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Braiding of the attractor and the failure
of iterative algorithms *

Curt McMullen
Department of Mathematics, Princeton University, Princeton, NJ 08540, USA

Introduction

The motion of the attractor in a stable family of rational maps determines
a group of braids on the Riemann sphere. We show the corresponding group
of mapping classes is either reducible, finite, or fixes one of the attractors. In
particular, not every braid can arise. The proof is based on the finiteness of
the modular group for a connected component of the Julia set, discussed in
[Mc2].

This leads to a topological criterion for the existence of bifurcations in itera-
tive root-finding algorithms based on rational maps (such as Newton’s method).
For example, any such algorithm must fail on every neighborhood of p(X)= X
when d is 4 or more. We show that on such neighborhoods one cannot even
continuously assign to each polynomial p an expanding rational map T, such
that the attractor of T, is contained in the roots of p.

Outline of the paper

§§1 and 2 present our results on the failure of algorithms and braiding of the
attractor. These are really two formulations of the same result; in §2 the former
is deduced from the latter. §§3 and 4 present the proofs. First we show that
topological assumptions on the braiding of the attractor imply the existence
of a separator, that is a characteristic component of the Julia set which separates
the attracting periodic points from one another. Then the results of [Mc2]
imply the monodromy of this component (by holomorphic motions) is a finite
group, completing the proof in §4.

In the Appendix we give an example of a stable family in which the braiding
is pseudo-Anosov.

* Research partially supported by NSF Grant 8120790
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§ 1. Iterative root-finding algorithms

We begin with some terminology of Smale’s [Sm].

Definitions. A purely iterative algorithm is a mapping
T: Poly,— Rat,

associating to each degree d complex monic polynomial p(X)ePoly,(=C% a
degree k rational function T,(z)eRat,(=P?**'), such that the coefficients of
T, are themselves rational functions of the coefficients of p. The algorithm is
said to be generally convergent if there is an open dense set of full measure
U =Poly, x C such that under iteration,

T (z) - {aroot of p}

for all choices of polynomial and initial guess (p, z) in U.

We call a generally convergent algorithm robust if the image of T is contained
in Exp,, the open subset of Rat, consisting of expanding rational maps. Here
a rational map is expanding if its dynamics satisfies Smale’s Axiom A. Equivalent-
ly, Exp, consists of those rational maps whose critical points all tend toward
attracting cycles under iteration. (See [Sull] for a discussion of these maps.)

Robustness insures good global behavior: for any neighborhood U of the
roots of p, the spherical area of the set of initial guesses which take more than
n iterates to land in U tends to zero goemetrically fast (it is O(4") for some
A<1)

Examples

(1) Newton’s method is a purely iterative algorithm for each degree d, and
it is generally convergent for d =2 but not 3 or more.
(2) There exists a generally convergent algorithm for cubics; for

p(X)=X3*+aX+b
take T,(z) to be Newton’s method applied to the rational function

X3+aX+b
"X=3axrrobx—ar
Newton’s for quadratics and the above method for cubics are both robust.
In [Mc1] we classify generally convergent algorithms and answer a question
of Smale’s by proving:

Theorem 1.1. There is no generally convergent purely iterative algorithm for find-
ing the roots of polynomials of degree 4 or more.

The proof of Theorem 1.1 relies strongly upon the algebraic character of the
family T,, and being a proof by contradiction it does not seem to reveal where
algorithms for degrees 4 or more fail.
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Here we develop a localized criterion for the failure of algorithms. We will
show, for example, that every purely iterative algorithm must fail on every neigh-
borhood of p(X)=X" for d=4 or more. As far as robust algorithms are con-
cerned, when the criterion is satisfied one cannot even continuously assign to
each polynomial p an expanding map T, such that the attractor of T, is contained
in the roots of p.

The criterion is defined in terms of the braiding of the roots of polynomials
as we move about the Poly,; a good introduction to these ideas is Birman’s
book [Bi]. We also use the concept of ‘reducibility’ of an element or subgroup
of the mapping class group; this originates with Nielsen’s notion of ‘simple
axis’ and is fundamental to Thurston’s classification of elements [FLP].

Notation. For A any finite subset of €, Mod(4) will denote the full mapping
class group of the surface € —A4. (We include maps which do not fix A4, but
we exclude orientation-reversing maps. Our notation comes from Mod(4)’s role
as the ‘modular group’ for Teichmiiller space.)

