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Annals of Mathematics, 133 (1991), 217-247

Cusps are dense

By Curtr McMuULLEN*

Abstract

We show cusps are dense in Bers’ boundary for Teichmiiller space. The
proof rests on an estimate for the algebraic effect of a unit quasiconformal
deformation supported in the thin part of a hyperbolic Riemann surface.

1. Introduction

The integrability of measurable complex structures is a powerful tool in the
theory of dynamical systems in one complex variable—that is, Kleinian groups,
iterated rational maps and their relatives.

A basic construction is the following. Given a conformal dynamical system
on a Riemann surface X, consider any invariant complex structure (specified by
a measurable ellipse field of bounded eccentricity). By the “measurable Rie-
mann mapping theorem” [AB], there is a quasiconformal map f: X — Y so that
this measurable complex structure is the pull-back of a standard Riemann
surface structure on Y. Conjugation by f yields a new conformal dynamical
system on Y. .

The deformation theory of Kleinian groups is founded on this construction
([Bed], [Mas2], [Sul]), and a parallel theory can be developed for rational maps
[Su3l].

Despite its power, this deformation theory is difficult to control; the
geometry of the new dynamical system is typically hard to predict. In this
regard, a fundamental problem is to estimate the algebraic effect of a quasicon-
formal deformation—how much does it change the coefficients of a rational map,
or the generators of a Kleinian group?

In this paper we obtain an estimate for the algebraic change in a quasi-
fuchsian group due to a unit quasiconformal deformation concentrated in the
thin part of the quotient Riemann surface. The density of cusps in the boundary
of Teichmiiller space, conjectured by Bers in 1970 [Be3], follows from this
estimate.

*Research partially supported by an NSF Postdoctoral Fellowship.



218 CURT McMULLEN

To state our results, we recall some ideas from [Be3]. Let X be a hyperbolic
Riemann surface of finite volume, presented as the quotient H/T'y of the upper
half-plane by a Fuchsian group.

I’y also acts on the whole Riemann sphere and in particular the quotient of
the lower half-plane is X, the complex conjugate of X.

Let h: X = Y be a quasiconformal isomorphism; then (h,Y) determines a
point in the Teichmiiller space Teich(X). The complex dilatation dh /dh lifts to a
Ty-invariant differential x4 on H, which we extend by zero to the whole of C.
Then there is a quasiconformal map f: € —» C with dilatation w, which
conjugates I'y to a quasifuchsian group I'y. Its limit set is a typically fractal
Jordan curve which divides the sphere into two regions, one of which still yields
as quotient X, and the other of which uniformizes Y.

This construction provides an embedding

¢: Teich(X) < Hom(Ty, PSL,C)/conjugation

whose image is a bounded set of discrete faithful representations. The closure of
the image gives a compactification of Teichmiiller space by Kleinian groups
which are algebraic limits of quasifuchsian groups.

Definitions. A boundary point p: I'y = I' € PSL,C is a cusp if there is a
hyperbolic y € Ty such that p(y) is parabolic. In this case y represents a
simple closed curve on X, and we say this curve has been pinched.

[ is totally degenerate if its domain of discontinuity consists of a single
component. That is, the component uniformizing Y has disappeared completely.
Bers showed that every boundary point is either a cusp or totally degenerate.

A boundary point is a maximal cusp if a maximal system of disjoint
nonperipheral simple closed curves on X have been pinched to cusps. A
maximal cusp is geometrically finite; Y has been reduced to a collection of triply
punctured spheres.

In this paper we prove:

Tueorem 1.1 (Cusps are dense). Maximal cusps are dense on the boundary
of Teichmiiller space.

A maximal cusp is uniquely determined by purely topological data, namely
the system of simple closed curves which is pinched. This theorem represents a
first step towards a combinatorial description of the boundary, since a general
point can be described by the cusps which approximate it, just as a real number
can be encoded by a Cauchy sequence of rationals.

The proof depends on an estimate for the change in the representation p
due to a unit quasiconformal deformation of Y supported in the thin part.
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The technique by which quasiconformal and algebraic deformations are
related can be applied to general hyperbolic 3-manifolds; this will be developed
in a sequel. There is also some promise of application to other conformal
dynamical systems, such as iterated rational maps.

To describe the estimate we return to Bers' construction. The map f
conjugating I'y to I'y is conformal in the lower half-plane, and by invariance its
Schwarzian derivative Sf descends to a quadratic differential ¢, on X.! This
provides a related embedding

B: Teich(X) = P(X)

where Pi)_( ) is the finite dimensional space of holomorphic quadratic differen-
tials on X equipped with the norm

gl = sup p~2¢p| < oo;
X

here p(z)|dz| denotes the Poincaré metric on X.

By a result of Nehari [N], in this norm Teichmiiller space lies within a ball
of radius 3/2, so again its closure is compact.

The space P(X) parameterizes projective structures on X. The original
embedding ¢ can be factored as 7 o B, where 7,

n: P(X) - Hom(Ty, PSL,C) /conjugation,

is the holonomy map. The map 7 is analytic on all of P(X) and injective on the
closure of B(Teich(X)); thus the compactifications by projective structures and
by groups are homeomorphic. :

We will use the norm on P as a metric on the compactified Teichmiiller
space, even when we are thinking of the compactification as a space of groups.
Since P is a vector space, it is naturally its own tangent space and the lengths of
vectors on P will also be measured using the norm.

For Y € Teich(X) let M(Y) denote the space of bounded measurable
Beltrami differentials u(z) dz/dz on Y with the norm

lell = sup|pl.
Y

Each p determines an infinitesimal quasiconformal deformation of Y, and
thereby a tangent vector to Teich(X) at Y.
Density of cusps follows from:

Tueorem 1.2 (Short geodesics pinch quickly). Let u be a unit-norm
Beltrami differential supported in the part of Y of injectivity radius less than

'A palatable discussion of the Schwarzian derivative appears in [T2].
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L < 1/2. Then the image of pu under the derivative of Bers’ embedding has
length at most C(L log 1/L)? where the constant C depends only on X.

Remarks.

1. C must depend on the base Riemann surface X. In fact, for Y = X we
have a Fuchsian group, and when X has a short geodesic it is easy to produce a
unit quasiconformal deformation supported in the thin part which moves dis-
tance < 1 in Bers’ embedding, independent of the length of the short geodesic.
The proof shows we may take C = O(1 + 1/short(X)?) where short(X) is the
length of the shortest closed geodesic on X.

2. This estimate is close to sharp; for example, in the usual process of
pinching a short geodesic (see [Be3, Th. 11]), |[dB(u)|l > cL? as L — 0. (A unit
deformation changes the trace of the group element being made parabolic by
cL?, and the trace is a Lipschitz function on Bers” compactification.)

CoroLrary 1.3. Let Y be a point of a fixed Teichmiiller space. Then if Y has
some disjoint simple geodesics of length less than L <1/2, Y is within
O((L log 1/L)?) of a cusp where these curves become parabolic.

