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BACKGROUND: Successful cryopreservation of oocytes and embryos is essential not only to maximize the safety and efficacy of ovarian
stimulation cycles in an IVF treatment, but also to enable fertility preservation. Two cryopreservation methods are routinely used: slow-
freezing or vitrification. Slow-freezing allows for freezing to occur at a sufficiently slow rate to permit adequate cellular dehydration while
minimizing intracellular ice formation. Vitrification allows the solidification of the cell(s) and of the extracellular milieu into a glass-like state
without the formation of ice.

OBJECTIVE AND RATIONALE: The objective of our study was to provide a systematic review and meta-analysis of clinical outcomes
following slow-freezing/thawing versus vitrification/warming of oocytes and embryos and to inform the development of World Health
Organization guidance on the most effective cryopreservation method.

SEARCH METHODS: A Medline search was performed from 1966 to 1 August 2016 using the following search terms: (Oocyte(s) [tiab]
OR (Pronuclear[tiab] OR Embryo[tiab] OR Blastocyst[tiab]) AND (vitrification[tiab] OR freezing[tiab] OR freeze[tiab]) AND (pregnancy
[tiab] OR birth[tiab] OR clinical[tiab]). Queries were limited to those involving humans. RCTs and cohort studies that were published in
full-length were considered eligible. Each reference was reviewed for relevance and only primary evidence and relevant articles from the
bibliographies of included articles were considered. References were included if they reported cryosurvival rate, clinical pregnancy rate
(CPR), live-birth rate (LBR) or delivery rate for slow-frozen or vitrified human oocytes or embryos. A meta-analysis was performed using a
random effects model to calculate relative risk ratios (RR) and 95% CI.

OUTCOMES: One RCT study comparing slow-freezing versus vitrification of oocytes was included. Vitrification was associated with
increased ongoing CPR per cycle (RR = 2.81, 95% CI: 1.05–7.51; P = 0.039; 48 and 30 cycles, respectively, per transfer (RR = 1.81, 95%
CI 0.71–4.67; P = 0.214; 47 and 19 transfers) and per warmed/thawed oocyte (RR = 1.14, 95% CI: 1.02–1.28; P = 0.018; 260 and 238
oocytes). One RCT comparing vitrification versus fresh oocytes was analysed. In vitrification and fresh cycles, respectively, no evidence for
a difference in ongoing CPR per randomized woman (RR = 1.03, 95% CI: 0.87–1.21; P = 0.744, 300 women in each group), per cycle
(RR = 1.01, 95% CI: 0.86–1.18; P = 0.934; 267 versus 259 cycles) and per oocyte utilized (RR = 1.02, 95% CI: 0.82–1.26; P = 0.873;
3286 versus 3185 oocytes) was reported. Findings were consistent with relevant cohort studies.

Of the seven RCTs on embryo cryopreservation identified, three met the inclusion criteria (638 warming/thawing cycles at cleavage and
blastocyst stage), none of which involved pronuclear-stage embryos. A higher CPR per cycle was noted with embryo vitrification compared
with slow-freezing, though this was of borderline statistical significance (RR = 1.89, 95% CI: 1.00–3.59; P = 0.051; three RCTs; I2 =
71.9%). LBR per cycle was reported by one RCT performed with cleavage-stage embryos and was higher for vitrification (RR = 2.28; 95%
CI: 1.17–4.44; P = 0.016; 216 cycles; one RCT). A secondary analysis was performed focusing on embryo cryosurvival rate. Pooled data
from seven RCTs (3615 embryos) revealed a significant improvement in embryo cryosurvival following vitrification as compared with slow-
freezing (RR = 1.59, 95% CI: 1.30–1.93; P < 0.001; I2 = 93%).