Let A denote the discriminant hypersurface in Poly,, i.e. the locus of polyno-
mials with at least one multiple root. Let (y, p) be a closed loop in the complement
of A4 with basepoint p(X), and let r be the set of roots of p. As we traverse
y the roots of the corresponding polynomials move without collision, and hence
their monodromy determines an element in Mod (r), the full mapping class group
of the Riemmann sphere € punctured at r. There is a natural homomorphism
Mod(r) — Sym(r), the group of permutations of the set of roots, such that the
image of y in Sym(r) records how the roots are interchanged by the monodromy.

Now let V be an open connected subset of Poly,, and let p be a polynomial
in p with simple roots r. Then there are homomorphisms

7, (V—4, p) > Mod(r) - Sym(r)

with images G, and G, respectively, recording the topological and combina-
torial monodromy of the roots of p over V.

Definition. Vis tangled if the following three conditions are satisfied:

(1) G oms acts transitively on the roots r;

(2) Gypp is irreducible; and

(3) G, is infinite.

Here a subgroup of the mapping class group of a surface S is irreducible
if it preserves no system of disjoint nonperipheral simple closed curves on S.
(Finite irreducible subgroups are discussed by Gilman [G]).

Conditions 2) and 3) are implied by the (perhaps more easily verified) combi-
natorial conditions

(2") Geomp 1s irreducible;

(3)) Gioms is not isomorphic to a finite group of Mébius transformations
(a cyclic group Z/n, a dihedral group D,, the alternating group A4,, the octahedral
group, or the icosahedral group.)

Here a subgroup of Sym(r) is irreducible if it preserves no nontrivial partition
of the set r. (Transitivity does not imply irreducibility: e.g. (1234) preserves
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the partition {[1,3], [2,4]}) If G, is reducible, an invariant partition can
be constructed using the ‘innermost’ simple closed curves, so (2')=>(2).

The implication (3')=>(3) follows from Nielsen realization: any finite sub-
group of the modular group of a multiply-punctured sphere can be realized
by a group of Mobius transformations after appropriately relocating the punc-
tures. (See Zieschang, [Z, 54.3] where the Nielsen problem is solved for surfaces
with punctures; the general case was later proved by Kerckhoff [Ker]).

Examples. Assume d is 4 or more. The following sets are tangled:

(a) Any open connected neighborhood of p(X)=X".

(b) Any V whose monodromy permutes roots arbitrarily (G omp,=Sym(r)).
(This includes (a) as a special case.)

(c) Any neighborhod of a loop in the complement of the discriminant locus,
such that the monodromy around the loop is transitive on the roots and pseudo-
Anosov on their complement.

Theorem 1.2 (Location of Failures). Let V < Poly, be open, connected and tangled.
Then

(a) Any purely iterative algorithm fails on V.
(b) There is no continuous map T:V—Exp, such that the attractor of T,
is contained in the roots of p for each p inV.

In part (a), by ‘fail’ we mean there exists an open set U in ¥'x C such
that z is a bad initial guess for T, for every (p, z) in U.

Complements

(1) Since the notion of tangledness depends only on monodromy around
loops, part (b) of the Theorem gives a topological obstruction to the construction
of a robust algorithm over the 1-skeleton of Poly,— 4 for d=4. One can ask
if there is already an obstruction over the O-skeleton: does there exist a finite
set A =@ which is not the attractor of any rational map? If so, the polynomial
with roots at 4 would be ‘universally unsolvable’ by rational iteration.

In fact, by a recent result of Flexor and Sentenac [FS], there is no universally
unsolvable polynomial: for any p(z), one can choose a complex number k such
that modified Newton’s method

p(2)
P'(2)

is an expanding rational map whose attractor coincides with the roots of p.
However, by Theorem 2.1(b), h cannot be chosen continuously over any tangled
set of p’s!

(2) Shub and Smale have shown [SS] that if one allows complex conjugation
in the formula for T,(z) (so the resulting map is only real-algebraic) then there
exist generally convergent algorithms for all degrees.

(3) One can remain in the complex algebraic category and consider, more
generally, finite towers of purely iterative algorithms. In this context polynomials
of degree 5 become solvable but those of degree 6 are not [DM].