Proof. By a roughly unit deformation on the level of Teichmiiller space, we
can pinch a curve from length L to length L/2, using a u supported in the part
of injectivity radius less than 2L (see Figure 1). The movement in the P(X)
norm may be bounded using the preceding result. After the k' step the
Beltrami differential can be concentrated in the region of injectivity radius less

than 2 *L; sum the resulting geometric series. O
CRIIES

Support of u

|

L/2

CBICKS)ISISES)

Ficure 1. Pinching supported in the thin part.
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To derive the density of cusps we begin with some topological facts about
Bers’ compactification.

ProrosiTion 1.4. Teich(X) is embedded in P(X) as a regular open set.
(This means Teichmiiller space is the interior of its closure.)

Proof. Over the interior of its closure we have a holomorphically varying
family of discrete groups. By the extended A-lemma, these are all quasiconfor-
mally conjugate (see [Be5], [Su2]). Since the interior is connected, they are all
quasifuchsian groups. Therefore this space coincides with Teichmiiller space. O

(See [Sh., Cor. 1] for another proof.)
We now recall a theorem of [Bell:

CoroLrary 1.5. The boundary of Teichmiiller space contains a dense G
consisting of totally degenerate groups.

Proof. The cusps are contained in a countable union of proper analytic
subsets, defined by Tr(y)? = 4 for each y € 7 (X) represented by a simple
geodesic which can potentially be pinched. By the preceding proposition, each
of these is nowhere dense in the boundary. Therefore cusp-free totally degener-
ate groups form a dense G;. m]

Proof of 1.1 (Cusps are dense). Let B be a point in the boundary of the
Teichmiiller space Teich(X). By preceding results, it is enough to show B is a
limit of cusps when B represents a totally degenerate group.

Let Y, — B be a sequence of points in Teichmiiller space tending to B. For
each n we may choose a maximal set of disjoint simple closed curves S, such
that the total length of S, on Y, is less than some universal constant depending
only on the topology of X.

Now, by a uniformly bounded quasiconformal deformation of each Y, we
may obtain a new sequence Z, such that the length of S, is less than & for all n.
Since B is quasiconformally rigid (relative to the fixed conformal structure on
one end, by Sullivan’s extension of Mostow rigidity [Sull), Z, — B as well. By a
diagonalization argument, we obtain Z, — B with the length of S, tending to
zero. By Corollary 1.3, we may pinch the S, simultaneously to cusps C,, moving
a distance which goes to zero as the length of S, goes to zero. Therefore
B = lim C,, is a limit of maximal cusps. O

Recall that each point in the closure of Teichmiiller space determines a
hyperbolic 3-manifold H?/p(Ty).
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Corovrrary 1.6. The boundary of Teichmiiller space contains a dense G, of
hyperbolic 3-manifolds with arbitrarily short geodesics.

Proof. The set of boundary points with a geodesic of length less than 1/n is
open and dense by density of cusps; apply the Baire category theorem. m]

CoroLrary 1.7. Under the action of the mapping-class group, the orbit of
any point in Teichmiiller space accumulates densely on Bers’ boundary.

Proof. Let Y be a point in Teichmiiller space, S a maximal system of
disjoint simple closed curves on Y, and let 7 be an element of the mapping class
group obtained as the composition of Dehn twists around every element of S.
Then 7"(Y) tends to the unique cusp point for which every curve S has become
parabolic ([Ab2, Th. 3]; see also [Mar], [H]). Since maximal cusp points are
dense, the corollary follows. O

Idea of the proof of Theorem 1.2. Given a quasifuchsian group Iy, normal-

ize so that a point in the component uniformizing X is at infinity, and the

" Poincaré metric at infinity matches the spherical metric. Then the limit set has

universally bounded diameter; so the total area it encloses is bounded, and the

distortion of projective structure at infinity is proportional (by a fixed constant)

to fu dz®, where u is a group-invariant Beltrami differential, and dz? is the
standard quadratic differential in the plane.

The thin part of Y has cyclic fundamental group; to each component of its
lift to the plane there corresponds a Mobius transformation y with small
translation length in hyperbolic space. By invariance under vy, the Beltrami
differential u is forced to swirl quite a bit. For example, u might be a constant
multiple of the line field shown in Figure 2 (next page), which is invariant under
a loxodromic transformation with small translation. This swirling causes ineffi-
ciency (cancellation) in the integral (that is, | [fu d2?| < [|ul |dz|?).

To each short vy, associate a region in the plane on which there is some
definite inefficiency due to swirling. The Margulis lemma forces these regions to
be scattered about independent of one another. One finds that the local
inefficiencies fit together without conflict to give the desired global estimate.

Remark. In general, it is not sufficient just to estimate the area of the
support of u. The role of cancellation is essential in the case where the length of
the geodesic y to be pinched is much shorter in the hyperbolic 3-manifold
H3/T, than on the hyperbolic surface Y. (This occurs, for example, when
Y = 7™(Y,) and 7" is a high power of a Dehn twist about y; see [KT, §3]).
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Ficure 2. An invariant line field for a short geodesic.

Outline of the paper

Section 2 introduces the integral kernel for the derivative of Bers’ embed-
ding; this kernel provides a link between quasiconformal and algebraic deforma-
tions. As an illustration, a bound of O(exp(—1/L)) is derived for the effect of a
deformation supported in. the cuspidal thin part of Y.

Section 3 addresses the heart of the matter: estimating the effect of a
deformation supported in the geodesic thin part. We begin by examining the
geometry of an invariant region for a single hyperbolic transformation y. Then a
calculation gives an asymptotic formula for the inefficiency forced by invariance.

Section 4 applies the Margulis lemma to analyze the way in which invariant
regions associated to different short geodesics fit together. In Section 5
we return to the setting of quasifuchsian groups and complete the proof of
Theorem 1.2.

Acknowledgements. After this paper was submitted, Mitsuhiro Shishikura
found a more concise proof of Proposition 3.4, which we present below. I would
also like to thank Harumi Tanigawa and the referee for useful comments.

Bibliographical remarks. Bers' boundary is discussed in [Be3], [Masl],
[Ab1], and [Ab2]. Quasifuchsian groups are discussed from a 3-dimensional point
of view in [T1, §§8, 9], [T3] and [Bo].

Ehrenpreis conjectured that the “limit set” of the mapping-class group is
the full boundary of Teichmiiller space, in a weaker sense than that of Corollary
1.7 [E]; this was proved by Abikoff [Ab2].

A more detailed picture of 3-manifolds with arbitrarily short geodesics (as
in Corollary 1.6) can be found in [BO] and [T3].
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The author was introduced to the closely related Maskit boundary of the
Teichmiiller space of once-punctured tori by Mumford and Wright in 1981, as
part of a joint computer investigation stemming from work of Jgrgenson. This
investigation is presented in [W].

