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[1] Space-borne formaldehyde (HCHO) column measurements from the Ozone
Monitoring Instrument (OMI), with 13 � 24 km2 nadir footprint and daily global
coverage, provide new constraints on the spatial distribution of biogenic isoprene emission
from North America. OMI HCHO columns for June-August 2006 are consistent with
measurements from the earlier GOME satellite sensor (1996–2001) but OMI is 2–14%
lower. The spatial distribution of OMI HCHO columns follows that of isoprene emission;
anthropogenic hydrocarbon emissions are undetectable except in Houston.
We develop updated relationships between HCHO columns and isoprene emission from a
chemical transport model (GEOS-Chem), and use these to infer top-down constraints
on isoprene emissions from the OMI data. We compare the OMI-derived emissions to a
state-of-science bottom-up isoprene emission inventory (MEGAN) driven by two land
cover databases, and use the results to optimize the MEGAN emission factors (EFs) for
broadleaf trees (the main isoprene source). The OMI-derived isoprene emissions in
North America (June–August 2006) with 1� � 1� resolution are spatially consistent with
MEGAN (R2 = 0.48–0.68) but are lower (by 4–25% on average). MEGAN
overestimates emissions in the Ozarks and the Upper South. A better fit to OMI
(R2 = 0.73) is obtained in MEGAN by using a uniform isoprene EF from broadleaf trees
rather than variable EFs. Thus MEGAN may overestimate emissions in areas where
it specifies particularly high EFs. Within-canopy isoprene oxidation may also lead to
significant differences between the effective isoprene emission to the atmosphere seen by
OMI and the actual isoprene emission determined by MEGAN.
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distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor,

J. Geophys. Res., 113, D02307, doi:10.1029/2007JD008950.

1. Introduction

[2] Isoprene (C5H8) is the principal non-methane volatile
organic compound (VOC) emitted from vegetation. Global
emissions are estimated at 220–750 Tg a�1 [Granier et al.,
2000; Poisson et al., 2000; Bey et al., 2001; Ehhalt and
Prather, 2001; Levis et al., 2003; Shim et al., 2005;
Guenther et al., 2006], comparable to those of methane

(500–600 Tg a�1) [Hein et al., 1997; Wuebbles and
Hayhoe, 2002; Mikaloff Fletcher et al., 2004; Wang et al.,
2004; Chen and Prinn, 2006], and several times greater than
all anthropogenic VOCs combined (100–200 Tg a�1)
[Müller, 1992; Olivier and Berdowski, 2001]. Isoprene is
highly reactive, with an atmospheric lifetime against oxida-
tion by OH of typically less than 1 h, and is an important
source of tropospheric ozone [Trainer et al., 1987] and
secondary organic aerosol [Henze and Seinfeld, 2006; Kroll
et al., 2006], as well as a sink of OH [Jacob and Wofsy,
1988]. Bottom-up isoprene emission estimates based on leaf,
plant, and ecosystem level measurements suffer from the
uncertainties inherent in extrapolating such data to larger
scales, and from a paucity of measurements over much of the
world. Formaldehyde (HCHO) is produced in high yield
during isoprene oxidation and can be measured from space
in the near-UV by solar backscatter instruments [Chance et
al., 2000]. Here we use HCHO columns (WHCHO) measured
from the Dutch-Finnish Ozone Monitoring Instrument
(OMI) [Levelt et al., 2006], aboard NASA’s Aura satellite,
to constrain the spatial distribution of isoprene emissions
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from North America and interpret it on the basis of the
underlying vegetation.
[3] Isoprene is produced enzymatically in the chloro-

plasts of many plants, and escapes to the atmosphere via
leaf stomata [Sharkey and Yeh, 2001]. Emissions depend
strongly on light and temperature, as well as on other factors
including plant phenology [Grinspoon et al., 1991; Monson
et al., 1994; Fuentes et al., 1995; Pétron et al., 2001], soil
moisture [Sharkey and Loreto, 1993; Fang et al., 1996],
atmospheric composition [Rosenstiel et al., 2003], and nu-
trient availability [Harley et al., 1994; Litvak et al., 1996].
Emission rates vary widely between plant species, and even
between species of the same genus. Broadleaf trees and
shrubs are thought to be the most prolific isoprene emitters
[Guenther et al., 2006], and carbon emitted as isoprene can
then reach several percent of photosynthetic uptake [Lerdau
and Throop, 1999]. It is not certain why plants emit isoprene,
though it may serve to relieve heat stress [Sharkey and
Singsaas, 1995], serve as an antioxidant [Stokes et al.,
1998], or operate as a metabolic safety valve [Rosenstiel et
al., 2004].
[4] The first estimates of global biogenic VOC emissions

applied simple scaling arguments to the limited data then
available, arriving at total emissions of 175–450 Tg a�1

[Went, 1960; Rasmussen and Went, 1965]. As more labora-
tory and field studies were carried out, inventories were
constructed which mapped biogenic VOC emissions
according to broad vegetation classes, accounting for the
effect of temperature on emission rates [Zimmerman, 1979;
Lamb et al., 1987; Rasmussen and Khalil, 1988; Turner et
al., 1991; Müller, 1992]. Estimates of global isoprene
emissions in these studies ranged from 250–450 Tg a�1,
comparable to the earlier estimates of total biogenic VOC
emissions. Subsequent inventories improved the discrimi-
nation between vegetation classes and accounted for addi-
tional factors such as diurnal light and temperature changes,
light attenuation through the plant canopy, leaf area, leaf
age, and soil moisture [Lamb et al., 1993; Geron et al.,
1994; Guenther et al., 1995, 1999, 2006; Pierce et al.,
1998]. Recent bottom-up emission inventories estimate
global isoprene emissions at 500–750 Tg a�1 [Guenther
et al., 1995, 2006]. However, simulations with chemical
transport models (CTMs) have found that these higher
emission rates yield excessive levels of CO, O3, and
isoprene itself when compared to observations [Houweling
et al., 1998; Poisson et al., 2000; Bey et al., 2001]. The
Intergovernmental Panel on Climate Change (IPCC) Work-
ing Group on Atmospheric Chemistry and Greenhouse
Gases [Ehhalt and Prather, 2001] recommends a global
isoprene flux of only 220 Tg a�1. On a regional scale,
uncertainties are even larger [Guenther et al., 2006]. Given
the importance of isoprene in tropospheric chemistry, there
is a need to test and improve the bottom-up emission
estimates.
[5] Formaldehyde measurements from space offer the

capability to map isoprene emissions on a global, continu-
ous basis, and provide a top-down test of the bottom-up
inventories. Since isoprene has an atmospheric lifetime of
less than 1 hour and yields HCHO as first-generation
product in the presence of NO, HCHO column measure-
ments from space provide a proxy for isoprene emissions
[Palmer et al., 2003]. Millet et al. [2006] demonstrated the