WIDER IMPLICATIONS: Data from available RCTs suggest that vitrification/warming is superior to slow-freezing/thawing with regard
to clinical outcomes (low quality of the evidence) and cryosurvival rates (moderate quality of the evidence) for oocytes, cleavage-stage
embryos and blastocysts. The results were confirmed by cohort studies. The improvements obtained with the introduction of vitrification
have several important clinical implications in ART. Based on this evidence, in particular regarding cryosurvival rates, laboratories that con-
tinue to use slow-freezing should consider transitioning to the use of vitrification for cryopreservation.
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Introduction
Cryopreservation of gametes and embryos is an essential aspect of
ART. Its widespread application has allowed increased safety and effi-
cacy of IVF treatments. The proportion of cryopreserved embryo
transfer cycles compared with fresh cycles is growing in Europe.
Overall it has been estimated that cryopreserved cycles contributed
to 32% of the transfers in 2011 compared to 28% in 2010. In some

countries, such as Switzerland, Finland, Netherlands, Sweden and
Iceland, the proportion of cryopreserved embryo transfers is higher
than 50% (Kupka et al., 2016). The observed differences among
European countries are mainly due to policies requiring lower trans-
fer order which, in turn, have led to more supernumerary embryos
available for cryopreservation (Coetsier and Dhont, 1998). The
recent systematic application of cryopreservation for new indications
such as cycle segmentation (i.e. planned freeze all) (Devroey et al., 2011),
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oocyte banking (Cobo et al., 2011a,2012) and pre-implantation
genetic testing at the blastocyst stage (Schoolcraft et al., 2011) likely
will contribute, in our opinion, to a further increase in the proportion
of cryopreserved cycles in the near future.

Embryo cryopreservation has, however, generated ethical, moral
and legal issues. Some countries have enacted specific laws that
restrict (e.g. Germany, Switzerland, Austria) or even forbid (Italy with
Law 40 in 2004) embryo cryopreservation. As an alternative and in
accordance with the legal prohibition of embryo cryopreservation,
oocyte cryopreservation had been introduced into routine practice in
Italy (La Sala et al., 2006; Borini et al., 2006a,b, 2007; Levi Setti,
2006; De Santis et al., 2007; Ubaldi et al., 2010). Not until 2009 did
the Italian Constitutional Court (151/2009) declare the constitution-
ality of embryo cryopreservation. Nevertheless, some couples are
concerned about the disposition of cryopreserved embryos
(Nachtigall et al., 2010) and therefore prefer to limit the number of
oocytes inseminated, with cryopreservation of the remainder (Heng,
2007). Oocyte cryopreservation also has emerged as an important
method for female fertility preservation for both medical and non-
medical indications (reviewed in De Vos et al., 2014 and Stoop et al.,
2014).

Since the first pregnancy and delivery with cryopreserved embryos
(Trounson and Mohr, 1983; Zeilmaker et al., 1984), various protocols
have been introduced that differ from each other regarding the type
and concentration of cryoprotectants, equilibration timing, cooling
rates and cryopreservation devices used. Two principal approaches for
cryopreservation have been adopted: slow-freezing and vitrification
(reviewed by Edgar and Gook, 2012).

Slow-freezing allows for cryopreservation to occur at a sufficiently
slow rate to permit adequate cellular dehydration while minimizing
intracellular ice formation. The first successful protocol applied in
1972 for mammalian embryo cryopreservation required a cooling
rate of ~1°C/min to −70°C (Whittingham et al., 1972). Embryo
cooling performed this way is referred to as equilibrium freezing
(Mazur, 1990). Subsequently, slow-rate cooling was only applied to
around −30°C (Willadsen, 1977). With this approach, intracellular
water content was converted into small intracellular ice crystals or
into a glass. To avoid extensive crystallization, a very rapid warming
was required.

Although the first pregnancies with human cleavage-stage embryos
were obtained with the use of dimethylsulphoxide (DMSO) as the
cryoprotectant (Trounson and Mohr, 1983 and Zeilmaker et al.,
1984) this approach was rapidly replaced.

