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PERIODS OF A MODULI SPACE OF BUNDLES ON CURVES.

By D. Mumrorp and P. NEWSTEAD.

We will work over the complex numbers in this paper. For all curves C,
and for all integers (n, d), the problem arises of determining the structure of
the “space” of all vector bundles E, with rank n and degree (= deg ci(E))d.
The problem has been considerably clarified recently by the introduction of
the concept of stable and semi-stable bundles: [4], [6], [10]. It has been
proven, in particular, that for each n and each line bundle L on C such that
n and deg L are relatively prime, then the set:

81(C) = set of all stable vector bundles F on O of
wh "~ |rank n such that A"E = I,

has a natural structure of a non-singular projective variety of dimension
(n*—1) - (¢9—1), where g—genus (C). It is important to note that the
map

E—EQM

for a line bundle M induces an isomorphism

~

Sn,L(O) —_— S.,,,L®m(0)

hence the variety 8,,z(C) depends essentially only on the residue class of
deg L mod n.

We wish to look at the case g=2, n—2, deg Lodd. In this case, we
may assume for simplicity that a base point @, € C' has been chosen that I
is taken to be the line bundle whose sections form the sheaf O_¢(z,). We
abbreviate S,,2(C) now to S,7(C). The topology of these varieties has been
described in [7] and when the genus of C is 2, their complete structure is
described in [8]. 8,7(C) has dimension 3g—3 and is known to be bi-
rationally equivalent to Py, _,. In particular, it is simply connected and the
invariants % = »° are all 0, ([9]). In [7], it is also proven that B, =1,
B; =2g. Now for non-singular projective varieties X with h%® = p3° =0,
a very interesting invariant is Weil’s “intermediate jacobian” attached to
H?(X). This is an abelian variety, which we shall denote J2 (X), which is
by definition:
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MODULI SPACE OF BUNDLES ON CURVES. 1201

J?*(X) = H*(X,R) /Image[H*(X,Z)]

where H3(X,R) is given a complex structure via the
decomposition

Hs3 (X, R) QQC = H?1 @ H2
since this induces an isomorphism

H3(X,R) = H“* — H*(X, Q).

cf. [11], [1], [8]. Weil also showed that a polarization on X induces a
polarization on J?(X) in a canonical way.

If Alb(C) denotes the albanese, or jacobian, variety of C, then our
main result is:

THEOREM. J2[S, (C)] == Alb(0).

Note that S,(C) has a unique polarization since B, = 1, hence J%(8;(C))
has a canonical polarization, just as Alb(C) does. It is easy to check that
our isomorphism is compatible with these canonical polarizations, hence by
Torelli’s theorem, we conclude:

CororrarYy. If S, (0,) =8,(C.), then C;=C,.

Before beginning the proof, we must recall Weil’s map relating J2(X)
to codimension 2 cycles on X :

let ¥ be an non-singular parameter space,
let W be an algebraic cycle on X X ¥ of codimension 2.

Then we get

w€ H*(X X Y,Z), the fundamental class of W
esp. ws, € (H*(X,Z) /torsion) ® H*(Y,Z), the (3,1)-component
of w.

Then ws,; defines a map

linear maps
gw: H(Y,R which are —> H*(X,R)/Image H*(X,Z)
integral on :
HY(Y,Z)
I I
Alb(Y) J2(X)

12



1202 D. MUMFORD AND P. NEWSTEAD.

which is easily seen to be complex-analytic using the fact that w is of type
(2,2) in the Hodge decomposition of H. Note the obvious fact:

LEMMA 1. gy s an isomorphism if and only if w4 48 “ummodular,”

(4. e., written out as @ matriz in terms of bases of H* (X, Z) /torsion, H*(Y,Z),
it is a square matriz with det= ==1).

1. In the sequel, we abbreviate S, (C) by S. The first step in our
proof is to construct a universal vector bundle £ on S X C, i.eé., one whose
restriction to {t} X O, for any t€ S, is exactly the vector bundle E; on C
corresponding to the point € 8. This is a problem in descent theory. In
fact, § can be described as a quotient R/PGL (v), where R is a non-singular
quasi-projective variety, and PGL(v) acts freely on R; and where there is a
vector bundle F on R X C whose restriction to {t} X C, any ¢ € R, is the vector
bundle on C corresponding to the image of ¢ in S: cf. [10], p. 321. However,
the difficulty is that the action of PGL(v) on R does not, a priori, lift to an
action on F. Instead, GL(v) acts on F satisfying -

1) Gm—eenter (GL(v)) acts on F by homotheties

%) if w: GL(v) > PGL(v) is the canonical map, and T, represents
the action of an element g, then the diagram