validity of this approach by using combined HCHO and
isoprene aircraft measurements over North America. They
estimated an overall uncertainty of 40% in inferring iso-
prene emissions from HCHO satellite measurements, with
clouds the largest source of error.
[6] Previous work to interpret HCHO column measure-

ments from space as constraints on isoprene emissions used
data from the Global Ozone Monitoring Instrument
(GOME) aboard the ERS-2 satellite launched in 1995
[Abbot et al., 2003; Palmer et al., 2003, 2006; Shim et
al., 2005]. These revealed general consistency with prior
understanding of the seasonal and interannual variability of
isoprene emission [Abbot et al., 2003; Palmer et al., 2003,
2006], but also large regional discrepancies [Palmer et al.,
2003; Shim et al., 2005]. GOME had a coarse footprint of
40 � 320 km2, making it subject to large cloud errors, and
required 3 days to achieve global coverage; the ability to
interpret the data in terms of testing emission models was
thus limited [Palmer et al., 2006]. HCHO columns have
also been reported from the SCIAMACHY sensor aboard
the Envisat satellite launched in 2002 [Wittrock et al., 2006],
but at a resolution which is only marginally better (60 �
120 km2) and with global coverage only every six days.
[7] OMI, launched in 2004 with a nadir footprint of only

13 � 24 km2 and daily global coverage [Levelt et al., 2006],
affords unprecedented top-down constraints on the spatial
distribution of isoprene emissions. The higher spatial reso-
lution also reduces data contamination by clouds [Millet et
al., 2006; Krijger et al., 2007]. Here we apply HCHO
column measurements from OMI to develop spatial con-
straints on isoprene emissions from North America that are
of much higher quality than achievable from GOME. We
exploit the higher quality of the OMI data to test current
isoprene emission models in terms of isoprene emission
capacity from plant functional types.

2. OMI HCHO Observations and Comparison
to GOME

2.1. OMI Observations

[8] OMI was launched on-board EOS Aura in July 2004
into a sun-synchronous orbit with an equator crossing time
of 13:38 (ascending node). OMI is a UV/Vis CCD spec-
trometer covering the spectral range 270–500 nm with a
resolution of 0.45–1.0 nm full width at half maximum. A
cross-track swath of 2600 km, containing 60 pixels ranging
from 13 � 24 km2 at nadir to 26 � 135 km2 at the swath
edges, provides daily global coverage. Here we use an
optimized fitting window (324–348 nm) for the HCHO
retrieval, selected to correct a low bias, excessive across-
track striping, and land-sea correlation in the current pub-
licly released data product (Version 1.0.0). Below we
evaluate the consistency of this updated OMI product with
data from GOME in previous years. The retrieval deter-
mines the HCHO abundance along the viewing path (‘‘slant
column’’) by non-linear least squares fitting of measured
radiances and irradiances, including molecular absorption
cross sections, correction for Ring effect, albedo, and a low-
order closure polynomial [Chance, 2002]. The retrieval
includes solar and radiance wavelength calibrations and
undersampling correction [Chance et al., 2005] in addition
to the fitting itself. We use a composite solar spectrum
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(derived from a principal component analysis of several
hundred OMI irradiance measurements) in place of the
individual irradiances in order to reduce uncertainties intro-
duced by dark current in the detector signal.
[9] While previous analyses with GOME imply an

HCHO fitting uncertainty of 4 � 1015 molecules cm-2

[Chance, 2002], those for individual OMI measurements
are higher (�2 � 1016 molecules cm�2 over North Amer-
ica). However, this uncertainty is strongly reduced by
temporal averaging, due to OMI’s improved (100–200�)
sampling statistics resulting from the smaller footprint and
better temporal coverage. For a 3-month average at 1� � 1�
(as will be used here), each grid square contains on average
870 cloud-free OMI observations, so that the random error
is small (average standard error <10%).
[10] Cloud information for each OMI scene (version

1.0.1.1; http://daac.gsfc.nasa.gov/) is obtained from the
O2-O2 absorption band around 477 nm, which yields
the slant column of the O2-O2 collision complex and the
continuum reflectance (i.e., the reflectance in the absence of
the O2-O2 absorption). The cloud pressure and effective
cloud fraction are then derived assuming a Lambertian
reflector with an albedo of 0.8 [Acarreta et al., 2004].
[11] The ratio of the slant column to the actual vertical

column, termed the air mass factor (AMF), is a function of
the viewing geometry, surface reflectance and atmospheric
scattering (air molecules, aerosols, clouds), and the vertical
distribution of HCHO relative to that of the atmospheric
scatterers [Perliski and Solomon, 1993; Marquard et al.,
2000; Palmer et al., 2001; Boersma et al., 2004; Millet et
al., 2006]. Here we use the GEOS-Chem CTM (described
below) to specify the shape of the HCHO vertical profile at
the time and location of the satellite overpass. Surface UV
albedos (340–380 nm) are from a TOMS climatological
database [Herman and Celarier, 1997]. In our previous
work we showed that this approach to calculating the AMF,
combined with fitting errors, gives an overall 1s error in
HCHO column retrievals of 25–27% for cloud fraction
<0.2 [Millet et al., 2006].

[12] Scattering weights have been computed with the
Doubling Adding KNMI (DAK) radiative transfer model
[Stammes, 2001] at a wavelength of 348.0 nm and stored in
a lookup table as a function of atmospheric pressure level,
sun-satellite geometry, surface albedo, and surface pressure.
Multiple scattering and the sphericity of the Earth’s atmo-
sphere are accounted for in the radiative transfer calcula-
tions. Clouds are represented by Lambertian surfaces with
an albedo of 0.8, as recommended by Koelemeijer and
Stammes [1999], and consistent with the O2-O2 cloud
algorithm used here. We exclude data with cloud fraction
>0.2 from our analysis. Statistical outliers (jslant columnj >
1.0 � 1018 molecules cm�2) are removed prior to gridding,
as are low sun retrievals (solar zenith angle >84�), and data
points where the HCHO slant column is negative within 1s
fitting uncertainty. OMI HCHO exhibits a small, latitude-
dependent bias which we correct by adjusting to the HCHO
columns simulated by the GEOS-Chem CTM over the clean
East Pacific. Themean correction is 1�1015molecules cm�2

for the domain of interest here (25�–50�N), well within the
HCHO fitting uncertainty.
[13] Figure 1 shows the average OMI HCHO vertical

columns (gridded to 0.1� � 0.1�) over North America for
June-August 2006.We show here data smoothed bymeans of
a cross-track filter [Kurosu, 2007] to remove the striping
exhibited by OMI (due to dark current in the radiance and
irradiance spectra) at this fine resolution. The smoothing does
not significantly change the across-track column averages
(and becomes unnecessary at the 1� � 1� resolution used for
subsequent analyses below). The most prominent feature in
Figure 1 is the elevated HCHO over the U.S. Southeast,
extending from eastern Texas to the mid-Atlantic coast.
HCHO columns are generally low over the western United
States, with the exception of some minor enhancements over
California. Below in section 3.2 we examine these measured
HCHO columns in the context of the spatial distribution of
biogenic and anthropogenic precursor emissions.