For nearly 20 years the protocol combining 1.5 M propylene glycol
(PROH) plus 0.1 M sucrose, as the permeable and non-permeable
cryoprotectants, respectively, has been the most widely used (Lassalle
et al., 1985; Testart et al., 1986). The freezing curve adopted requires
the use of a programmable freezing machine designed to provide
accurate and consistent cooling parameters. Briefly, the sample is
exposed to a relatively rapid cooling rate of 2°C/min to around −7°C
followed by a manual seeding to induce ice crystal formation in the
solution. Then, a consistent slow cooling rate of 0.3–1.0°C/min is
applied before the freezing device is plunged into liquid nitrogen after
having reached temperatures around −40 to −70°C using the
approach of Trounson and Mohr (1983) or Lassale et al., (1985),
respectively. Modifications to the concentration of sucrose and the use

of other cryoprotectants such as glycerol have been investigated for
cryopreservation of oocytes, biopsied embryos and blastocysts (Cohen
et al., 1985; Fabbri et al., 2001; Jericho et al., 2003; Veeck et al., 2004).
Detailed analysis of biological principles and development of various
slow-freezing procedures have been described previously (Leibo and
Songstaken, 2002).

In contrast to slow-freezing, vitrification is a cryopreservation
method that allows solidification of the cell(s) and the extracellular
milieu into a glass-like state without the formation of ice. The most
widely used vitrification method for mammalian embryos requires the
use of high initial concentrations of cryoprotectants, low volumes and
ultra-rapid cooling-warming rates. This approach was first introduced
in human embryology for cleavage-stage embryos (Mukaida et al.,
1998) and then for oocytes (Kuleshova et al., 1999) and pronuclear-
stage embryos (Jelinkova et al., 2002; Selman and El-Danasouri,
2002). In the last 15 years several vitrification protocols have been
described, which differ from one another in the type of cryoprotec-
tants (Ethylene glycol [EG] and/or DMSO and/or PROH and sucrose
and/or Ficoll and/or Trehalose), equilibration and dilution para-
meters, the carrier tools and the cooling, storage and warming meth-
ods (reviewed in Vajta and Nagy, 2006). To date the most
commonly used protocol for both oocyte and embryo vitrification
involves the combination of 15% DMSO, 15% EG and 0.5 M sucrose
in a minimum volume (≤1 µl) (Kuwayama et al., 2005a,b). Other fun-
damental aspects of the technique are related to the cooling and
storing method. At present most embryos and oocytes are vitrified
by exposing the sample to direct contact with liquid nitrogen (open
system) to increase the cooling/warming rates and thus the efficiency
of the procedure (Vajta et al., 2015). The ability to survive vitrification
is in fact strictly dependent on the degree of cellular dehydration and
on the rate of warming, rather than on the type and concentration of
cryoprotectants used (Jin and Mazur, 2015). High cryosurvival rates
of mouse oocytes and embryos have been recently obtained with the
use of only non-permeating cryoprotectant and a relatively slow cool-
ing rate, but combined with an ultra-rapid warming (Jin and Mazur,
2015). This study also demonstrates that the osmotic withdrawal of a
very large proportion of intracellular water prior to cooling, and not
the permeation of cryoprotectant in the cell, is the key for a success-
ful vitrification (Jin and Mazur, 2015).

To avoid potential contamination during open system vitrification,
sterile liquid nitrogen can be used (Vajta et al., 1998; Parmegiani et al.,
2009). Alternatively, specific devices have been designed to avoid dir-
ect contact of the samples with the nitrogen either during vitrification
(closed system) and/or during storage (Vajta et al., 1998; Kuleshova
and Shaw 2000; Isachenko et al., 2006; Vanderzwalmen et al., 2009;
Abdelhafez et al., 2011; Parmegiani, 2011). Of note, not all closed sys-
tems available on the market are completely free of any possible
sources of contamination (Vajta et al., 2015). On the other hand, a
lower degree of cooling/warming rate is generally associated with the
use of these systems. To date, neither open nor closed systems have
resulted in disease transmission during vitrification. However, to ensure
biosafety during cryopreservation, the use of sterile approaches is
recommended (Argyle et al., 2016), providing that adequate cooling
and, particularly, warming rates are still guaranteed.

