which γ increases but θ is constant.

- **Deconfinement** is necessary to achieve ultrarelativistic γ and $\gamma \theta \gg 1$ required by jet breaks observations.

- **Confined** jets with subequipartition magnetic fields always have $\gamma \theta \lesssim 1$.

- Future work is the self-consistent simulation of magnetized jet propagation through realistic stellar envelope out to the afterglow region.