Figure 1. Mean OMI HCHO columns for June–August 2006 mapped on a 0.1� � 0.1� grid.
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2.2. Comparison to GOME

[14] Previous analyses of HCHO column data from space
relied primarily on GOME data from 1996 to 2001 [Abbot
et al., 2003; Palmer et al., 2003, 2006; Meyer-Arnek et al.,
2005; Shim et al., 2005; Fu et al., 2007]. GOME data
quality degraded considerably after 2001. OMI was
launched in 2004, which precludes a direct large-scale
comparison of the two instruments. Nevertheless, we can
evaluate their consistency by comparing HCHO column
measurements from the same season in different years.
[15] Figure 2 shows June-August HCHO columns from

GOME (1996–2001) and OMI (2006) mapped on a 2� �
2.5� (latitude � longitude) grid over our North American
domain (65–130�W, 25–50�N). We use here a cloud
fraction threshold of 0.4 (versus 0.2 elsewhere) for both
GOME and OMI in order to obtain sufficient data in the
case of GOME. For both retrievals we use absorption cross
sections from Cantrell et al. [1990]. The 2� � 2.5� grid is
that used in the GEOS-Chem CTM for further analysis later
on in this paper, but it is also helpful here to accommodate
the coarse resolution of GOME (40 � 320 km2). Both OMI
and GOME show an HCHO maximum over the U.S.

Southeast, though the GOME values are higher and exhibit
more retrieval noise. Table 1 shows the OMI vs. GOME
regression statistics for correlation of the mean June–August
spatial distributions. The coefficient of determination R2

ranges from 0.29 to 0.61, with the worst correlation in the

Figure 2. Mean June–August HCHO columns from GOME (1996–2001) and OMI (2006) mapped on
a 2� � 2.5� grid.

Table 1. OMI Versus GOME Comparison Statistics Over North

Americaa

Year R2 Slopeb
Interceptb

[1015 molecules cm�2]

1996 0.57 0.83 ± 0.04 �0.02 ± 0.35
1997 0.60 0.84 ± 0.04 �0.17 ± 0.33
1998 0.58 0.75 ± 0.03 �0.41 ± 0.37
1999 0.42 0.70 ± 0.04 0.68 ± 0.37
2000 0.42 0.78 ± 0.04 �0.98 ± 0.45
2001 0.29 0.92 ± 0.06 �0.56 ± 0.50

aOMI measurements for June–August 2006 are compared to GOME
measurements for June–August of individual years 1996–2001. Correla-
tion statistics are shown for the spatial variability of the June–August mean
values mapped on a 2� � 2.5� grid.

bCoefficients determined using reduced major axis regression. Stated
uncertainties represent one standard error calculated using jackknife
resampling.
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later years of the degrading GOME record. Other factors
likely reducing the GOME-OMI correlation are interannual
variability and poor sampling statistics for GOME (average
22–36 observations per grid cell; range 0–87) compared to
OMI (average 4400 observations per grid cell; range
2000–6500). The intercepts, ranging from �0.98–0.68 �
1015 molecules cm�2, are small relative to the OMI and
GOME detection limits. The OMI versus GOME slopes are
all less than one (ranging from 0.70 ± 0.04 to 0.92 ± 0.06),
indicating a systematic offset between the two instruments.
[16] The GOME overpass time is 10:30, three hours

earlier than OMI, and HCHO surface concentrations are
typically highest in the mid-afternoon [e.g., Sumner et al.,
2001]. However, Figure 3 shows that GEOS-Chem HCHO
columns over the U.S. Southeast vary by only 2% between
late morning and early afternoon. This weak diurnal
variation results from HCHO having both a daytime source
and a daytime sink, combined with the isoprene column
peaking in the mid to late afternoon. We conclude that the
difference in local overpass time is not a significant factor
in the GOME-OMI offset.
[17] Previous analysis of the GOME record for 1996–

2001 identified significant interannual variability over the
United States that could be largely explained by temperature
[Palmer et al., 2006]. Figure 4 shows monthly mean HCHO
columns over the U.S. Southeast (32–38�N, 80–95�W)

from both GOME and OMI, plotted as a function of the
surface air temperature as in the work of Palmer et al.
[2006]. The exponential fit to the GOME data (R2 = 0.73)
describes the sensitivity of isoprene emission to temperature
following Guenther et al. [1999]. We see that the relation-
ship between HCHO columns and temperature is consistent
between the two instruments. However, the OMI measure-
ments (in red) fall 2–14% below the curve defined by the
ensemble of the GOME data. Millet et al. [2006] showed
that HCHO retrieval bias increases with cloud fraction, from
6% at a cloud fraction of 0.2 to 14% at a cloud fraction of
0.4. Thus the observed OMI-GOME difference is consistent
with what we expect from systematic error in the retrievals.
[18] Different cloud algorithms used in the two retrievals

could be contributing to the 2-14% discrepancy. Cloud
fraction and pressure are derived from O2 A band spectra
in the case of GOME [Kurosu et al., 1999] and from O2-O2

spectra in the case of OMI (which does not detect the O2 A
band at 760 nm). Boersma et al. [2007] compared O2 A
band and O2-O2 based cloud products, and found that while
the average cloud fractions agreed to �1%, the O2-O2 cloud
pressures were higher by a mean of 60 hPa. The latter will
result in a lower computed absorber column for O2-O2

versus O2 A band clouds, particularly in the case of low
clouds [Boersma et al., 2004].

3. Models for OMI Data Interpretation

3.1. MEGAN Bottom-up Model of Isoprene Emissions

[19] We use the Model of Emission of Gases and Aero-
sols from Nature (MEGAN) [Guenther et al., 2006] as the
best process-based estimate of isoprene emissions for North
America. MEGAN was developed to replace the earlier
Global Emission Inventory Activity (GEIA) model [Guenther
et al., 1995] as well as the regional Biogenic Emission

Figure 3. Mean diurnal cycle in GEOS-Chem simulated
isoprene (top) and HCHO (bottom) columns over the U.S.
Southeast (32–38�N, 80–95�W) during June–August.