Ny(z)=z—h
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(4) Although Theorem 1.2 implies 1.1, the techniques we use here do not
yield the rigidity result for algebraic families which underlies the proof of Theo-
rem 1.1 in [Mcl1]. Similarly, the statement of Theorem 1.1 in [Mc1] is formally
stronger than that given here: the ‘full measure’ condition is dropped from
the definition of general convergence. Here we need that condition to rule out
invariant Beltrami differentials supported on the Julia set.

§2. Braiding of the attractor

Since a d-stranded braid is the same as an injective motion of d points on
the sphere, every braid can be realized as the motion of roots over a loop
in Poly,— 4. If we follow the attractor of a rational map as we move about
in a stable family, it too describes a braid, but not every braid can arise (Theo-
rem 2.1; see Fig. 2.1 for an example). The definition of a tangled subset of Poly,
insures that the roots are braided too generally to coincide with the braiding
of the attractor of a rational map.

Definitions. A family of rational maps f,(z) is holomorphic if the coefficients
of f are holomorphic functions of the parameter ; it is stable if the maps
all have the same degree and there is a uniform upper bound on the periods
of attracting cycles for maps occurring in the family. Stability rules out bifurca-
tions, and maps in the same component of the parameter space are quasiconfor-
mally conjugate on their Julia sets [MSS].

Let (X, f) be a stable holomorphic family of rational maps parameterized
by a connected complex manifold X with basepoint representing the rational
map f(z). We say f is attractive if there is an open dense set of full measure
U@ and a finite set 4 such that f"(z) tends to A for all z in U. (By stability,
if this condition is true for f is true for every other map in the family.) We
call A4 the attractor of f and (X, f) an attractive family.

Our condition on f is equivalent to the condition: f(z) has no Siegel disks
or Herman rings and the Julia set of f has zero area.

The attractor A is just the union of the attractive, superattractive and ration-
ally indifferent periodic cycles for such an f.

L
-

A~

Fig. 2.1. This braid does not arise for rational maps
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A good example to keep in mind is that of an expanding map f(z), and
X the open component of Exp, containing f. Another example is the pair
(Poly,, T,), where T, is any generally convergent algorithm. (If 7, is not a stable
family, then there exist attracting periodic cycles of arbitrarily high order for
certain values of p; these persist locally so T, is not generally convergent.)

As we move about in X, the periodic cycles of f move injectively; in particu-
lar, the monodromy of the motion of A determines a homomorphism

(X, f)—Mod(4)

whose image G records the braiding of the attractor. We refer to G as the
monodromy group of the family (X, f).

Theorem 2.1 (Controlled braiding). For any attractive family, the monodromy
group G is either (a) finite, (b) reducible, or (c) fixes a point of A.

Remark. There exists an attractive family of polynomials with |4|=4, such that
G contains a pseudo-Anosov element which fixes infinity and cyclically permutes
the three finite attractors (see the Appendix). Thus in case (c) G can be infinite
irreducible.

Proof of Theorem 1.2 (Location of failures). Let V be a tangled subset of Poly,.
We begin by proving any purely iterative algorithm T, fails on V. We may
assume that V meets neither the discriminant locus nor the (possibly empty)
subvariety on which T, is undefined or represents a rational map of degree
less than k. If T, does not fail on ¥, then (¥, T,) is an attractive family, with
attractor A contained in r, the roots of p.

As before, let G,,, denote the topological monodromy of the roots over
V, and let G=Mod(4) record the braiding of the attractor. Since for each ¢
in ¥, the attractor of T, is contained in the roots of g, G is the image of G,
induced by the inclusion A <r.

Since V is tangled, G,,, is transitive, irreducible and infinite. Transitivity
implies that A =r and G =G,,,. But then G violates all three possibilities enumer-
ated in Theorem 2.1, a contradiction. Thus T, must fail on V] establishing part
(a) of the theorem.

Now suppose the family (V, T,) consists of expanding maps, varying only
continuously with p, such that for each g in V the attractor of T, is contained
in the roots of q. Let X denote the component of Exp, containing T,. The
map T: V- Exp, induces a map

n, (V, T,) = ny (X, T,) > Mod(4)

exhibiting, as before, the image of G,,, under the inclusion 4A<=r as a subgroup
of G, the monodromy of the attractor in the attractive family (X, 7,). Again
it follows that A=r and G is transitive, irreducible and infinite, contradicting
Theorem 2.1 and so establishing part (b). [
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§3. Partitions of the sphere

This section and the next are devoted to the proof of Theorem 2.1.