The objective of the present study was to compare slow-freezing/
thawing versus vitrification/warming for cryopreservation of oocytes,
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embryos and blastocysts. RCTs and relevant observational cohort
studies were included in this systematic review and meta-analysis.

This study was performed to support a prioritized clinical question
and to provide a review of the evidence for debate and discussion
during the consultation for the development of the World Health
Organization (WHO) global guidelines: ‘Addressing evidence-based
guidance on infertility diagnosis, management and treatment.’

Methods

Oocyte cryopreservation: study eligibility
criteria
RCTs and well-designed cohort or case-control studies were included
that compared outcomes following slow-freeze versus vitrification of
mature i.e. metaphase II (MII) oocytes from women undergoing ART.
Given the paucity of studies making direct comparisons between the two
cryopreservation methods, studies comparing slow-freeze or vitrification
to fresh oocytes (control group) were also included. Only trials reported
in peer-reviewed full publications involving MII oocyte cryopreservation
were included; abstracts were excluded. Data from these studies were
used to assess the following outcomes: Clinical pregnancy rate (CPR),
live-birth rate (LBR) and oocyte cryosurvival rate when reported.

Oocyte cryopreservation: study search
methods
The searches for relevant studies were last performed and completed on 1
August 2016 by two review authors (AL, RM) using the following search
terms: (oocyte(s) [tiab]) AND (vitrification[tiab] OR freezing[tiab] OR
freeze[tiab]) AND (embryo quality[tiab] OR survival[tiab] OR pregnancy
[tiab] OR birth[tiab]). The search was limited to human studies. Articles
were also identified via snowball sampling by hand-searching references
from systematic reviews. The search returned 806 records, of which 88
were screened manually for relevance. The information about potentially
eligible studies was reported in a table describing the characteristics of the
studies for assessing the reliability of the results. Full texts of potentially eli-
gible studies were obtained and examined independently by the two differ-
ent authors; disagreements as to study eligibility were resolved by
discussion (all authors). A total of 20 references were included (Fig. 1a).

Oocyte cryopreservation: study descriptions
Slow-frozen versus vitrified oocytes: clinical outcomes and
cryosurvival
One RCT was identified that randomized women to have an embryo
transfer from MII oocytes that were either slow-frozen or vitrified (Smith
et al., 2010). Characteristics of this study are described in Table I. A total
of 230 patients with more than nine MII oocytes retrieved were allocated
by random number generator to either slow-freezing or vitrification. This
results in 30 cases of oocyte thawing and 48 cases of warming (average
ages at oocyte retrieval: 32 ± 1 and 31 ± 1 years (mean + SD), respect-
ively). LBRs were not reported. Ongoing CPRs were reported but not
defined by minimum gestational age.

Two cohort studies were identified that compared CPRs from slow-
frozen versus vitrified autologous oocytes (Fadini et al., 2009; Levi Setti
et al., 2014). Oocyte cryopreservation was performed in these studies in
an unselected population of infertile patients due to law restrictions (Law
40, 2004, Italy).

A secondary analysis was performed focusing on oocyte cryosurvival
rate. One RCT (Smith et al., 2010), two RCTs where sibling oocytes
were randomized, rather than patients, (Paffoni et al., 2008; Cao et al.,
2009) and three cohort studies (Fadini et al., 2009; Grifo and Noyes,
2010; Levi Setti et al., 2016) were included.

Slow-frozen versus fresh oocytes: clinical outcomes
No RCTs were identified comparing outcomes following transfer of
embryos from oocytes that were either slow-frozen or fresh. Five cohort
studies were identified comparing outcomes following transfer of
embryos derived from fresh or slow-frozen/thawed oocytes (Chamayou
et al., 2006; Levi Setti et al., 2006; Borini et al., 2007; Borini et al., 2010;
Virant-Klun et al., 2011).

Vitrified versus fresh oocytes: clinical outcomes
One RCT was identified that randomized 600 donor recipients to trans-
fer of embryos either from fresh or vitrified/warmed oocytes (Cobo
et al., 2010). Characteristics of this study are described in Table I.
Ongoing clinical pregnancy at 10–11 weeks of gestation was reported;
however, live-birth data were not reported.