Figure 4. Monthly mean HCHO vertical columns over the
U.S. Southeast (32–38�N, 80–95�W) from GOME (1996–
2001; black symbols) and OMI (2006; red symbols), as a
function of the surface air temperature. The black line
shows a fit of the GOME data to an exponential describing
the temperature dependence of isoprene emission [Guenther
et al, 1999, equation (5a)]. Figure adapted from Palmer et
al. [2006].
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Inventory System (BEIS) models for the United States [Pierce
et al., 1998], by including updated information on base
emissions and environmental dependences. Emissions are
computed as a function of solar irradiance, temperature, leaf
age and vegetation-specific emission factors (EFs) for six
plant functional types (PFTs): broadleaf trees, shrubs, fineleaf
evergreen trees, fineleaf deciduous trees, crops, and grass +
other. Isoprene emission E for a given area (e.g., model grid
square) is given by

E ¼ g
X6

i¼1

eici; ð1Þ

where the sum is over all PFTs with fractional areal
coverage ci and canopy emission factor ei under standard
conditions of light, temperature, leaf area index (LAI) and
leaf age; and g is an activity factor accounting for emission
changes due to local variability in those parameters
(equation (2)). The EFs for a given PFT vary geographically
according to the local taxonomic makeup of the PFT.
Species-level PFT composition is obtained from quantitative
ground surveys where available, and estimated from the
terrestrial ecoregion database developed by Olson et al.
[2001] elsewhere. The overall activity factor g is the
product of a set of non-dimensional activity factors each
equal to one at standard conditions

g ¼ gTgPARgLAIgage: ð2Þ

[20] The temperature activity factor gT is a function of the
current temperature and the mean local temperature over the
past 15 days, while the light activity factor gPAR is calcu-
lated as an integral over the canopy depth to account for
light attenuation and the effect of direct and diffuse light on
sunlit and shaded leaves [Guenther et al., 1999]. The
activity factors gLAI and gage account for emission changes
due to seasonal variation in local leaf area index and leaf
age [Guenther et al., 2006]. The MEGAN algorithm to
account for isoprene emission variations driven by soil
moisture was not implemented for this study. The soil
moisture option results in decreased isoprene emissions
during drought and is not likely to have a significant impact
in areas of major isoprene emission in North America.
[21] We drive MEGAN with assimilated meteorology

(surface air temperature, direct and diffuse photosyntheti-
cally active radiation) at 2� � 2.5� horizontal resolution and
3 hour temporal resolution from the NASA Goddard Earth
Observing System (GEOS-4), using monthly LAI derived
from the Advanced Very High Resolution Radiometer
(AVHRR) Pathfinder Normalized Difference Vegetation
Index data set [Myneni et al., 1997].
[22] The isoprene emission calculated with MEGAN

depends on the choice of vegetation database used to assign
fractional coverage for each PFT within a grid square. Here
we use two different databases to examine the sensitivity to
that choice. The first, MEGAN Driving Variables Database
version 2.0 (MDVD2), is the standard case for the analysis
described by Guenther et al. [2006]. The MDVD2 PFT
fractions integrate the percentage vegetation coverage and
type (woody vs. herbaceous) at 500 m resolution from
MODIS [Hansen et al., 2003] with leaf longevity (ever-

green vs. deciduous) and leaf type (broadleaf versus needle-
leaf) from the 1 km AVHRR-derived University of
Maryland tree cover data set [DeFries et al., 2000]. Relative
abundance of the non-tree PFTs is determined from ground
survey information where available and the Olson et al.
[2001] ecoregion database elsewhere. The AVHRR-based
broadleaf and needleleaf PFT fractions in the United States
are adjusted using ground survey information compiled by
Kinnee et al. [1997]. The second vegetation database is
from the Community Land Model (CLM) [Oleson et al.,
2004]. CLM obtains percentage tree cover, leaf type, and
leaf longevity from AVHRR [DeFries et al., 2000], and
understory and herbaceous PFT distributions from the IGBP
DISCover land cover data set [Loveland et al., 2000] (also
derived from AVHRR). We lump the 16 CLM vegetation
types into categories corresponding to the six MEGAN
PFTs.
[23] Figure 5 shows the percent distribution of the 6 PFTs

according to the MDVD2 and CLM vegetation databases,
along with the associated isoprene EFs. Broadleaf trees are
the largest isoprene emitters and are concentrated in the
eastern United States. Shrubs also have a high EF and are
more abundant in the arid West. However, because of their
lower leaf area, the resulting isoprene emissions are lower
than those from broadleaf trees. The other four PFTs are
only minor isoprene sources according to MEGAN.
[24] There are significant differences between MDVD2

and CLM in the estimated distributions of the PFTs.
MDVD2 has more broadleaf trees in the Deep South and
along the Southern to Mid-Atlantic coast, where CLM
assigns more of the vegetation coverage to fineleaf ever-
green trees and grasses. CLM has more broadleaf trees in
the U.S. Northeast and Midwest, where MDVD2 tends to
put more crops and shrubs. Both MDVD2 and CLM have
the highest density of shrubs in the West, but the difference
is more dramatic in CLM, with no shrubs in the East.
[25] Figure 6 shows MEGAN isoprene emissions com-

puted using MDVD2 and CLM. Guenther et al. [2006]
compared global annual average isoprene emissions using
these two databases and found CLM emissions to be 7%
lower. Here, focusing on North America for June-August
2006, we find that both MDVD2 and CLM-driven emis-
sions are highest in the Southeast and Mid-Atlantic regions,
but there are large differences. The total North American
emission for the domain of Figure 6 is 18% higher in
MDVD2 (14.6 TgC) than in CLM (12.2 TgC). Regional
differences often exceed a factor of 2. The Southeast
emission maximum in CLM is focused in the Ozark Plateau
(Arkansas/Missouri) and the Upper South, while with
MDVD2 the greater regional abundance of broadleaf trees
leads to elevated emissions extending through the Deep
South to the Gulf coast. CLM emissions are higher than
MDVD2 in the Upper Midwest, again because of higher
estimated broadleaf tree coverage. Below we will use
HCHO column measurements from OMI to test these
different results.

3.2. GEOS-Chem Chemical Transport Model

[26] We use the GEOS-Chem global 3D CTM [Bey et al.,
2001; Millet et al., 2006; Palmer et al., 2006] to simulate
the HCHO vertical distribution needed for the AMF calcu-
lation in the OMI retrieval, and to quantify the relationship
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between HCHO columns and isoprene emission. GEOS-
Chem (version 7.04, http://www-as.harvard.edu/chemistry/
trop/geos/index.html) uses GEOS-4 assimilated meteorolog-
ical data including winds, convective mass fluxes, mixing
depths, temperature, precipitation, and surface properties.
The data have 6-h temporal resolution (3-h for surface
variables and mixing depths), 1� � 1.25� horizontal reso-
lution, and 55 vertical layers. We degrade the horizontal
resolution to 2� � 2.5� for input to GEOS-Chem. Results
are presented here for June through August 2006, and
follow a one year spinup.
[27] The model includes detailed ozone-NOx-VOC chem-

istry coupled to aerosols. HCHO is produced from oxidation
of VOCs, and removed by reaction with OH and photolysis
on a timescale of a few hours (there is also a minor
deposition sink). Biogenic emissions of isoprene, monoter-
penes, and 2-methyl-3-buten-2-ol are calculated using the
MEGAN inventory, and those of acetone and methanol are
based on Jacob et al. [2002] and Jacob et al. [2005],
respectively. Biogenic alkene emissions are scaled to 10%

of isoprene based on work by Goldstein et al. [1996, 1998].
Anthropogenic emissions are from the EPA NEI 1999 v.1
inventory [EPA, 2003], except that anthropogenic emissions
of ethane and propane are based on Wang et al. [1998] for
reasons discussed by Hudman et al. [2007], and NOx

emissions from power plants and industry have been de-
creased by 50% following Hudman et al. [2007] and Frost
et al. [2006]. Millet et al. [2006] compared HCHO mixing
ratios simulated using GEOS-Chem with observations over
North America and the North Atlantic from the NASA
INTEX-A aircraft experiment. Both the HCHO vertical
distribution and column amount were well simulated, with
no apparent biases.
[28] Figure 7 shows the modeled total anthropogenic and

biogenic VOC emissions for June-August, 2006. Biogenic
emissions (MDVD2) are 7 times greater than anthropogenic
VOC emissions over North America, with the highest
anthropogenic contribution in the Northeast and industrial-
ized Midwest. According to MEGAN, isoprene accounts for