Here we present a topological criterion for certain partitions of the sphere
to contain a component K which completely separates the elements of a finite
set A from one another.

The next section begins with the definition of the modular group of a rational
map and its relation to the monodromy group G in an attractive family. Then
assuming G is irreducible and fixed-point free, the criterion of this section gives
a component K of the Julia set which separates the points of the attractor
A. Finally appeal to the main result of [Mc2] (that Mod (K, f) is a finite group)
shows G is finite, completing the proof.

Definitions. Let 4 and K be subsets of €, with 4 finite. Assume K is connected
and either open or closed. (In applications the set 4 will be the attractor of
a rational map, and K will be a component of the Julia set or its complement.)
Let <(D;, i=1, ..., n> denote the components of € — K which meet A.

We define an invariant I'(K) which records the separation properties of K
relative to A. Begin by constructing a system {y,,...,7,> of disjoint simple
closed curves such that y; separates 4" D; from the remaining points of A.
If K is open, we require that these curves lie in K, while if K is closed we
require they lie in € — K.

Define I'(K) as the set of free homotopy classes on € —A represented by
{Y1, ..-» Yup. By convention, we also include in I'(K) a peripheral loop around
each element of A N K. These free homotopy classes depend only on A4 and
K (see Figure 3.1 for an example with K closed).

Remarks. (1) If ¢ is a homeomorphism of (€, 4), then I'(¢(K))=¢(I'(K)) (the
construction is natural).

(2) If K and L are disjoint, the union of I'(K) and I'(L) can be represented
by simple closed curves. The same is true for any finite collection of components.

Now let J be a closed subset of € (in applications J will be the Julia set
of a rational map) Let part(J) denote the set of components of J union the
set of components of € —J. Then part(J) is a partition of the Riemann sphere
into sets K each of which is connected and either open or closed.

Definition. A separator K is an element of part(J) such that I'(K) consists of
a peripheral curve around each point of A. (Equivalently, the points of 4 not
lying in K lie in distinct components of C—K.)

Theorem 3.1. Let J and A be subsets of € with J closed and A finite. Suppose
I'(K) is consists only of peripheral curves for all K in part(J). Then part(J)
contains a separator.

Proof. Assume |A|=3 (otherwise any element of part(J) containing a point of
A is a separator). Then any peripheral curve encircles a unique point in 4;
let A(K) denote the points encircled by I'(K).

There are three possibilities for A(K): A(K)=A4, A(K)=0, or A(K)={a}
for some point of A. (This trichotomy holds for any K with I'(K) totally peripher-
al) If A(K)=4, K is the sought-after separator.
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rK)

A={a, b, c, d, e}

Fig. 3.1 Construction of I'(K)

So assume A(K) is either empty or a singleton for all components K; we
will deduce a contradiction.
First we simplify the partition to eliminate elements with 4(K) empty. Define

fill(K)= € — U {components of € — K which meet 4} ;

ie. fill(K) is obtained from K by filling in the components of its complement
which do not meet A. Using plane topology (e.g. [W]), one may check that

fillpart(J) = {fill(K): K is an element of part(K) with 4(K) nonempty}

is again a partition of the Riemann sphere into closed and open sets, and A(K)
is a singleton for every element of fillpart(J).

Let p: € > A map each K in fillpart(J) to the singleton in A(K). It is straight-
forward to verify that p is continuous and surjective, contradicting the connectiv-
ity of €. Therefore part(J) must contain a separator. []

§4. Locating a separator in the Julia set

Definitions. Let f be an attractive map with Julia set J and attractor A.

If E is closed subset of € such that f(E)=E, then Mod(E, f), the modular
group of f on E [Mc2, §3], is the group of equivalence classes [¢] of maps
C — € such that

(1) ¢ is quasiconformal;

(2) ¢(E)=E;and

(3) pof(2)=f-¢(z) forallzin E.

By definition, two maps ¢ and y are equivalent iff they can be connected
by an isotopy through homeomorphism enjoying (1-3).

Remarks. We will be mostly concerned with the case E=JuA. For [¢] in
Mod(J U 4, f), ¢ behaves much like a global conjugacy. For example:

(1) [¢] determines a well-defined map ¢|Ju A4 (since periodic points are
dense in J U 4, the values of this map cannot change during isotopy). Similarly,
if U is a component of €—JuU 4, the image component ¢(U) is well-defined,
and ¢ commutes with the action of f on components.
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(2) If z is an attracting or superattracting periodic point for f, then so is
¢ () (since these are the only isolated point of J U A).