F F
BRX(O0——>RXC commutes.
T X 1o

The way out of this type of impasse is to find a “functorial” way of asso-
ciating to every vector bundle E on C' (of the type being considered) a 1-
dimensional vector space A(E) such that multiplication by « in E induces
multiplication by « in A(Z). By functorial we mean that the procedure
extends to families of such vector bundles: if E is a vector bundle on T X C
(for any algebraic scheme T') whose restriction to {¢} X C is of the type
under consideration, then we should get a line bundle A(E) on T. Moreover,
for any diagram of vector bundles

E'J1——-——>E'z
T''XC0——>T,XC
fX1e



MODULI SPACE OF BUNDLES ON CURVES. 1203

making E, into a fibre product of E; and T, X C over T, X C, we should
be given a definite isomorphism of A(E,) with f*(A(E,)). For example, if
Ty=T,=Spec(C), E,=E,=E, and ¢ is multiplication by a scalar « 540,
we are then given an induced automorphism of A(F): we want this auto-
morphism to be multiplication by « too (it might turn out to be multiplica-
tion by a» instead). All this data is subject to an obvious co-cycle condition:
compare [5], p. 64. If we can find such data, we get as a consequence a
line bundle A(F) on R, plus an action of GL(v) on A(F) in which the center
acts by homotheties. If we then define

F=FQp*(M(F)™),

we get a new vector bundle on B X €' with the same restrictions to the fibres
{t} X C as before; but where in the natural action of GL(v) on F, the action
of the center G, on F and p,* (A(F)-) cancel each other out, i.e., PGL(v)
acts on F. Then F/PGL(v) is the sought-for universal vector bundle on
S X C.

Here’s how to construct A. We limit ourselves to the case T'= Spec(C),
E a vector bundle on C, since the generalization of A to an arbitrary base
will be clear. Recall F has rank 2, degree 1, and is stable:

a) HY(EQ® (Q)*) = (0), if k=1.
~ Proof. This group is dual to H°(E® (Q¢*)**) and if this were non-
zero, we would get a non-zero homomorphism
(Qot)e1—> B
hence a sub-line-bundle G C £ of degree =2(k—1)(9—1)=0. This
contradicts the stability of E.
b) If Vi(F) =H°(EQ (Q¢')*), then
Dim Vi (E) = (29 —2) (2k—1) 4 1.
Proof. Riemann-Roch.

c) Set AM(E) = [A%1V,(E)]®Cr-DQ [A-5V,(E)]®9,
Then multiplication by « in E induces the endomorphism, multiplica-

tion by a, in each V;(E), hence it induces multiplcation by a to
the power
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(89—1)(2g—1) + (6g—5) (—9)
in A(E). This number happens to be 1! _
We now know that F exists. Next consider the chern classes of . We

have

c:(F) e H* (S X C,Z) = (H*(S,Z) ®H*(C,Z))
¢.(E) € H*(8 X C,Z) = H?*(C,Z) @ H*(S,Z)
® (H*(S,Z2)®H'(C,Z))
QH*(S,Z).
Note that any bundle £ ® p,*M, M a line bundle on S, would have the same
universal property that £ does, so ¢, (E) is not very interesting. However, let

& == (c2(&))s,1 = [component of ¢,(E) in H*(S,Z) ® H*(C,Z)].

A simple computation of chern classes shows that « is independent of this
modification of E. According to [7], H3(S,Z) and H*(C,Z) have the same
rank. In fact:

ProrosiTiON 1. « s unimodular.

This will be proven in §2. Assuming this, it follows from Lemma 1 that
it W = the algebraic 2nd chern class of E, then Weil’s map gyw: Alb(C) — J2(S)
is an isomorphism, as required. Although it is not essential, it will be
convenient in §® to know that H®(S,Z) is torsion-free. In fact, the torsion
subgroup of H*(X,Z)—for any non-singular complete variety X over C—is
a birational invariant of X known as the “topological Brauer group” (cf.
[12], Cor. (7.3) and equation (8.9), p. 59). And § is birationally equivalent
to Pg, s which has no H? at all!

2. We start by recalling the results of [6]. In fact, let S, be the subset
of SU(R)?* consisting of points (A, - -,4,,) such that

g
H A24—1A2iAz¢-—1‘1A21—1 =—1.

Then S, is an orientable submanifold of ST (2)% and there is a natural map
p:8—8,

which is a principal fibration with group PU(2). The map p may be deter-
mined as follows. Let (' be the simply-connected covering of C' which is
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ramified over z, with ramification index 2. The group = of this covering is
generated by elements a,- - -, a,, subject to the single relation

g
[;[—,[ QaiaBaillaig 0ot ]% = €.
=1

Thus a point of S, may be regarded as a representation of «, and this repre-
sentation defines a stable bundle E over C of rank 2, with A2E =L, and
hence a point of S. So we get a map p: S,— 8. Notice that the a; deter-
mine elements of ;(C') and hence of H,(C;Z), and that these elements
form a basis for H,(C;Z) ; let {o} be the dual basis of H*(C;Z).