Figure 5. Fractional coverage of the six plant functional types (PFTs) in the MDVD2 and CLM
databases, and isoprene emission factors (EFs) for each PFT. Note that the emission factors are plotted on
a logarithmic scale. Zero values are plotted in grey. Isoprene emissions are computed as the product of
PFT coverage and EFs, scaled to local environmental conditions (equation (1)).
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70% of the total biogenic VOC source over our North
American domain (Figures 6 and 7).
[29] Figure 8 shows HCHO columns simulated by

GEOS-Chem using MDVD2 and CLM land cover. The
simulated spatial variability in the HCHO column maps that
of isoprene emission (Figure 6) and has little influence from
anthropogenic VOC emissions. The dominance of isoprene
in determining HCHO column variability over the eastern
United States was inferred previously from aircraft measure-
ments [Millet et al., 2006]. Here we find that large metro-
politan areas with the highest anthropogenic VOC
emissions (such as New York, Chicago, and Los Angeles),
are not associated with strong HCHO column enhancements
in the OMI data, even at 0.1� � 0.1� resolution (Figure 1).
A minor HCHO enhancement is apparent over Houston in
Figure 1, likely due to oxidation of olefins emitted in large
quantities from the local petrochemical industry [Jobson et
al., 2004]. HCHO concentrations measured below 1500 m
over the Houston ship channel (where the petrochemical
industry is concentrated) during the TexAQS aircraft cam-
paign in August-September 2000 averaged 4–8 ppb [Martin
et al., 2004]. A mixing ratio of 6 ppb below 1500 m and

0.3 ppb above corresponds to a total column amount of
approximately 2 � 1016 molecules cm�2, which is consis-
tent with the enhancement seen by OMI over that region
(Figure 1). Martin et al. [2004] found that even in the
vicinity of Houston (with its extremely high petrochemical
VOC emissions), the highest HCHO columns (derived from
aircraft measurements) were found over isoprene-emitting
hardwood forests north and east of the city.
[30] Overall, Figure 1 shows that anthropogenic VOCs

are a negligible source of variability in column HCHO over
the entire United States. In contrast, Fu et al. [2007]
observed significant HCHO enhancements (measured by
GOME) over Chinese cities, consistent with urban VOC
emission inventories (to within 25%). Current bottom-up
emission inventories indicate that U.S. on-road VOC emis-
sions (the dominant urban source) have declined by 70% or
more since the 1970s [Parrish, 2006; EPA, 2007]. The OMI
HCHO data present a consistent picture, showing that after
3 decades of regulation, anthropogenic reactive VOC emis-
sions from the U.S. are small compared to the large biogenic
source.

Figure 6. Mean MEGAN isoprene emissions (1� � 1�) at 12:00-15:00 local time for June-August 2006
computed using MDVD2 and CLM land cover. Numbers inset give total (24-h) isoprene emissions for
the same time period. Note that the color scale saturates; the maximum plotted values are 2.2 � 1013

(MDVD2) and 1.9 � 1013 (CLM) atomsC cm�2 s�1.
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[31] Figure 9 shows a scatterplot of OMI HCHO columns
vs. those simulated by GEOS-Chem using MEGAN driven
by the MDVD2 and CLM land cover databases. In both
cases the modeled and measured HCHO columns are highly
correlated (R2 = 0.92 and 0.85), but the modeled HCHO
columns are biased high at the upper end of the distribution;
this corresponds mainly to the U.S. Southeast. The problem
is more pronounced with the MDVD2 database. The high
correlation is in part a result of smoothing over the 2� �
2.5� model grid; we will see below that the correlation
breaks down at higher resolution. Previous work has found
a lower correlation (R2 = 0.7) between GOME HCHO
columns over North America in summer and those simu-

lated by GEOS-Chem driven by the GEIA biogenic emis-
sion inventory [Shim et al., 2005; Palmer et al., 2006]. The
improvement shown here is likely due to a more accurate
treatment of land cover and vegetation-specific emission
factors in MEGAN vs. GEIA [Guenther et al., 1995, 2006],
as well as to the improved counting statistics for OMI vs.
GOME.

4. Relating HCHO Columns to Isoprene Emission

[32] In the absence of horizontal wind, the HCHO column
WHCHO would be related to the emission rates of VOC

Figure 7. Total (24-h average) anthropogenic and biogenic VOC emissions for June-August 2006 in
GEOS-Chem (see text for details). Note the factor of 10 scale difference between the two panels. The
color scales saturate; the maximum plotted values are 1.4 � 1012 (anthropogenic) and 8.0 � 1012

(biogenic) atomsC cm�2 s�1.
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Figure 8. GEOS-Chem HCHO columns at 12:00–15:00 local time (June-August 2006) simulated using
the MEGAN biogenic emission inventory driven by MDVD2 and CLM land cover. The color scales
saturate; the maximum plotted values are 3.5 � 1016 (MDVD2) and 2.7 � 1016 (CLM) molecules cm�2.

Figure 9. OMI vs. GEOS-Chem HCHO columns (12:00–15:00 local time) over North America (65–
130�W, 25–50�N). Each point represents the mean June-August 2006 value for a 2� � 2.5� model grid
square. GEOS-Chem uses the MEGAN inventory with the MDVD2 (left) and CLM (right) vegetation
databases.
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precursors by

WHCHO ¼ 1

kHCHO

X

i

YiEi; ð3Þ

where Yi is the HCHO yield from the oxidation of precursor
i with emission rate Ei, and kHCHO is the column-integrated
HCHO loss rate constant. Direct (primary) emissions of
HCHO from biogenic [Kesselmeier and Staudt, 1999] and
anthropogenic [EPA, 2003] sources in North America are
minor relative to secondary production, so that we can
neglect them here. Horizontal wind smears this relationship
according to the lifetime of the parent VOC with respect to
HCHO production and that of HCHO itself. Palmer et al.
[2003] estimated the smearing length scale induced by the
time lag between isoprene emission and HCHO production,
and the HCHO lifetime, at �50 km under typical
conditions, so that on a 1� � 1� grid (as used here) the
smearing can be neglected. As shown by Palmer et al.
[2003, 2006], VOCs other than isoprene generally either
have excessive smearing or insufficient emission relative to
the HCHO detection limit, so that HCHO column observa-
tions from space are highly specific to isoprene. This was
confirmed by Millet et al. [2006] using concurrent VOC and
HCHO aircraft measurements over eastern North America
in summer.
[33] Palmer et al. [2003] fitted the relationship between

isoprene emission and HCHO columns in GEOS-Chem for
each U.S. quadrant (defined by longitudinal and latitudinal
divides at 100�W and 40�N) to a linear regression