(3) If zeJ is a critical point (repelling periodic point, indifferent periodic
point with multiplier ‘%), then the same is true of ¢(z).

In particular, ¢(A)= A for any [¢] in Mod(J U 4, f).

Proof of (3). The Julia set is perfect and totally invariant, so points in J are
mapped locally n-to-1 near z iff z is a critical point of order (n—1) (and the
former property is preserved by a topological conjugacy on J.)

To handle periodic points we pass to microscopic scale and take a limit.
Let zeJ be a periodic point, which we may asume to be a fixed point, and
let o and f denote the derivatives of f at z and ¢(z) respectively. Choose points
w,€J such that w,—z, and let A,, B, be the Mdbius transformations which
carry (z,wg,w,), and (@(z), p(wo), d(w,)) to (0,00,1). Then B,odpoA, ! is a
sequence of normalized quasiconformal mappings which are conjugacies on
A,(J). After passing to a subsequence these converge to a quasiconformal map
¥ which is a conjugacy between z—az and z— fz on J', a Hausdorff limit
of A4,(J) (containing 1 and invariant under multiplication by a).

Since Y(1)=1, «" — oo if and only if " — oo, establishing (3) for repelling
periodic points. If o is not a root of unity, then {a") is dense in the unit circle
and we easily conclude a=p. Finally if « is a primitive nth root of unity, so
is B. Using the ‘Fatou flower theorem’ ([Bl, 3.12] and references therein), we
conclude that J’' contains rays emanating from the origin and passing through
the powers of . Since ¢ is a homeomorphism, the order relation of these rays
is preserved and a=f. [J

Definition. The universal monodromy group of (A, f) is the image of the natural

map
Mod(J U 4, f) —»Mod(4)

We will denote this group by Univ(4, f).

Proposition 4.1. The monodromy group G for an attractive family (X, f) is a
subgroup of the universal monodromy group Univ(4, f).

Proof. The motion of the periodic points determines a conjugating isotopy of
JuU A which can be extended quasiconformally to the whole Riemann sphere
[MSS, ST, BR]. Thus the monodromy of the attractor factors through the
modular group of f on J U A [Mc2, 3.2] and consequently through the universal
monodromy group of (4, f):

7, (X, f) = Mod(J U 4, f)— Univ(4, f)cMod(4). [J

By the above proposition, Univ(4, f) is irreducible and fixed-point free if
there exists a single attractive family (X, f) whose monodromy has this property.
For the remainder of the discussion we will concentrate on proving that this
property implies Univ(4, f) is finite; by the above, this will establish Theo-
rem 2.1.

Warning. We do not guarantee that every element of Univ(4, f) can be realized
by the monodromy in an attractive family including f.
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Adopting the notation of the preceding section, we now observe:

Proposition 4.2. If Univ(4, f) is irreducible, then part(J) contains a separator
K.

Proof. Let I' denote the union of the free homotopy classes I'(K) over all elements
K of part(J). Since any two elements of part(J) are disjoint, I" can be represented
by a finite collection of disjoint simple closed curves on € —A. Every [¢] in
Mod(J, f) maps J to J, so the system of curves I' is preserved (up to homotopy)
by Univ(4, f). (Cf. the Remarks in §3).

If Univ(4, f) is irreducible, I" (and hence each I'(K)) contains only peripheral
curves. Then by Proposition 3.1, part(J) contains a separator. []

Proposition 4.3. Suppose |A| =3, Univ(4, f) fixes no point of A, and K in part(J)
is a separator. Then

(a) K is a component of the Julia set, and
(b) f(K)=K.

Proof. Call a set U@ distinguished if ¢p(U)=U for all ¢ in Mod(J U 4, f).
By hypothesis, no point of A4 is distinguished.

We claim there is no distinguished component of € —J. Indeed, if U is
a component of € —J, there is a k such that f*(U) coincides with the immediate
basin of attraction of some point {a} in A4 (since f is attractive), and if U
were distinguished {a} would be too. The proofs of (a) and (b) rely on this
fact.

(a) |4|=3 implies K is the unique separator in part(J). Thus K is distin-
guished. Since there is no distinguished component of € —J, K is a component
of J.