LemMMA 2. p*: H3(S;Z) > H*(So;Z) s an isomorphism.

Proof. Since H*(PU(?);Z) =0 and H*(S;Z) =0 (8 is simply-con-
nected), the spectral sequence of the fibration p gives rise to an exact sequence
p*

H°(S; H*(PU(R);Z))— H¥(S;Z) —> H3(S,;Z) - H°(S ; H3(PU(R) ; Z)).

Now the first group in this sequence is Z, and the last is Z. Moreover
H?*(8;Z) is torsion-free (see §1) and has the same rank as H3(S,;Z) by the
results of [7]. The lemma now follows.

Lemma 8. The homomorphism HE(SU(2)%,Z) — H*(8S,;Z) induced
by the inclusion of S, in SU(R)% is an isomorphism.

Proof. Lemma 3 of [7] shows that the homomorphism
H;y(80;2) > H;(SU(R)%,Z)

is surjective, except possibly for some 2-primary torsion. However, in this
simple case, the same argument can be used to prove that the homomorphism
is really surjective. It follows at once that H®(SU (2)%;Z) is contained in
H*(80;Z) as a direct summand. The lemma now follows from the fact that
the ranks of these two groups are equal (see [7]) and that H®(S,;Z) is
torsion-free by Lemma 2.

Now let p;: So— SU(R) denote the projection on the i-th factor and let

Bi— pi*[generator of H*(SU (R);Z)].

Then by Lemma 8 the B; form a basis for H2(S,;Z). In view of Lemma 2,
it is mow sufficient to prove:

2g
ProposITION 2. [ (p X 10)*E]s1 =D B:i® a.
$=1
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Now choose embedding s;: S*— €' — &, which represent the generators a;
of #. Then

8*(a5) =0 i54j
= generator of H*(S*;Z) 1=—7.

Hence Proposition 2 will follow at once from
ProrosiTIiON 3.

ez (15, X 8:)* (p X 10) *E]s,1 = B ® [generator of H*(S*;Z)].

We now need to recall a few more details from [6]. Let E, be the
bundle over C corresponding to the representation p € ;. Then ([6] Remark
6.2) we can write down coordinate transformations for E, as follows.
Choose a finite open covering {U;} (¢=0,1,- + -,m) of C such that every
non-empty intersection of the sets U, is contractible. Assume z,€ U,, z,¢ U;
for 1540. Assume moreover that there exist discs D; in C such that U, is
the quotient of D, by Z, and that for 140, D; maps homeomorphically onto
U,. For every 4, j, k, where k=1 or j, let Wy be a connected component of
v (U; N U;) N Dy, (where v: ¢— C is the covering map). If U;nU;—9,
154 7, Wiyx maps homeomorphically onto U; N Uj; let y4 be the element of =
such that y;;W;; ;= Wy Then a set of coordinate transformations g;; for
B, is given by

gii=p(yij) on'UiNUj, 1540, j70
=Tfip(you) on Uy N U, 1540,

where f; is an analytic scalar function on U, N U; which is independent of p.
Note that the coordinate transformations depend differentially on p, so that
the same g;; (now regarded as functions on S, X U;N S, X U;) define a
differentiable bundle E” over S, X ¢ which is a differentiable family of
analytic bundles over C.

Now E' | {p} X C=Ep= (p X 10)*E | {p} X C for all p€ 8, Since
E is stable, it follows that

dimH°(C';HOI§(E’, (p X 10)*E) | {p} X 0) =1
nal.

for all p. So by Proposition 2.7 of [2],

U H°(C;Hom (&, (p X 10)*E) | {p} X C)
PES, Anal.
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has a natural structure of differentiable line bundle over S,. Let L be the
induced line bundle over 8, )X C. There is then an obvious isomorphism

EQL= (pX1le)*E.
So
62[(p X 10) *E]3.1 == Cz (E,) 3,1.

Using the above explicit description of the bundle E’, we see that for any
continuous map s: 8*— C—wmy, (1g, X s)*E’ can be described as follows:
take a trivial bundle of rank 2 over S, X [0,1] and glue its ends together
by means of the map

So— 8U (2),
defined by

p+—> p(a), where a € # corresponds to s.

Apply this when s=s;, a=ua;, and p(a;) =pi(p); so Proposition 8 will
follow at once from

LemMmA 4. Let W be a space and let F be the bundle over W X S*
obtained by glueing together the two ends of the trivial bundle of rank 2
over WX [0,1] by means of the map f: W— SU(R). Then

c:(F) = f*[generator of H*(SU (?);Z)] ® [generator of H*(S*;Z)].

Proof. F is the bundle induced by f from the bundle obtained by taking
W=8U(?), f=1svu(2 in the construction. Hence it is sufficient to prove
the lemma for this special case. But then it follows from the fact that
H*(BSU (?)) is generated by c..

This completes the proof of Proposition 8 and hence of our theorem.
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