WHCHO ¼ SEisop þ B; ð4Þ

where the slope S reflects the HCHO yield from isoprene
oxidation and the column-integrated HCHO loss rate
constant (equation (3)), and the intercept B represents the
background HCHO column arising from the oxidation of
other VOC precursors. They then used this relationship to
infer isoprene emissions from the HCHO columns measured
by GOME. The geographical division by U.S. quadrants
had no particular justification. We improve here on this
work with a more deliberate analysis of the geographical
variability of the WHCHO � Eisop relationship. The quality of
the correlation is expected to vary with the concentration of
NO (affecting the timescale for conversion of isoprene to
HCHO; [Palmer et al., 2006]) and with the distribution of
isoprene emission upwind; in addition, S is expected to vary
with the local photochemical environment. Inasmuch as
GEOS-Chem has predictive capability in simulating this
variability in S, it should be taken into account when
inferring Eisop from WHCHO. One has to be cautious,
however, as model errors in simulating the variability in S
will generate spurious variability in the inferred isoprene
emissions. We consider here two limiting cases. In the first,
we apply a single uniform WHCHO � Eisop relationship,
derived from linear regression over the entire North
American domain (65–130�W, 25–50�N); spatial varia-
bility in the retrieved isoprene emission fluxes is then solely
determined by the OMI data. In the second, we use a
spatially resolved WHCHO � Eisop relationship for each
model grid square; the variability then contains model
information related to the photochemical environment and
the local pattern of isoprene emission.
[34] Figure 10 shows the simulated WHCHO � Eisop

relationship at 12:00–15:00 local time for the entire North
American analysis domain (65–130�W, 25–50�N), com-
puted using MDVD2 land cover (using CLM land cover
does not significantly change the regression results). The
coefficient of determination (R2 = 0.82) implies that 80% of
the spatial variability in isoprene emission can be resolved
using space-based measurements of the HCHO column. The
slope S (2.4 � 103 s) can be compared to a value of 2.1 �
103 s estimated from measurements of HCHO mixing ratio
and isoprene flux over a Michigan forest [Palmer et al.,
2006], and a value of 2.3 � 103 s implied by aircraft
measurements of HCHO and isoprene columns over North
America [Millet et al., 2006]. The intercept B (0.5 �
1016 molecules cm�2) is consistent with the lowest columns
measured over North America during the INTEX-A aircraft
mission [Millet et al., 2006].
[35] Figure 11 shows the relationship between Eisop

predicted by MEGAN (using both the MDVD2 and CLM
land cover databases) and the corresponding HCHO column
simulated by GEOS-Chem, computed separately for each
model grid square at the satellite overpass time (12:00–
15:00 LT). We can only derive a meaningful local slope
at locations where the isoprene emissions exceed 2 �
1012 atomsC cm�2 s�1 (see below), and grid squares not
meeting this criterion (according to MEGAN) are grayed
out. We also omit grid squares where the WHCHO � Eisop

correlation is low (R < 0.4); this occurs along the Gulf
Coast, where frequent inflow of marine air disrupts the
local relationship. The uniform and spatially resolved
approaches give consistent slopes where the correlation is
high (this includes the dominant isoprene source regions of

Figure 10. GEOS-Chem relationship between HCHO
column and isoprene emission at 12:00–15:00 local time
over North America (65–130�W, 25–50�N) for June-
August 2006, taking the whole domain as a single statistical
population. Each point represents one day (12:00–15:00
average) for one model grid square. The reduced major axis
regression line is also shown with regression statistics given
inset.
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the southern and eastern United States): for R > 0.7, the
median slopes are 2.5 � 103 s (MDVD2) and 2.4 � 103 s
(CLM), with an interquartile (25th–75th percentile) range
of 2.0–3.0 � 103 s. Thus the error associated with
assuming a uniform slope is approximately 20%. We see
that the local regression method gives anomalously high
slopes in a few low-emission locations (e.g., on the Texas-
Oklahoma border and in southern Indiana), due to the
influence of neighboring high-emission grid cells. The
local intercepts (not shown) are consistent between
MDVD2 and CLM, and similar to that derived using the
uniform approach: for R > 0.7, the median value is 0.4 �
1016 molecules cm�2 (both MDVD2 and CLM), with
interquartile ranges of 0.2–0.5 � 1016 molecules cm�2

(MDVD2) and 0.3–0.5 � 1016 molecules cm�2 (CLM).
[36] Millet et al. [2006] previously estimated a 40% error

in the inference of local isoprene emissions from HCHO
column measurements, taking into account errors in both
the retrieval and the WHCHO � Eisop relationship. The lower
limit of detection for isoprene emission is defined by
retrieval noise and by HCHO column variability from
factors other than isoprene. The standard deviation in the
HCHO column integrated production rate due to non-
isoprene precursors, as determined from aircraft meas-
urements, was found by Millet et al. [2006] to be 7 �
1011 molecules cm�2 s�1 over North America in summer.
This value divided by the time-integrated HCHO molar
yield from isoprene oxidation (1.6; Millet et al. [2006])
implies a lower detection limit of 2� 1012 atomsC cm�2 s�1

for the isoprene source. The detection limit due to retrieval
noise can be estimated from the detection limit of the

satellite instrument (�4 � 1015 molecules cm�2) divided
by a typical HCHO column lifetime (�2 h; Palmer et al.
[2003]): 5.6 � 1011 molecules cm�2 s�1. Accounting for the
HCHO yield from isoprene oxidation, this again is equiva-
lent to an isoprene source of 2 � 1012 atomsC cm�2 s�1.
Adding these terms in quadrature we estimate our overall
detection limit at 3 � 1012 atomsC cm�2 s�1.

5. Isoprene Emissions From OMI: Comparison
to MEGAN

[37] Figures 12 and 13 show the isoprene emissions
(12:00–15:00 local time) derived from OMI (June–August
2006) on a 1� � 1� grid using both the uniform and variable
regression methods. Numbers inset show the 24-h average
OMI isoprene emissions for the same time period; these are
calculated from the 12:00–15:00 values using local diurnal
factors from the GEOS-Chem simulation. The slight change
in OMI isoprene emissions between the two figures results
from using different vegetation databases to derive the
WHCHO � Eisop conversion factors. With the variable re-
gression method we can only derive isoprene emissions
where the WHCHO�Eisop slope is well defined; other grid
cells are grayed out. The spatial distribution of emissions is
generally consistent between the uniform and variable slope
approaches, with the highest isoprene emissions in the Deep
South and along the southern Atlantic coast of the United
States. Isoprene emissions in the western United States are
generally at or below the detection limit of 3 � 1012 atomsC
cm�2 s�1.