(b) Let B denote the union of the immediate basins of attraction of the
points in A. B is a finite union of open components of €—J, so the same
is true of f~"(B) for each n. We have

Bcf 'Y(B)cf ~2(B)... and Uf "(B)=C-J.

For each n, let F, denote the component of the complement of f ~"(B) which
contains the separator K. Then NF,=K. If f(F,,,)<F, for all n, then f(K)=K
as claimed.

Otherwise there exists a least n such that f(F,,,)nF,=0. To complete the
(%roof, we will use this situation to produce a distinguished component U in

—J.

Since K is distinguished, so are F, and f(F,, ). There is a unique component
V of € — F, which contains f(F,. ). Vis an open disk, and d V< F,, so VAf ~"(B)
consists of a finite number of components of f~"(B); among these there is a
unique component U such that 0 V< 0U. U is constructed naturally from distin-
guished objects, so U itself is distinguished. This is the desired contradiction. [

The final idea in the proof is that the separator provides a collar constraining
the motion of the attractor.
Propeosition 4.4 If Univ(A, f) is irreducible and fixed-point free, then it is a finite
group.
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Proof. We may assume |A|=4 (otherwise Mod(A) itself is finite and there is
nothing to prove). Propositions 4.2 and 4.3 imply the existence of a separator
K such that f(K)=K. K is a distinguished component of the Julia set, so the
map from Mod(J U 4, f) onto Univ(4, f) can be factored:

Mod(J U A) » Mod (K U A4, f) - Univ(4, f).

By the definition of an attractive map, K has measure zero. Thus K carries
no invariant line field and by [Mc2, 3.4], Mod (K, f) is a finite group. (A sketch
of the argument: one may perform surgery to create a new rational map g
for which elements of Mod(K, f) can be realized as conformal automorphisms
— 1e. Mobius transformations commuting with g. And the group of such
automorphisms is finite.)

Since K is a separator, the natural homomorphism Mod(Ku
A, f)—>Mod(K, f) is injective. (Each component of € —K is a disk containing
at most one point of 4. If [¢] in Mod(K U 4, f) is isotopic to the identity
rel K, the isotopy can be easily modified so it is also rel 4.) Hence Mod(K U 4, f)
and Univ(4, f) are both finite. [J

Proof of Theorem 2.1 (Controlled Braiding). Let (X, f) be an attractive family
with monodromy G; by Proposition 4.1 G is a subgroup of Univ(4, f). If G
is irreducible and fixed-point free, the same is true of Univ(4, f); then by the
above Univ(4, f) is finite, so G is finite. []

Acknowledgements. Id like to thank Peter Doyle and Jane Gilman for discussions and for suggesting
improvements.

Appendix: A stable family with pseudo-Anosov dromy

Our construction begins with a function f(z) with the following properties.

1) The map f(z) is a degree 6 monic polynomial, with three finite simple critical points ¢y, ¢,, 3,
such that f'(c,)=c;; and a fourth critical point x of multiplicity two such that f"(x)— co.

2) The leaf through x of the canonical foliation of the basin of oo is a bouquet of three circles,
each enclosing one of the ¢, and mapped by degre 2 to the leaf through f(x). (The foliation we
refer to is the closure of the small orbit relation; see [BI, §97] or [Sul2].)

It follows that from (1) that f is expanding, with attractor 4={c,, ¢, c3, 0}.

For X we take the component of the space of expanding degree 6 polynomials which contains
f Then (X, f) is an attractive family.

Theorem A.1. The monodromy group G of (X, f) contains a pseudo-Anosov transformation fixing oo
and cyclically permuting the other three points in the attractor.

The proof will use only properties (1) and (2), so we first discuss the existence of such an f.
Proposition A.2. There exists a polynomial f (z) satisfying (1) and (2).

Proof. This can be verified by an algebraic calculation, or done quasiconformally. The latter approach
is more general and conceptual; to describe it, we introduce some notation: L, will denote the
leaf of the foliation through f"(x), A, the annulus bounded by L, and L,,,. Note that L, is the
bouquet through x (Fig. A.1).

We will build a smooth map with the desired dynamics, then observe it is conjugate to a rational
map.
Begin by picking points to be {c;,c,,c3, f(x) and f2(x)}, and drawing real analytic curves
to represent the leaves L,, i=0, 1,2, arranging the petals of the bouquet to meet in 60° angles
at x. Map the disks enclosed by each petal conformally by degree 2 to the disk enclosed by the
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leaf through f(x), arranging the critical point and value both to be equal to C,, and of course
sending x to f(x). Now map the region outside the leaf through f(x) conformally by degree 6
to the region outside the leaf through f2(x), arranging that co is both the critical point and critical
value for this map. Finally map the annulus 4, between the bouquet and L, smoothly to the
annulus A,, so that the map fits together with that already defined and creates a branch point
at x.