Notation. O(x) denotes a quantity whose absolute value is bounded by Cx
for some unspecified universal constant C > 0 (often computable in principle);
f =< x means cx < f < Cx, again for unspecified ¢, C > 0.

2. Quasiconformal distortion of projective structure

Let u = u(z) dz/dz be a bounded measurable Beltrami differential on (o}
vanishing on an open set U. By [AB] there is a one-parameter family of
quasiconformal maps f,: ¢ — € with dilatation ¢, such that f,(z) is holomor-
phic in ¢. Here ¢ ranges in the unit disk in C.

Since w = 0 on U, f, gives a family of conformal mappings of U into C.
Taking the Schwarzian derivative with respect to z,

Y’ 1 ft n\2
oG] 24]
t ft ’ 2 ft ’
we obtain a holomorphic family of quadratic differentials S(f,)(z) dz* on U.

Remark. A solution to the Beltrami equation

d(f)/d
a(f)/d ~ "

is well-defined only up to post-composition with a Mébius transformation M,.
However, replacing f, with M, o f, leaves its Schwarzian derivative unchanged;
so the family of quadratic differentials S(f,) is naturally determined by u
without any choice of normalization.

The rate of change of Schwarzian derivative at ¢t = 0 gives the infinitesimal
distortion of projective structure on U caused by the change in conformal
structure on its complement.

Prorosition 2.1. The quadratic differential

5o B0
e |,_,
is given by convolution of w with a kernel
6 dz®dw?®
K(z,w) = —— y
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on C X C; that is

d(w) dw? = (_Ef M) dw?.

T (z — w)t

(Note that the product of a quadratic differential and a Beltrami differential
in z naturally has the type of an area form |dz|%)

Proof. See [Be2] or [Ga, §5.7]. O

To better understand this formula, assume © € U. Introducing the coordi-
nate u = 1/w, we find the projective distortion at infinity is given by

@) 6() = -7 [ plaNdst

i.e., the value of ¢ is essentially the average of nu with respect to Euclidean
area. The factor —6/7 can be checked using the example

_Jz+t/z iflz] > 1

1) {z + 1  otherwise’

for which u = dz /dz is supported on the unit disk and dS(f,)/dt = —6 dz?/z*;
the 7 comes from the area of the disk. (In fact, the general form of the kernel
follows from this example by continuity and linearity.)

2.1. The derivative of Bers’ embedding. For Y € Teich(X) let u € M(Y)
represent a tangent vector to Teichmiiller space at Y. We will give a geometric
picture for the quantity ||[dB(un)|| which measures the infinitesimal change in
projective structure on X due to w.

The limit set A of Iy divides the sphere into two disks, Q(X) and Q(Y),
whose quotients are X and Y. The Beltrami differential w lifts to an invariant
form on Q(Y) which we continue to denote by .

Tueorem 2.2. The derivative of Bers’ embedding satisfies

l 2
ldB(w)| < W A fﬂ (Y)#(zp)ldzpl

diamp(A)2

where p ranges over QU(X), z, denotes an affine coordinate on C such that
z,(©) = p, and diam (A) is the diameter of the limit set measured in the
|dz » |-metric.

Proof. Let f: C — C conjugate Ty to T'y as in Bers’ construction. Then

B(Y) = sflH
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in the sense that Sf is a I'y-invariant quadratic differential, holomorphic on the
lower half plane and thereby representing an element of P(X).
Solve the Beltrami equation

d(g)/d _ ,
d(g)/dz  °

Then we obtain a path Y, in Teichmiiller space with

d
dB(un) = —Bgi

where ¢(p) can be expressed by equation 2.1, giving

(2.2) |6()] = ‘  peds,

u =1/z,. Since the limit set is connected, the Poincaré metric at infinity
satisfies p(p)|du| =< diam(A)|du|. (This follows from the Schwarz lemma and
the Koebe 1/4 theorem; cf. [BP].) The result now follows from the definition
l¢ll = sup, p2|¢|, when we use the fact that f is an isometry for the Poincaré
- metric. O

Cororrary 2.3. ||dB]l = O(1).

3 d B d . . dSg,
= Es(gwf) = E(Sf+f Sg,)=f ( 5

| =11,

t=0

|dul?,

Proof. For unit-norm pu,
f pldz,|?

Remark. In fact, ||dB|l < 3/2. (The image of B is contained in the ball of
radius 3 /2 by Nehari’s theorem; apply the Schwarz lemma.)
Here is a dual description of the size of [[dB(w)I|.

< area (Q(Y)) < O(diamp(A)z). - |

Definitions. For any Riemann surface X, let Q(X) denote the space of
holomorphic quadratic differentials ¢(z) dz> on X such that

lpll = [X|¢| < oo,

With this norm, Q(X) is a Banach space.
There is a natural pairing between Beltrami differentials in M(X) and
quadratic differentials in Q(X), given by

(b, 1) =RefX¢M-

Q(X) may be identified with the cotangent space to Teichmiiller space at X, and
Q*(X) = M(X)/Q(X)* with the tangent space (see, e.g., [G)).
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Given a covering 7: Y = X and ¢ € Q(Y), the push-forwai'd 7. (P) is
defined by summing (7~ !)*¢ over the various branches of 7~!. The map
¢ — 7,(¢) defines an operator traditionally denoted

®y/x3 Q(Y) — Q(X),

first introduced by Poincaré in his construction of automorphic forms [P].
Push-forward of quadratic differentials is like push-forward of measures,
except some cancellation may result due to incoherence in the phase of ¢ over
different sheets. Thus [|©, /x” <1
For simplicity of notation, let

In terms of ®, a useful reformulation of Theorem 2.2 is the following:

Tueorem 2.4. Let u be of unit norm in M(Y) and supported in Y' C Y.
Then

ldB(w)]l < O sup |©(dz2)||.
p

1
| djam’D(A)2 /Y
Proof. This is immediate from the duality
(b, THu) =Ty, ). o

2.2. Cuspidal deformations are negligible. This section presents a bound for
the effect of a quasiconformal deformation concentrated in a neighborhood of the
cusps of Y.

Definition. The L-thin part of Y is the set of points through which there is
a nontrivial loop of length less than L; we will denote it by Y(L).

There is an L, > 0 such that for L < L, the thin part consists of annuli
centered on short geodesics and horoball neighborhoods of cusps. The union of
the cuspidal components is the cuspidal thin part Y(L, cusps).

Remark. The triply-punctured sphere and the punctured square torus are
the extreme examples for L,; the sharp value is L, = log(3 + 2v2) [Y].

ProrositioNn 2.5. Let Y be a hyperbolic Riemann surface, ¢ € Q(Y). Then
the mass of |@| in the cuspidal thin part is exponentially small:

[Y ( l¢| < O(exp(—1/L)) [Y .

Proof. Assume L < L. Let E be a cuspidal component of the L -thin part
of Y, and let D C E be the subset lying in the L-thin part.