Thirteen other studies were identified: five randomized sibling oocytes,
rather than patients, to vitrification versus fresh treatments (Cobo et al.,
2008; Rienzi et al., 2010; Parmegiani et al., 2011; Siano et al., 2013;
Forman et al., 2012), and eight cohort studies (Antinori et al., 2007; Nagy
et al., 2009; Almodin et al., 2010; Ubaldi et al., 2010; Garcia et al., 2011;
Trokoudes et al., 2011; Sole et al., 2013; Doyle et al., 2016). Three sibling
oocyte RCTs (Cobo et al., 2008; Siano et al., 2013; Forman et al., 2012)
and two cohort studies (Nagy et al., 2009 and Doyle et al., 2016) were
excluded from analysis due to study design (Forman et al., 2012) or data
reporting issues (Cobo et al., 2008; Nagy et al., 2009; Siano et al., 2013;
Doyle et al., 2016).

The remaining eight studies were grouped together for comparison of
clinical outcomes following transfer of embryos arising from oocytes that
were exclusively either vitrified or fresh. Five meta-analyses (Oktay et al.,
2006; Cobo et al., 2011b; Cil et al., 2013; Glujovsky et al., 2014; Potdar
et al., 2014) focusing on oocyte cryopreservation were reviewed.

Embryo cryopreservation: study eligibility
criteria
RCTs and observational cohort studies were included that compared
slow-freeze to vitrification of pronuclear embryos, cleavage-stage
embryos or blastocysts from women undergoing ART. Only trials
reported in peer-reviewed full publications were included; abstracts were
excluded. The following outcomes were assessed: CPR, LBR and embryo
cryosurvival rate, when reported.

Embryo cryopreservation: study search
methods
The searches for relevant studies were last performed and completed on
August first 2016 using the following search terms: (Pronuclear[tiab] OR
Embryo[tiab] OR Blastocyst[tiab]) AND (vitrification[tiab] OR freezing
[tiab] OR freeze[tiab]) AND (pregnancy[tiab] OR birth[tiab] OR clinical
[tiab]). The search was limited to human studies. Articles were also iden-
tified by hand searching references from systematic reviews. The search
returned 917 records, of which 587 were screened manually for rele-
vance. Full texts of potentially eligible studies were obtained and exam-
ined independently by two different authors (RM, DK); disagreements as
to study eligibility were resolved by discussion (all Authors). A total of 20
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studies were included for this analysis, comparing outcomes following
transfer of vitrified versus slow-frozen embryos (Fig. 1b).

Embryo cryopreservation: study descriptions
Vitrified versus slow-frozen embryos: clinical outcomes
Only one well-designed RCT comparing clinical outcomes following vitrifica-
tion versus slow-freezing between randomized women rather than embryos
was identified (Debrock et al., 2015). Two RCTs (Rama Raju et al., 2005
and Kim et al., 2000) comparing clinical outcomes between randomized
embryos were also included. Characteristics of these studies are described
in Table I. One additional RCT (Bernal et al., 2008) was excluded because

clinical outcomes were incomplete. Moreover, a meta-analysis (AbdelHafez
et al., 2010) focusing on clinical outcomes was reviewed. None of the
included studies compared cryopreservation techniques at the pronuclear-
stage. Two of the included RCTs were performed at the cleavage-stage
(Rama Raju et al., 2005; Debrock et al., 2015) and one at blastocyst stage
(Kim et al., 2000). The primary outcome measures chosen were CPR
and LBRs.