Figure 11. Relationship between HCHO column and isoprene emission at 12:00–15:00 local time
computed locally for each 2� � 2.5� GEOS-Chem grid square for June-August 2006. Top panel shows
the correlation coefficient (R) and bottom panel shows the slope (S) of the reduced major axis regression.
We can only derive a meaningful local slope where isoprene emissions exceed 2 � 1012 atomsC cm�2

s�1; grid squares not meeting this criterion (according to MEGAN) are grayed out.

D02307 MILLET ET AL.: ISOPRENE EMISSIONS FROM THE OMI SENSOR

12 of 18

D02307



[38] The uniform slope method results in total North
American isoprene emissions of 11.6 TgC for June–August
2006. This is 23% lower than the MDVD2-driven MEGAN
emissions and 4% lower than the CLM-driven MEGAN
emissions. The domain used with the variable slope method
is smaller than with the uniform method, and varies depend-
ing on whether MDVD2 or CLM is used to define the
WHCHO � Eisop relationship. In the first case we obtain
8.2 TgC (versus 10.6 TgC predicted by MEGAN over the

corresponding domain), and in the second 7.2 TgC (versus
8.6 TgC predicted by MEGAN). Subsampling the uniform
slope OMI-derived emissions to the variable slope domain
yields similar results: 7.4 TgC (MDVD2) and 7.1 TgC
(CLM).
[39] While OMI isoprene emissions, aggregated over the

entire domain, are within �25% of the MEGAN estimates,
OMI reveals significant errors in the spatial distribution
used in MEGAN. The top two panels of Figure 14 show

Figure 12. OMI isoprene emissions (June–August 2006) at 12:00–15:00 local time, and difference
with MEGAN bottom-up emissions computed using the MDVD2 vegetation database. Numbers inset
give total (24-h) OMI isoprene emissions for the same time period. The MEGAN emissions are shown in
Figure 6. Conversion of OMI HCHO columns to isoprene emissions was done using the uniform slope
approach (left) or the variable slope approach (right). See text for details.

Figure 13. Same as Figure 12 except that MEGAN bottom-up emissions and OMI conversion factors
are computed using the CLM vegetation database.
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scatterplots of 1� � 1� OMI isoprene emissions (uniform
slope method) versus those predicted by MEGAN for both
MDVD2 and CLM. The correlation between the OMI and
MEGAN emissions (R2 = 0.48 for CLM and 0.68 for
MDVD2) is significantly lower than between the 2� �
2.5� GEOS-Chem and OMI HCHO columns (R2 = 0.85
and 0.92, shown in Figure 9). Fine-scale variability in
emissions, difficult to capture in bottom-up models, gets
smoothed out at coarser spatial resolution. We see from the
bottom panels of Figures 12 and 13 that these spatial
discrepancies are robust across our two methods for calcu-
lating isoprene emissions from the OMI HCHO columns.
[40] The vegetation cover used as input to MEGAN

covaries to some extent with the surface UV albedos used
in the OMI HCHO retrieval, and we carried out a test to
determine the impact of this correlation on our results.
Using a constant UV albedo (0.03, the domain mean over
land) in the OMI HCHO retrieval does not noticeably
change the results of Figures 12 and 13, or the regression
results shown in the top panels of Figure 14 (slopes change
<1%, correlations decrease slightly).
[41] With both the MDVD2 and CLM vegetation,

MEGAN overestimates the isoprene flux from three of its
most important emission regions: the Ozark Plateau in
northern Arkansas and southern Missouri; the Upper South
extending from northern Mississippi through Tennessee,
Kentucky and the Virginias; and northern Minnesota and

western Wisconsin. The high MEGAN emissions in these
regions are driven by extensive broadleaf tree cover
(Figure 5), and the isoprene emission bias could arise from
an overestimate of emissions from this PFT.
[42] When driven by CLM vegetation, MEGAN under-

estimates isoprene emissions in the Deep South and along
the Gulf and southern Atlantic coasts. Conversely, with
MDVD2 vegetation, the overestimate in the Upper South
extends throughout the Deep South. This disparity is driven
by different estimates of broadleaf tree and shrub cover in
this region (Figure 5). The MDVD2 database adjusts the
AVHRR-derived broadleaf and needleleaf PFT fractions
using forest inventory data from the U.S. Forest Service
[Kinnee et al., 1997; Guenther et al., 2006]. This adjustment
has the greatest impact in the pine plantations of the U.S.
Southeast coastal region. While the AVHRR data character-
izes these forests as almost entirely needleleaf trees, the
ground survey data reveal a significant contribution from
broadleaf trees. This is likely due to the dominance of
needleleaf trees in the overstory and broadleaf trees in the
understory. Thus it appears that the CLM underestimate in
the coastal U.S. Southeast is due to insufficient broadleaf
tree coverage in that region. On the other hand, fineleaf
evergreen trees and crops are also prevalent in the Deep
South, and it is possible that isoprene emissions from one or
both of these PFTs are underestimated.

6. Implications for Isoprene Emission From
Broadleaf Tree Canopies

[43] We now explore the constraints from the OMI
observations on the vegetation-specific emission factors
used in MEGAN. For this purpose we use MEGAN with
MDVD2 land cover, which gives a better correlation with
OMI than the CLM land cover (Figure 14). We focus our
attention on the broadleaf tree PFT as the dominant isoprene
source; emissions from the other PFTs are too low relative
to the OMI detection limit to derive robust constraints.
[44] Since the MEGAN EF for a given PFT varies with

location, we take two approaches to regressing the OMI
isoprene emissions against the broadleaf tree PFT. In the first,
we retain the MEGAN EF variability shown in Figure 5, and
solve for the factor by which broadleaf tree isoprene emis-
sions should be scaled to best match the OMI observations.
EFs for the other PFTs are assumed equal to their original
(spatially variable) MEGAN values. In the second approach,
we ignore geographic variability in the EFs and solve for the
optimum single emission factor for the broadleaf tree PFT.
Here the EFs for the other PFTs are set equal to their mean
values from MEGAN.
[45] Figure 14 shows the regression results. Given the

good agreement between the OMI isoprene emissions
derived using the uniform and variable slope methods
(Figure 12), we use here the uniform-slope emissions due
to greater coverage. Maintaining the spatial distribution of
the MEGAN EFs, we obtain the best agreement with OMI
(R2 = 0.67) by scaling the broadleaf tree emissions by
0.56 ± 0.02. The stated uncertainty reflects the standard
error of regression computed using jackknife resampling
(i.e., subsampling without replacement; [Manly, 1997]).
This implies 1� � 1� average EFs ranging from 0 to 22 �
1012 atomsC cm�2 s�1 for broadleaf trees over the United