L, cusps)
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Introduce a local coordinate w on Y so that E corresponds to the punc-
tured unit disk {w: 0 < |w| < 1}. Then D is contained in the punctured disk of
w-radius R = O(exp(—1/L)), by a standard Poincaré metric calculation.

¢ is integrable so at worst it has a pole at the puncture w = 0. Write
d(w) dw? = (Y(w) /w) dw> where  is holomorphic; then |Y(w)| is subhar-
monic, so its average over the circle |w| = r is an increasing function of r.
Therefore

[1o1 = jR/”Mrd(; dr < R[O‘jj”].p(r exp(i0))| 8 dr

0’0 r
=R||el.
JJ
This inequality holds on each component E, and the proposition follows. m]

CoroLrary 2.6. Let u € M(Y), |lull =1 be supported in the cuspidal
components of the L-thin part of Y. Then the image of p under the derivative of
Bers’ embedding has length O(exp(—1/L)).

Proof. Since ||O]| < 1,
j;l@(dzf,)l < /ﬂ(y)ldz;"l = area (Q(Y)) < O(diamp(A)z)

because A is the boundary of Q(Y). The integral of |@(dz})| over just
Y(L, cusps) is O(exp(—1/L)) times smaller; apply Theorem 2.4. ‘ m]

Remark. This sort of argument cannot be applied to the geodesic thin part.
In fact, when Y has a short geodesic, there is a quadratic differential ¢ with
most of its mass in the thin part.

The idea for treating the geodesic thin part appears, in a non-quantitative
form, in the proof of Theorem 6.1 of [Mc].

3. Short geodesics

Definitions. Let
L=4+i0, >0

be a complex translation length, and let y be a Mdbius transformation with
translation length _#. This means y stabilizes a geodesic in hyperbolic 3-space,
translates points on the geodesic by distance ¢, and twists a normal plane by
angle 6. Notice that y determines 6 only up to a multiple of 2.

Let Q c € be the complement of the fixed points of y; then Q/y =T is a
complex torus. We give T its usual flat metric (well-defined up to scale).



CUSPS ARE DENSE 229

Using -#, we can include vy in a 1-parameter group of translations of length
tZ, t € R; letting ¢ range in [0, 1], we obtain a path connecting p to y(p) for
any p € ), which descends to a well-defined homotopy class [y] € 7 (T).
Conversely, the choice of a representative in the y-coset of 7 (T) determines £
uniquely. »

An annulus has modulus M if it is conformally isomorphic to a right
cylinder of radius 1 and height M (equivalently the region 1 < |z| < log M).

Let M denote the modulus of the cylinder T — g where g is a geodesic
representative for [y]; one may check that

M = 47*Re(1/-7).

(Note that T — g is isomorphic to the region in C between the two lines R_Z
and 27i + R_Z, modulo the translation z — z + _#. Multiplying this region by
27/, we find T — g is also isomorphic to the quotient of

{z:0 < Im(2) < Im(47%i/£) = M}

by z = z + 21, which is clearly a cylinder of modulus M.)
Given p € Q) and m < M, let A C T be the annulus in the homotopy class
[y] obtained by removing a right cylinder of modulus m centered at the image
of p on T. This means p projects to a point in T — A at maximal distance from
A, i.e., midway between the two boundary components.
Define the thickened spiral B C Q to be the pre-image of A. The region B
is bounded by a pair of exponential spirals connecting the fixed points of 7.
Note that the construction of B depends only on:
1. The isometry 7y;
2. The complex translation length _#;
3. The modulus m; and
- 4. The point p.
When necessary this dependence will be made explicit by the notation
B(y, -Z, m, p).
Let z, be any affine coordinate such that z,(p) = . By restriction, the
quadratic differential dz? is an element of Q(B).
Associated to the covering B — A is the push-forward operator

®B/A: Q(B) = Q(A).
Tueorem 3.1 (Inefficiency from swirling). For m > 4r,
||®B/A(dz,2,)|| _ (21_2_ N m2 )
lldz2]] M?  exp(m/2) |’
the norms are in Q(B) and Q(A) respectively.
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Remarks.

1. Geometrically, the theorem bounds the extent to which a y-invariant
line field on B can be synchronized with the horizontal lines in the plane. More
precisely, associate to each point z € B an unoriented tangent line through z at
angle 6(z) (defined mod 7r), in such a way that the derivative of y carries the
line at z to the line at y(z). Then the theorem gives a bound for the average of
cos(26(z)) over B. In fact, when we set u = exp(2i6(z)) dz/dz, this average is
exactly

(w,dz?y 10y ,,(dz?)
a2l =
2. An affine change of coordinates (z — az + b) leaves the ratio above
unchanged; one may choose any coordinate system in which z,(p) = .
3. We are mostly interested in the case where m is large but m < M.
If m is 4log(M), then the bound becomes O(M~2(log M)?), which leads to
Theorem 1.2. _

4. The result fails without a lower bound on m. When m is small, a
fundamental domain for the action of y on B occupies most of the area of B, and

- pushing forward causes little cancellation.

The remainder of the section is devoted to the proof.

3.1. Spirals. We begin with some estimates for the shape of B when
viewed from p, i.e., in the metric |dzp|. In this section B = B(y, -Z, m, p).
Choose the coordinate z =z, so that theAattracting and repelling fixed
points of y are 0 and 1 respectively; then Q0 = C — {0, 1} and
y(z) = N(exp(-Z)N~Y(z)) where N(z)=1/(1 —z).
(The Mébius transformation N carries C* to (), sending 1 to .)
Identify the universal cover of ) with C via the covering map
s = N(exp(-Zs)) = z;
then in these coordinates,
T=C/A where
A=Z7Z & Zr and
T=2mwi/2L,
and our choice of . determines a natural lift of y to the transformation
y(s) =s + 1.
We introduce the notation
pa:C—> C/Z7=Q and
pr:C—>C/A=T
for covering maps from the s-plane.
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For y € [0,Im 7/2] let
C(y) = {s: y <Im(s) < Im(7) — y}
denote a strip in the universal cover of €); then
B = po(C(y)) and
A =p;(C(y)) where y =m/4m7.
Here A and T — A are cylinders on T in the homotopy class [y];
m =mod(T — A) = 47wy and
M =mod(T — g) =27 Im 7.

The region B is bounded by a pair of exponential spirals running from 0 to
1 (see Figure 3).

Ficure 3. Spirals.

ProrosiTion 3.2.
1. The diameter of Bis =< 1/|m.Z)|.
2. If m < M/2, then area (B) =< (diam, B)>.

Remark. Note that
(/)
|

so the estimate above is compatible with the fact that the diameter of B is
always at least one. '

Im 2| < IMZ| =<
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Proof. Recall the Koebe 1/4 theorem (see, e.g., [Ah]): the image of a
univalent map f: D(x, r) — C contains a disk D(f(x), R) where R = f'(x)r/4.
(Here D(x,r) denotes the disk of radius r centered at x.)