Eleven observational studies reporting clinical pregnancy per cycle
and/or per transfer of embryos at different stages of development were
pooled and analyzed (Kuwayama et al., 2005a,b; Stehilk et al., 2005;
Liebermann and Tucker, 2006; Rezazadeh Valojerdi et al., 2009; Wilding
et al., 2010; Sifer et al., 2012; Wang et al., 2012; Van Landuyt et al., 2013
and Liu et al., 2013; Zhu et al., 2015; Kaartinen et al., 2016). An

Figure 1 Flow charts for a systematic review and meta-analysis comparing slow-freezing versus vitrification of oocytes, embryos and blastocysts in
ART. (a) search for relevant studies for oocytes slow-freezing and vitrification (b) search for relevant studies for pronuclear, cleavage-stage embryo
and blastocyst slow-freezing and vitrification.
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Table I Characteristics of the included RCTs comparing reproductive outcomes of slow-freezing versus vitrification.

Authors
(year)

Location Study design Cryopreservation protocols Study
group

N° Control
group

N° Outcomes Risk of bias Journal: Impact
factor

Balaban
et al.
(2008)

Turkey Randomization
of embryos

Vitrification 16%PrOH + 16%
EG + 0.65 M sucrose + 10 mg/ml
Ficoll- open system

Cleavage
stage
vitrification

234
embryos

Cleavage
stage slow-
freezing

232
embryos

cryosurvival
rate,
blastocyct
formation

Serious risk of bias due to randomization
method, concealment of allocation,
blinding

Human
Reproduction:
4.621

Slow-freezing: 1.5 M PROH–0.1 M
Sucrose

Cao et al.
(2009)

China Randomization
of sibling
oocytes

Vitrification 15% EG + 15%
PROH + 0.5 M sucrose – open
system

Oocyte
vitrificaiton

292
oocytes

Oocyte
slow-
freezing

123
oocytes

cryosurvival
rate

Serious risk of bias due to randomization
method, concealment of allocation,
blinding

Seminars in
Reproductive
Medicine: 2.113

Slow-freezing: 1.5 M
PROH + 0.3 M sucrose

Cobo et al.
(2010)

Spain Randomization
of patients

Vitrification 15% EG + 15%
DMSO + 0.5 M sucrose – open
system

Oocyte
vitrification

295
cycles

Oocyte
fresh

289
cycles

CPR,
cryosurvival
rate

No serious risk of bias Human
Reproduction:
4.621

Debrock
et al.
(2015)

Belgium Randomization
of patients

Vitrification 15% EG + 15%
DMSO + 0.5 M sucrose – closed
system

Cleavage
stage
vitrification

121
cycles

Cleavage
stage slow-
freezing

85
cycles

CPR, LBR,
cryosurvival
rate

No serious risk of bias Human
Reproduction:
4.621200

embryosSlow-freezing: 1.5 M PROH −
0.1 M Sucrose

217
embryos

Fasano
et al.
(2014)

Belgium Randomization
of embryos

Vitrification 20% EG + 15%
DMSO + 0.5 M sucrose – closed
system

Cleavage
stage
vitrification

516
cycles

Cleavage
stage slow-
freezing

260
cycles

CPR, LBR,
cryosurvival
rate

Serious risk of bias due to randomization
method, concealment of allocation, and
blinding

Journal of Assisted
Reproduction and
Genetics: 1.772660

embryos
395
embryosSlow-freezing: 1.5 M PROH −

0.1 M Sucrose

Huang
et al.
(2005)

Taiwan Randomization
of embryos

Vitrification 20% EG + 20%
DMSO and 0.5 M sucrose – open
system

Blastocyst
vitrification

81
embryos

Blastocyst
slow-
freezing

72
embryos

cryosurvial
rate

Serious risk of bias due to randomization
method, concealment of allocation,
blinding

Human
Reproduction:
4.621

Slow-freezing: 5% glycerol + 9%
glycerol 0.2 M sucrose

Kim et al.
(2000)

USA Randomization
of embryos

Vitrification 5.5 M EG + 1 M
sucrose

Blastocyst
vitrification

42
cycles

Blastocyst
slow-
freezing

216
cycles

CPR,
cryosurvival
rate

Unclear risk of bias related to random
sequence generation, allocation of
concealment acceptable, and blinding