Fig. A.1. Leaves of the canonical foliation for f(x)

This defines a smooth branched cover of the sphere. We claim its iterates are uniformly quasicon-
formal. Indeed, the map is conformal except on the annulus A4,; but under iteration the points
in A, never return to there (they tend to oo), so the dilatation of the iterates is bounded by that
of the original map.

By constructing an invariant Beltrami differential and using the measurable Riemann mapping
theorem as in [Sul2, Theorem 9], we conclude that this smooth map is quasiconformally conjugate
to a rational map f(z) with properties (1) and (2). [J

Our next task is to produce closed loops in X with prescribed monodromy. Let Mod(f) denote
the group of isotopy classes of quasiconformal maps ¢ such that ¢(f(z))=f(¢(z)) on the entire
Riemann sphere. (This group is discussed in more detail in [Mc2, §2].) Since the attractor is topologi-
cally characterized, ¢(4)= 4 for [¢] in Mod(f).

Proposition A.3. The monodromy group of (X, f) contains the image of Mod(f) in Mod(A4).

Proof. The argument, which is very general, comes from [Sul2]. Let u denote the Beltrami differential
of ¢ and for each ¢ in [0, 1] form the map f,=¢, 'ofo,, where ¢, is the unique quasiconformal
map with dilatation tu agreeing with ¢ at co and two other points. This exhibits a path in X
connecting f to a polynomial conjugate to f by a Mobius transformation M. By connecting M
by a path to the identity, we obtain a loop with the desired monodromy. []

Proposition A.4. The monodromy group G contains a element of order 3, fixing oo and cyclically permut-
ing the three finite points of the attractor.

Proof. By the preceding, it is enough to construct a map in Mod(f) with this property. Begin with
a quasiconformal map ¢ of A, to itself which is the identity on the outer boundary and cyclically
permutes the inner petals, fixing x. The map on the petals is determined by requiring ¢ to commute
with f on the boundary of A,.

An appropriately chosen ¢ can be extended to a map commuting with f on the whole Riemann
sphere. The requirement is that ¢ respect the rigid structure on each leaf of the foliation in A,.
Then the dynamics can be used push ¢ forward to the successive annuli A4, filling in a neighborhood
of infinity. On the remainder of the basin of oo f is a covering, and can be used to pull ¢ back.
Finally we fill ¢ in conformally on the remainder of the sphere. This is possible because the dynamics
is conformally the same on the immediate basin of each c;, and the pre-images of the immediate
basins are all disks.
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It is not hard to see ¢ is a homeomorphism commuting with f and quasiconformal except
possibly on the Julia set. Quasiconformality on the Julia set follows from the expanding property
of f [Sul2].

By construction, ¢ fixes oo and cyclically permutes the three finite points in the attractor. The
map ¢3 fixes the petals, and hence is isotopic to the identity on € —4. O

Proposition A.5. The monodromy group G contains a half Dehn twist about a simple closed curve
separating two points in the attractor from the two others.

Proof. Since X is an open subset of Poly,, we may perturb f slightly to a new map g in X, such
that the critical point x splits into two critical points y and w, still attracted to infinity but lying
on different leaves of the foliation (Fig. A.2). One of the points, say y, lies on the innermost leaf
of the two. As in the preceding proof, we can construct a map ¢ in Mod(g) which is the identity
on the leaf through w and interchanges the two petals on the leaf through y. This map is a half
twist on the annulus bounded by these two leaves, and hence its mapping class is represented by
a half twist about the core curve of this annulus.

w fly) flw)

Fig. A.2. The foliations of the perturbed map g

By Proposition A.3 there is a loop in X based at g inducing this monodromy. Joining this
loop to f by a path only changes the monodromy by an inner automorphism of Mod(A4), so there
is an element of G with the desired properties. [

Completion of the Proof of Theorem A.l. Conjugating the half twist by the element of order 3,
we obtain two half twists about intersecting simple closed curves. The product of one with the
inverse of the other is pseudo-Anosov and cyclically permutes the finite points of 4. []
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