1. Since p, maps D(0, y) univalently to a neighborhood of infinity, disjoint
from B, we can bound the diameter of B from above using the Koebe theorem.
To this end, let

q(s) = 1/po(s) = 1 — exp(Ls).
Then |q'(0)| = |-Z|, so that q(D(0,y)) D D(0,r) where r < |-£ly < |-£|m;
therefore B c D(0, 1/r), giving an upper bound on the diameter.

On the other hand, q(iy) = O(|-y|) (since |-£y| = O(1)), and both 0 and
1/q(iy) belong to B, so that the diameter of B is in fact comparable to
1/|lm-~Z|.

2. Similarly, if m < M/2, then D(2iy,y) € C(y) and p, maps this disk
univalently into B; so the Koebe theorem provides a lower bound on the area of
B. The assumption m < M /2 implies |2_£iy| < 7, and therefore
|-Z exp(2-Ziy)| 1
1 - exp(2Ziy)> ~ |Lly?’

" Thus the image of D(2iy, y) under p, has area at least 1/|y_Z|* =< diam ,(B)*.
The bound in the other direction, areap(B) = O(diam p(B)z), holds for any
region B. O

|pa(2iy)| = |

Remark. Our main interest lies in the region 1 <m < M. Then B is
well-approximated by a pair of round disks of diameter =< 1/|m_#|, tangent at
the origin. The spiraling of 3B is only evident at a scale much smaller ‘than the
diameter of B.

Prorosition 3.3. Let E be a y-invariant subset of C, disjoint from B =
B(y, -Z, m, p), where m > 1. Then:

1. diam (B) < O(diam ,( E)).

2. There is a constant C > 0 such that if

max dist (e, B) < C diam ,(B),

e€E

then E is contained in the larger twisted spiral B' = B(y, -, m /2, p).

Proof. Since E is y-invariant, its preimage F = pg'(E) is invariant under
the full lattice A = Z @ Z7. Moreover, E is disjoint from B; so there is an
s € F with |Re s| < 1 and |Im s| < y. Our assumption m > 1 gives y > 1/47
and so we can assert |s| = O(y).

1. As in the preceding proof, q(s) = O(|-£y|), and so E contains one point
pals) with [po(s)| > ¢/|-Lyl| for some constant ¢ > 0.
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In addition, E contains the fixed points 0 and 1 of 7; thus diam AB) <
1/|-Zyl = O(diam (E)).

2. If E is not contained in B’, then we can assume in addition that
|Im s| <y/2. To complete the proof, we need only show that for e = py(s),
dist (e, B) > C diam (B) for some universal C > 0. But p, maps D(s,y/2)
univalently into the complement of B, and the desired estimate follows by the
Koebe theorem once again. O

3.2. Descent to the torus. We now turn to the problem of estimating
10, A(dz?)Il. Let

¢ =d?, ©=) (y")*.
Then

||®B/A(¢)" = /B|(D|,

where B, denotes a fundamental domain for the action of y on B.
Similarly, if we let

Y(s) ds® = pg(s),

and
‘I'(S) ds® = p;‘:(GB/A(d’)) = Z‘I’(S - ") ds®,
then
(3.1) 105,4(®)] = [ 115"
where

Co(y) = {s € C(y): Re(s) € [0,1]}

is the intersection of C(y) with a fundamental domain for the lattice A.

Note that ¢(s) is periodic with period 7, while W(s) is periodic with
respect to the full lattice A generated by 1 and 7. In addition both ¢ and ¥ are
even functions of s.

The main point of this section is to establish the following estimate.

ProrosiTion 2.3. Fory > 1,

exp(—2my)

1©5,4(8)] = fco(y)|‘1’(8)| |ds|?> = O(|-Z|Im 7 + o
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The proof we present uses an explicit formula, due to. Shishikura, which
expresses V¥ as a power series in exp(27ris). (Such a series exists because
P(s) = ¥(s + 1).) The constant term in the series turns out to dominate the
behaviour of ¥ in the region Cy(y); the remaining terms are exponentially
small, giving the estimate above.

ProrosiTioN 3.5. For s with 0 < Im(s) < Im(7),
V(s) = Y a, exp(2mins),

where a, = -£/6, and
272(n + 4m2n®/L?)
n= 3(1 — exp(2minT))
Proof. Recalling that
z = po(s) = N(exp(£s)) = 1/(1 — exp(-£s)),

a forn # 0.

we compute

2

B (exp(£s) — 1)* " 16 sinh(Zs/2)" s

Thus ¢(s) is analytic away from integral multiples of 7 (while at such points
has a fourth order pole). Similarly, ¥'(s) has poles on the lattice A and is
holomorphic elsewhere; in particular, ¥(s) is holomorphic throughout the strip

{s:0<Ims <Im7}.
Since ¥(s + 1) = ¥(s), within this strip ¥(s) can be expressed as a

power series La,w" where w = exp(2mis). Moreover, the coefficients a, can
be computed as follows: fixing any y, 0 < y < Im 7, we have

¥(s)ds® = (%)2 , Z? exp(2-Ls) . Pz
ds

(3.2) a, = j;)l\lf(x + iy )exp(—2min(x + iy)) dx

= f::/;(x + iy )exp(—2min(x + iy)) dx.

(This is equivalent to the integral formula for the coeflicients of a Laurent series
in w.)
We claim a, = -£/6; this is checked using the indefinite integral

sinh ¢

/ sinh®¢  sinht 3
along with the fact that Re(#’) > 0 (which is our convention for a complex
translation length).

dt cosh ¢ 1 ( cosh ¢ )3
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For n # 0, a, is computed using the residue theorem. Consider a parallelo-
gram vy, t> 0, with vertices iy +¢t, iy —¢t iy—t—7, iy+t—7 and
counter-clockwise orientation. We claim

(exp(2minT) — 1)a, = lim f«//(s)exp(—217ins) ds.
. t—o

To see this, first note that the path integral along the vertical sides of the
parallelogram tends to zero by properties of sinh. The part from iy + ¢ to iy — ¢
tends to —a, by equation 3.2. Finally the part from iy —t —7 to iy +t — 7
tends to exp(2minT)a,, since ¢(s + 7) = ¢(s).

On the other hand,

];c[/(s)exp(—21rins) = 277i Res(¢(s)exp(—2mins),0)

by the residue theorem. The residue at zero turns out to be

mi 472n®
—_— + —Q |,
s\" T T2
and proof is completed by algebra. m|

CoroLLary 3.6. For s € C(y), y>1,
Z exp(—27
¥(s)=2+0 _1)(_2g/_) .
6 -2

Proof. Let w = exp(2mris). By Proposition 3.5, we have ¥(s) = La,w" in
the strip C(y), where a, = -#/6. Thus it suffices to check that .