Fertility and
Sterility: 4.426

Slow freezing: 5% glycerol and 9%
glycerol + 0.2 M sucrose

141
embryos

790
embryos

Paffoni
et al.
(2008)

Italy Randomization
of sibling
oocytes

Vitrification 15% DMSO, 15% EG,
and 0.5 M sucrose – closed
system

Oocyte
vitrification

90
oocytes

Oocyte
slow-
freezing

90
oocytes

Cryosurvival
rate

Serious risk of bias due to randomization
method, concealment of allocation,
blinding

Reproductive
Sciences: 2.429

Slow freezing: 1.5 mol/L PROH
and 0.3 mol/L sucrose

Parmegiani
et al.
(2011)

Italy Randomization
of sibling
oocytes

Vitrification 15% EG + 15%
DMSO + 0.5 M sucrose – open
system

Oocyte
vitrification

168
oocytes

Oocyte
Fresh

120
oocytes

Cryosurvival
rate

Serious risk of bias due to randomization
method, concealment of allocation, and
blinding

RBM online:2.796

Rama Raju
et al.
(2005)

India Randomization
of embryos

Vitrification 40% EG + 0.6 M
sucrose – open system

Cleavage
stage
vitrification

84
cycles

Cleavage
stage slow-
freezing

80
cycles

CPR,
cryosurvival
rate

Unclear risk of bias related to random
sequence generation, allocation of
concealment acceptable, and blinding

RBM online:2.796

127
embryos

Slow-freezing: 1.5 M PROH- 0.1 M
Sucrose

120
embryos
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additional two studies described by the authors as RCT’s were not truly
randomized studies and were therefore included in the analysis with
observational studies (Li et al., 2007 and Summers et al., 2016).

LBR per cycle and/or per transfer was reported in six studies
(Kuwayama et al., 2005a,b; Wilding et al., 2010; Wang et al., 2012; Liu
et al., 2013; Van Landuyt et al., 2013; Kaartinen et al., 2016).

Slow-frozen versus vitrified embryos: survival
A secondary analysis was performed focusing on embryo cryosurvival
rate. Seven RCTs (Kim et al., 2000; Huang et al., 2005; Rama Raju et al.,
2005; Zheng et al., 2005; Balaban et al., 2008; Fasano et al., 2014;
Debrock et al.,2015) were included. Characteristics of these studies are
described in Table I. Moreover, 12 observational studies (Kuwayama
et al., 2005a,b; Stehilk et al., 2005; Liebermann and Tucker, 2006; Li
et al., 2007; Rezazadeh Valojerdi et al., 2009; Wilding et al., 2010; Sifer
et al., 2012; Wang et al., 2012; Van Landuyt et al., 2013 and Liu et al.,
2013; Zhu et al., 2015; Summers et al., 2016) and two meta-analyses
comparing results obtained with vitrification/warming and slow-freezing/
thawing (Loutradi et al., 2008; Kolibianakis et al., 2009) were identified.

Assessing the quality of each study
According to the WHO Handbook for Guideline Development (WHO,
2012) the quality of each study was assessed. In particular, each RCT was
evaluated for the following factors: how randomization was performed,
whether there was concealment of allocation, whether participants and
personnel were blinded to the intervention and outcome, whether there
was complete data reporting, whether an intention to treat analysis was
performed and whether any other potential sources of bias existed
(WHO, 2012). The overall risk of bias was classified as serious, not ser-
ious, or unclear and is presented in Table I for each randomized trial
included. The risk of bias is considered serious for all observational stud-
ies given the high risk for selection bias and confounding inherent in these
study designs.

Data synthesis and meta-analysis
Meta-analyses of studies were undertaken to estimate the pooled relative
risk ratios (RR) of outcomes including CPR per cycle, CPR per transfer and
cryosurvival of thawed/warmed oocytes or embryos. Statistical analyses
and construction of forest and funnel plots were performed with Stata ver-
sion 12.1 (StataCorp, TX, USA). RR and 95% CIs were calculated for each
outcome. A random effects model was used for the meta-analysis.
Heterogeneity was assessed with the use of the I2 test. Publication bias
was assessed by constructing funnel plots.