Figure 14. Top panels: OMI versus MEGAN isoprene
emissions using either the MDVD2 (left) or CLM (right)
vegetation database. The OMI emissions are derived using
the uniform slope approach. Bottom panels: results of
regressing the OMI isoprene emissions against the broadleaf
tree PFT, using uniform emission factors (left) or including
MEGAN spatial variability in emission factors (right).
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States. We obtain a better fit using uniform emission
factors for each PFT (R2 = 0.73; Figure 14). The optimum
average EF for the broadleaf tree PFT is then 13.1 ± 0.4 �
1012 atomsC cm�2 s�1, similar to the average MEGAN
value for the United States (11.8 � 1012 atomsC cm�2 s�1),
but effectively rejecting the MEGAN use of much higher
(3–4�) EFs in certain locations (Figure 5). The fact that the
constant-EF approach captures more of the variance in the
OMI-derived emissions implies that the extent of EF
variability within a given PFT is still poorly constrained
by bottom-up estimates, and suggests that isoprene emis-
sions can be more reliably modeled using the simpler
uniform-EF approach.
[46] MEGAN EFs largely originate from leaf, branch, and

plant enclosure measurements, and one possible explanation
for the observed EF discrepancy between OMI and
MEGAN is that isoprene or its immediate oxidation prod-
ucts are lost within the forest canopy more rapidly than
reflected in current models. Recent measurements over a
pine forest [Farmer and Cohen, 2008] and the Amazon rain
forest [Kuhn et al., 2007] imply high OH levels within the
canopy (up to 3 � 107 molecules cm�3). Under such
conditions, isoprene oxidation (timescale �6 min) competes
with canopy ventilation (typical timescale �2–10 min;
[Holzinger et al., 2005; Simon et al., 2005; Farmer and
Cohen, 2008; Fuentes et al., 2007]), so that much of the
isoprene emitted below the crown would not escape from
the canopy. The HCHO produced within the canopy would
then be subject to within-canopy loss from oxidation and
deposition. Thus the effective isoprene emission to the
atmosphere (as detected by OMI) could be significantly
lower than the actual isoprene emission by the vegetation
(as described by MEGAN). If true, the curvature seen in
Figures 9 and 14 suggests the effect is more pronounced for
heavily forested/high emitting canopies.
[47] A second possible explanation for the OMI-MEGAN

discrepancy lies with the land cover database. MDVD2
adjusts MODIS vegetation coverage using ground truth data
from the United States Forest Service [Kinnee et al., 1997;
Guenther et al., 2006], and so should be reliable. However,
our work here comparing MDVD2 and CLM highlights the
uncertainty in current land cover databases, and it is
possible that the EF optimization above partly accounts
for errors in the MDVD2 PFT distributions or in the
AVHRR LAI database.

7. Conclusions

[48] We presented HCHO column measurements for
June–August 2006 over North America from the OMI
sensor aboard the Aura satellite launched in 2004, and
compared them to previous 1996–2001 measurements from
the GOME sensor aboard the ERS-2 satellite. We then used
the OMI measurements together with a chemical transport
model (GEOS-Chem) to evaluate a state-of-science emis-
sion inventory for biogenic isoprene (MEGAN), and to
derive new constraints on the isoprene emission capacity
of broadleaf trees.
[49] The high spatial resolution of OMI (13 � 24 km2 at

nadir) relative to GOME (40 � 320 km2) and its daily
global coverage (vs. three days for GOME) affords im-
proved counting statistics and cloud screening. OMI and

GOME are in sun-synchronous orbits with different local
overpass times (13:30 for OMI, 10:30 for GOME), but we
expect the HCHO column to vary by less than 2% between
these two times of day. The OMI spatial distribution over
North America in summer is similar to that observed by
GOME in previous years (R2 = 0.29–0.60, slope = 0.70–
0.92). Both show maxima in the U.S. Southeast but OMI
exhibits less retrieval noise. Using temperature to correct for
interannual variability we determined that OMI is 2–14%
lower than GOME, which is within the estimated systematic
retrieval error.
[50] The spatial distribution of HCHO columns observed

by OMI is consistent with the emission pattern of isoprene,
which represents the main HCHO precursor in North
America in summer. Anthropogenic VOC emissions in
urban areas are undetectable even with the high resolution
of OMI. An exception is Houston where high olefin emis-
sions from the petrochemical industry provide a detectable
signal consistent with previous in situ measurements.
[51] Isoprene emissions (Eisop) were estimated at 1� � 1�

spatial resolution from the OMI measurements of HCHO
columns (WHCHO) by using WHCHO � Eisop relationships
from linear regression in the GEOS-Chem model. We used
two approaches. The first is based on a single uniform
WHCHO � Eisop relationship, derived from linear regression
over the entire North American domain (65–130�W, 25–
50�N); in this case spatial variability in retrieved isoprene
emissions is solely determined by the OMI data. The second
employs a local WHCHO � Eisop relationship specific to each
model grid square; in this case the retrieved isoprene
emissions contain model information related to local pho-
tochemistry and isoprene emission gradients. The two
approaches yield consistent WHCHO � Eisop slopes (2.0–
3.0 � 103 s), except in a few locations with strong local
emission gradients. Similar slopes were previously derived
from in situ observations, lending confidence to the overall
approach.
[52] We used the isoprene emissions derived from OMI to

evaluate the MEGAN emission inventory driven by two
land cover databases (MDVD2 and CLM). These two
databases have different patterns of broadleaf tree cover,
resulting in significant differences in the spatial distribution
of computed isoprene emission. The total June–August
isoprene emission for North America derived from OMI is
23% lower than MEGAN using MDVD2 and 4% lower
than MEGAN using CLM. The spatial distribution of the
OMI-derived emissions at 1� � 1� resolution is highly
correlated with MEGAN (R2 = 0.68 using MDVD2, R2 =
0.48 using CLM). We find that MEGAN overestimates
isoprene emissions from its dominant source regions in-
cluding the Ozark Plateau, the Upper South, and the Upper
Midwest. With MDVD2, the high bias extends from the
Upper South to the Gulf and Atlantic coasts, while with
CLM emissions are underestimated in the latter region.
[53] We used regression analysis to explore the con-

straints from the OMI data on isoprene emission factors,
focusing on broadleaf trees as the dominant isoprene source.
MEGAN uses geographically variable emission factors
from broadleaf trees; fitting the OMI constraints while
maintaining this variability requires a uniform 44% decrease
of the MEGAN emission factors. Using a uniform emission
factor from broadleaf trees provides a better fit to OMI
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(R2 = 0.73) and yields an emission factor close to the
MEGAN average. This suggests that MEGAN overestimates
emissions in areas where it specifies particularly high
emission factors. It is also possible that the effective isoprene
emission to the atmosphere as observed by OMI may be
lower than the actual isoprene emission determined by
MEGAN because of fast isoprene oxidation and HCHO
removal within the canopy.
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