' exp(—2m
S= Y aw'+a_w "= O(_p(—zy_))
n>0 ) L-/l

Note that a_, = exp(2wint)a, (this reflects the symmetry W¥(s) =
W(7 — s)). For s € C(y), we obtain the bound

a,w" + a_w " = a,(exp(2mwins) + exp(2mwin(7 — 5)))
= O(la,lexp(—2mny)),

since y is a lower bound for both Im(s) and Im(7 — s).
Now assume Im(7) > 1 since otherwise C(y) is empty. Then for n > 0,

a, = O(Inl°fl2P?).
(For n > 0,
|1 - exp(27rin7)| > 1 — exp(—27)

so that a, = O(|n| + [n|®/|-Z|*) by Proposition 3.5. But Im(7) > 1 implies
1/|-Z| = 1/27 and we can ignore the O(|n|) term.)

’
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Since y > 1, r = exp(—27y) < exp(—27) < land so L, on°r" = O(r).
Therefore

S = O(ngolanlexp(—%rny)) = O( |-;|2 Z|n|3r") = O(ip(l-}j;ﬂ),

as claimed. O

Proof of Proposition 3.4. The region C(y) is a rectangle of width 1 in the
real direction and height at most Im 7. By the preceding corollary, for s € Cy(y),

|¥(s)| = O(L./I + exp(—27ry’)/|,/|2)
where y' = min(Im s, Im 7 — s)). Integrate this bound over C(y). a

Proof of Theorem 3.1 (Inefficiency from swirling). The moduli m and M
are given by m = 47wy and M = 27 Im(7). By hypothesis, m > 47; this
implies y > 1. '

By Proposition 3.2, as an element of Q(B),

gl = 1/m?£1?
since integration of |¢| = |dz|® over B just gives its area. Then by Proposition
34,
105 ,4()l
ol
is of the order
exp(—2m m? m>
LA\ m 7 + Lzﬂ m AP = 0| + ———|,
-2 M exp(m/2)
since Im 7 = O(M) and |-Z| = O(1/M). a
Remark. Let
1
, n#*0,
zk: (n + k1)’
A, 1
' , n=0,
Ty

where the prime indicates that the k = 0 term is omitted from the second sum.
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In terms of the Weierstrass p-function

1 1
D(S)=‘83+‘§ G_—A)g_:\Ea

we may write

%) = (b6 =T | - 5000) + T4

Our original proof of Proposition 3.4 takes this expression as its point of
departure.

4. Organizing the sphere at infinity

This section analyzes the intersections between various B(y) for y € T').
The idea is to organize the support of a I'j-invariant deformation u into various
disjoint regions, each stabilized by a particular group element, on which a
definite inefficiency is apparent by the results of the preceding section. The
argument rests on the disjointness of Margulis tubes about short geodesics.

A simpler covering argument would lead to the bound O(L*) in Theorem
1.2, which is sufficient for all the qualitative corollaries we derive in the
introduction. On the other hand, by finding disjoint regions we are able to
exploit the full power of Theorem 3.1 (Inefficiency from swirling), leading to a
bound which is close to sharp.

4.1. Tubes and shadows.

Definitions. There is a universal constant &, (the Margulis constant for
hyperbolic space) such that any two nontrivial loops through the same point
in a hyperbolic 3-manifold generate an abelian subgroup of , (see, e.g,
[T1, §5.10).

Let y be a hyperbolic isometry. The Margulis tube for vy is the set of points
in hyperbolic space such that the hyperbolic distance d(x,y"x) < g, for some
n > 0; this defines a cylinder enclosing the geodesic g stabilized by 7.

If y and 8 lie in a discrete group and stabilize distinct geodesics, their
Margulis tubes are disjoint.

In general, a tube of radius r for y will mean the set of points in H® at
distance at most r from the geodesic g.

Given any two sets E, F in H3 U C, define the shadow of E from F as the
set of endpoints of all geodesic rays which initiate in F and pass through E. For
example, the shadow of E from ® & C is its orthogonal projection onto C in the
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upper half-space model (H?® = {(z,t): z € C, t > 0}, with the metric
(ldz|® + de2) /t2)).

ProrositioN 4.1. Let B = B(y, -, m; p). Then there is an r-tube 7 for v,
where r = r(£, m) is independent of p, such that

1. The shadow of S of 7 from p contains a diam (B') neighborhood of the
larger twisted spiral B' = B(y, £, m/2, p).

2. § itself has diameter O(diam (B)).

3. Any point at distance (logm) — O(1) from 7 is contained in the
Margulis tube for vy.

Proof. Let
r=C+ log(l/lm_/l);

we claim (1-3) hold if we fix C sufficiently large. (Remark: |m_-Z| = O(1) so
that r > 0 for C large.) '

1. In the coordinate z of subsection 3.1, g is the geodesic joining 0 and 1,
~ which contains the point P = (1/2,1/2) in the upper half-space model. For r
large, the r-tube about g contains an r-ball about P which projects to a
Euclidean disk in C, centered at z=1/2 and of radius x exp(r) =
exp(C)/|m-Z| =< exp(C)diam(B’) by Proposition 3.2. This projection is con-
tained in the shadow of 7, so that (1) follows for any C sufficiently large. Fix C
large enough that (1) holds.

2. On the other hand, any point at distance r from g is at dlstance
O(exp(r)) from (0, 0) in the Euclidean metric |dz|> + dt2; so the entire shadow
of 7 has diameter O(diam (B)).

3. Let x be at distance R from g. Then the hyperbolic distance from x to -
vy(x) is at most

0 sinh(R) + ¢ exp(R) < 2|-Z|exp(R)
(where = £+ i0). If x is at distance less than log(m) — D from 7, then
R<r+log(m) —D=C-D + log(1/1-#]),

so that d(yx,x) < 2exp(C — D), which is less than the Margulis constant ¢,
for D sufficiently large. Therefore any point at distance log(m) — O(1) from 7 is
still contained in the Margulis tube for 7. a

Remark. When r is large, an r-tube for y is well-approximated (in the
upper half-space picture) by a horoball resting on one of the fixed points of 7.
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4.2. Scattered sets.

Definitions. Let .# be a collection of nonempty open sets in a metric
space. ./ is a-scattered if for distinct S, S’ € 7,
diam(S)
diam(S’)
where 0 < a < 1. Here d(S, S") denotes the minimum distance between points
in S and S'. Intuitively, nearby sets have disproportionate size.

When .~ is scattered, U~ tends to be disconnected; any connected
component of the union is dominated by a single member.

d(s, ') < diam(S) = is <aor >1/a,

Tueorem 4.2 (Scattered domination). Let . be a-scattered, with U * a
connected bounded set. Then for a < 1/3, U 7 is contained in a 3a X diam(S,)
neighborhood of some single S, € /.

Proof. Choose S, so that diam(S,) > sup_, diam(S) /2.

Since U.” is connected, for any S € ./ there is a finite chain
So»Sp>---» S, = S of distinct sets with S; N S, , nonempty.

Let d, = diam(S,). Then (d,, d;, ..., d,) satisfy the following:

Size conditions:

1. 2d, = d; > 0 for all k;

2. Whenever L, ;. ;d; < d; or d;, the ratio d,/d; is less than a or
greater than 1/a.

Lemma 4.3. For a < 1/3, the size conditions imply

n

Yd, < do(zzk-lak
1

1

< 3ad,.

This lemma will complete the proof, since the sum above bounds the
distance from S, to any point in S, .

Proof of the lemma. The proof is by induction on n, n = 0 being trivial.
Assume the lemma holds up to n. Let (d,, ..., d, ) satisfy the size conditions.
Applying the lemma for n we have

Yd,<d, (since @ <1/3);
1 .

by condition (2) d, < ad, for k=1,...,n + 1 (it cannot be > d,/a by
condition (1)).

Let d, achieve the maximum of (d,,...,d,.,). The sequences

(d,dy,,....d, ) and (d;,d;_,,...,d,) satisfy the size conditions; applying
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the lemma to each one gives the bound

n+1 n ntl
Z dy<d; + 2di(22k‘lak) < do( Z 2k_1ak)

1 1 -
since d; < ad,. ,

Finally d X72% a* = dja/(1 — 2a) < 3ad, for & < 1/3. m]

Examples. Scattered sets arise naturally as shadows in hyperbolic geometry.
Let # be a collection of unit balls in hyperbolic space. Assume the
hyperbolic distance between distinct balls in & is at least D. Let . denote the
collection of shadows from » € € of balls in %&. Then for D large, . is an
a-scattered collection of subsets of C, where @ = O(exp(— D)) (see Figure 4).

@] OOO

o
27777 77777777
s st

Ficure 4. Shadows of disjoint hyperbolic balls.

We will show that the shadows of distant tubes (cylinders about geodesics)
are also scattered. Let x € H The visual metric from x is the metric on C
given by d(y, z) = p(yy, yz), where p is the usual spherical metric on € and y
is any hyperbolic isometry moving x to the center of the sphere.

For any tube 7 about a geodesic g, we refer to the endpoints of g on the
sphere at infinity as the ends of the tube.

Prorosition 4.4. Let 7, be a collection of tubes in hyperbolic space.
Assume that the hyperbolic distance d(;,7;) > D for all i # j. Then there is a
function a(D) — 0 as D —  such that:

1. The shadows S; of ; from infinity are a(D)-scattered in the Euclidean
metric on C (assuming infinity is not the end of any tube).

2. The shadows S| of 7; from 7, (i # 0) are a(D)-scattered in the visual
metric from x, where x is a point of 7.

Proof. 1. In the upper half-space model, the height of any tube is compar-
able to the diameter of its shadow; i.e., 7, contains a point x;, = (z,t,)
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with ¢, < diam(8,). Consider two distinct tubes 7,,7;; we may assume 1 =
diam(S,) > diam(S)). If d(S,,S;) <1, then |z, — z;| < 3. But the hyperbolic
distance d(x,,x;) > D, so that ¢;/t, must be small (about exp(— D)); therefore
diam(S,) < t; < a(D)diam(S,) where a(D) — 0 as D — .

2. This follows from (1) by a limiting argument. Normalize so that x is at
the center of the hyperbolic ball. As D — o, the spherical (= visual) diam(S;)
< 8(D) — 0. Let S/, 8] be shadows of distinct tubes separated by a spherical
distance no greater than the diameter of the larger shadow. Then both shadows
are contained in a ball U of radius 38(D).

Let p denote the shadow of x from some point in U; then p is approxi-
mately antipodal to U. Since the spherical metric is nearly flat on the scale of U,
there is an affine coordinate z, with zp( p) = o, such that the Izpl metric nearly
matches the spherical metric on U. Moreover the shadows S/ of 7; from p are
nearly the same as the shadows S; from 7,. The result then follows from part (1)
when p is the point at infinity. m|

4.3. Finding an invariant partition. Let T be a discrete torsion-free Kleinian
group.

Start with a collection  of distinct oriented closed geodesics in H3 /T, and
a compatible complex translation length -#(g) for each g € 4.

For each geodesic g; in H? that lies over an element of &, let v, denote
the generator of its stabilizer corresponding to the choice of orientation. Let £,
denote the corresponding complex translation length.

Different vy, stabilize different geodesics. If y is a conjugate of y; in F
then y = v; for some j.

Let

= inf472 Re(1/.2))

be a uniform lower bound for the modulus of a cylinder embedded in the
-Z;-homotopy class on the quotient torus for 1v,.

Given p € C distinct from the fixed points of all y,, and m > 0 with
m < M, form the collection of thickened spirals

Bi = B(Yi, %,m’ p)

as in the preceding section.

Tueorem 4.5 (Invariant partition). Assume U B, is bounded. For m suffi-
ciently large, there is a subsequence of group elements v; and disjoint y;-invariant
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regions E; such that
B(y;, £, m,p) CE,; C B(y,;, £, m/2,p) and

UB.c UE,.

Proof. We begin with some notation. Let 7; denote the tube associated to
B, by Proposition 4.1; recall that 7; does not depend on p. Let T, be the shadow
of 7, from p, and for i # j, let S;; be the shadow of 7; from 7,. Let x; denote
the point of 7, closest to p (i.e. of maximum height in the upper half-space
model with p at infinity). Finally let B; denote the larger thickened spiral
B(y,, £, m/2, p).

Note that the visual metric from x, and the metric |z,| are quasi-similar on
T;; that is, ratios of distances are approximately the same in both metrics.
Moreover the visual diameter of B; is > ¢ > 0.

Here is the idea of the proof. One might try to construct regions E; as
follows: (a) pick a large B,, (b) adjoin to it all the B; which meet it (each of
which has much smaller diameter), (c) add in those B, which meet the result,
and continue, creating a cluster E; hopefully not much larger than the

original B,
' The problem with this construction is that the B; are not vy,-invariant, since
p is not 7y,-invariant. To remedy this, we replace B; with the shadow S,;. Then
'Yi(sij) = S, where v, = 'Yi'}’j'}’i_l

Let E; be the union of B; and those components of U ;,S,; which meet
B,. By the preceding remark, E; is y,-invariant.

For m sufficiently large, E;, C B|.

Indeed, by Proposition 4.1 and disjointness of Margulis tubes, the hyper-
bolic distance between distinct 7, is log(m) — O(1). By Proposition 4.4, the
shadows S,; for fixed i and varying j are a(m)-scattered in the visual metric
from x,, where a(m) —» 0 as m — «. It follows by Theorem 4.2 (Scattered
dommatlon) that the visual diameter of any component of U S;; is approximately
that of some single shadow S;.. But for m large any single shadow has small
visual size; so E, is contained in an r-neighborhood of B; where r is small
compared to the visual diameter of B;. Near B,, ratios of lengths are approxi-
mately the same in the visual metric and the Izpl metric, and since E; is
v;-invariant, by Proposition 3.3 we have E; C B].

If E; meets E,, then E; contains E, or vice-versa.

For suppose E; meets E;; then B; meets Bj. Assume diam (B/) >
diam p( B}); then by Proposition 4.1, B C T;; so E, lies in the shadow of 7, from
p. Any ray from p to E, passes through both 7, and 7, (since E, C B} C T}),
whence E; C S;. Now by the definition of E,, any S,; which meets E, is
contained in E,, and therefore E, C S;; CE,.
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Now let (E;) be the subsequence of maximal elements of the collection
(E,) (with respect to inclusion). By assumption U B; is bounded and so every
E, is contained in a maximal element. (For m small, no pair of nested E;’s have
comparable diameter and so there is no infinite ascending chain.)

Since E; D B,, these E, give a disjoint cover of U B;, and we have seen
they satisfy the remaining conditions of the theorem. a

5. Quasifuchsian groups

We return to the setting of Bers’ embedding. Let y € I'y be a hyperbolic
element with fixed points F. Then y determines closed geodesics yx and vy on
X and Y; let Ly and Ly denote their lengths in the respective Poincaré metrics.

Remove the fixed points F of y and form the torus T = (C — F)/y. The
limit set A of Ty descends to a pair of simple closed curves on T, separating it
into a pair of annuli Az and A, which are the covering spaces of X and Y
corresponding to the cyclic group (y) (Figure 5).

Ficure 5. Quotient torus for a short geodesic. .

The homotopy class of these annuli determines the complex translation
length _#(y). To compute _# concretely, choose coordinates so that y(z) = Az,
IA| > 1,and 1 € A. Then .Z= log A is the value obtained by analytic continua-

tion of the logarithm from 1 to A along A, starting with log(1) = 0.
The following two propositions are well-known.

ProposiTioN 5.1. The moduli of Az and Ay are given by

2 2
mod(Agz) = —, mod(A,) = —;
. Ly Y Ly

and it follows that

1 1
2Rel/ L > — + —
Ly Ly
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Proof. This uses an extremal length argument; see [Mc, §6.3), [Be3,
Th. 3]. O

Prorosirion 5.2. 1. An annulus A C C separating 0 from » contains a
Euclidean annulus
B={z:r < |z| <R}
with mod(B) = mod(A) — O(1).
2. An essential annulus A in a torus T contains a right cylinder B with
mod(B) = mod(A) — O(1).

Proof.

1. Taking r as small as possible and R as large as possible, we have that A
separates the pair {0, z,} from {z,, ©} where |z,| = r, |z,] = R. By a theorem of
Teichmiiller and estimates of the Grotzsch modulus (see [LV, I1.1.3, 11.2.3]), the
modulus of A is at most log(R/r) + O(1), while the modulus of B is simply
log(R/r). ‘

2. Apply the first part to the lift of A to the 7 ,(A)-covering space of T
(which can be identified with C*). a

Proof of 1.2 (Short geodesics pinch quickly). Let u be a unit norm
Beltrami differential supported in the part of Y of injectivity radius less than
L < 1/2. By Theorem 2.6, we may assume u is supported in the geodesic thin
part Y(L, geod), since the contribution from the cuspidal thin part is of order
exp(—1/L) = O(L?). ‘

The lift of u to Q(Y) is a I'y-invariant form which we continue to denote
by u. o B

Let p be any point in Q(X), z, an affine coordinate such that p is at
infinity.

Let & denote those geodesics in H? /T’y which correspond to geodesics of
length less than L on Y. Orient the elements of  (in any way). Each geodesic
g has a natural complex translation length .#(g). By Proposition 5.1,

M = 2w%/L < 47® Re(1/-£(g))

is a lower bound for the modulus of a cylinder on the quotient torus in the
homotopy class determined by -#(g).

Let

m = 8log(1/L).

Then m < M for L large enough; in fact, this already holds under our assump-
tion that L < 1/2.

Form the collection B; = B(y,, -£;, m, p) corresponding to &, -£(g) as in
subsection 4.3. For each i, B; lies over an annulus A; on the quotient torus T,.
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Since ||dB|| = O(1), the bound

ldB(u)|| = O((L log1/L))

need only be verified for all L sufficiently small. Note that as L tends to zero, m
and M tend to infinity but m < M.

Lemma 5.3. For dll L sufficiently small:
1. The support of w is contained in U B,.

area p( UB,)
diam p(A)2
where short(X) denotes the length of the shortest geodesic on X.

= O(1 + 1/short(X)?),

Proof. 1. If z lies in the support of w, then there is a hyperbolic ¥,
translating z distance less than L in the Poincaré metric on Q(Y). To see if z
lies in B,, it suffices to check that A; contains Ay(L), the L-thin part of the
annulus Ay = Q(Y)/(,). But for small L, there are a pair of right cylinders of
modulus =< 1/L separating the L-thin part from the image of p on T, by
Proposition 5.2. Since m < 1/L, A,(L) does not meet an annulus of modulus
m centered at the image of p and so it is contained in A,.

2. The modulus of the annulus Ay is at most 2/short(X), so that it does
not contain an annulus of modulus m’ = 1 + 2/short(X). Consequently B’ =
B(y,, -£,,m', p) does not contain the entire limit set. Since A — B’ is y;-
invariant, ‘

diam (B') = O(diamp(A)),

by Proposition 3.3, and diam (B,) =< (m'/m)diam (B’), by Proposition 3.2. For
L sufficiently small, m is at least 1 and so we arrive at the estimate

diam ,(B;) = O((1 + 1/short(X))diam (A)).

But every B, meets the limit set and thus the same bound holds for diam (U B,).
Now bound the area by the square of the diameter. a

For L sufficiently small, we may apply Theorem 4.5 (Invariant partition) to
obtain a covering of U B; by disjoint sets E;. For each j, there exist a y, -
among the original (y,, -£;) with y(E;) = E; and

B(y,-#,m,p) CE; C B(y, £, m/2,p) = B.
The Q(B)-norm
lldz2ll = area,(B) x area (E;)

since changing m/2 to m alters the area of B(y, £, m, p) by a bounded factor.
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The restriction v of u to E; is a unit-norm y-invariant form. Applying
Theorem 3.1 (Inefficiency from swirling) with m = 4log(1/L) and M > 27%/L,
we find

e = |tz

As the E; are dlS_]Olnt and cover the support of w, the above implies a
bound for pr,(z )Idz 1| in terms of the area (U E; ) < area (U B,). We find

M
m,(A)*
= O((Llog1/L)*(1 + 1/short(X)))

< |©5,4(d22)| < O((L log1/L)* area (E,)).

O|(Llog1/L)?

diamp(A)2

by part (2) of Lemma 5.3.
This inequality is independent of p, so it provides a bound for ||dB(u)|l by
Theorem 2.2. O
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