Assessment of the quality of the literature as
a whole
According to the WHO Handbook for Guideline Development (WHO,
2012) used to guide methodology in this systematic review, the quality of
the literature for each analysis was classified as high, moderate, low or
very low. A grade of high indicates that further research is very unlikely
to change confidence in the estimate of effect; moderate indicates that
further research is likely to have an important impact on confidence in
the estimate of effect and may change the estimate; low indicates that
further research is very likely to have an important impact on confidence
in the estimate of effect and is likely to change the estimate; very low
indicates that any estimate of effect is very uncertain (WHO, 2012).
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Factors used to determine the classification for any analysis took into
account the following factors: study design, consistency of the results
across the available studies, precision of the results (width of the CI), the
directness or generalizability of the results across populations, and the
likelihood of publications bias.

Results

Oocyte slow-freezing versus vitrification:
clinical outcomes and oocyte cryosurvival
A single RCT (Smith et al., 2010) revealed evidence of a difference in
favor of vitrification regarding ongoing pregnancy rate per cycle
(RR = 2.81, 95% CI: 1.05–7.51; P = 0.039; 48 and 30 cycles, vitrifica-
tion versus slow-freezing, respectively; low quality evidence) (Fig. 2a)
and per warmed/thawed oocyte (RR = 1.14, 95% CI: 1.02–1.28;
P = 0.018; 260 and 238 oocytes, vitrification versus slow-freezing,
respectively; low quality evidence). Limited evidence demonstrated
that clinical outcomes following vitrification versus slow-freezing were
similar when ongoing pregnancy rate was expressed per embryo trans-
fer (RR = 1.81, 95% CI: 0.71–4.67; P = 0.214; 47 and 19 transfers, vit-
rification versus slow-freezing, respectively; low quality evidence).

In two cohort studies (Fadini et al., 2009; Levi Setti et al., 2014)
the evidence also favored vitrification for CPR per cycle (RR = 1.72,
95% CI: 0.74–3.95; P = 0.212; 5460 and 9212 cycles, vitrification ver-
sus slow-freezing, respectively; I2 = 81.5%, very low quality evidence)
(Fig. 2b), per transfer (RR = 1.55, 95% CI: 0.82–2.92; P = 0.180, two
studies; I2 = 70.0%, very low quality evidence) and per warmed/
thawed oocyte (RR = 1.72, 95% CI: 0.84–3.52; P = 0.135; 26789
and 49264 oocytes, vitrification versus slow-freezing, respectively;
very low quality evidence). However, the differences were not statis-
tically significant. Of note the CPR per cycle was relatively low in the
unselected population of patients undergoing autologous oocyte
cryopreservation due to law restrictions for both approaches, 11.8%
and 14.4% for slow freezing and vitrification, respectively.

The superiority of vitrification over slow-freezing was also observed
when cryosurvival rates of MII oocytes were compared. In three RCTs
(Paffoni et al., 2008; Cao et al., 2009; Smith et al., 2010) MII cryosurvi-
val rate was 82.3% (602/731) following vitrification/warming and
66.1% (298/451) following slow-freezing/thawing (RR = 1.23, 95% CI:
1.02–1.49; P = 0.031; three studies; 1182 oocytes thawed; I2 = 82.9%,
low quality evidence) (Fig. 2c). In the three cohort studies, cryosurvival
rate after vitrification was also significantly higher than after slow-
freezing (RR = 1.23, 95% CI: 1.11–1.36, P < 0.001; three studies;
99 679 oocytes thawed; I2 = 91.6%, very low quality evidence) (Fadini
et al., 2009; Levi-Setti et al., 2016; Grifo and Noyes, 2010).

Oocyte slow-freezing versus fresh oocytes:
clinical outcomes
Analyses of the cohort studies (Chamayou et al., 2006; Borini et al.,
2010; Virant-Klun et al., 2011) in which sibling oocytes were not ran-
domized to be slow-frozen or used fresh revealed lower LBRs per
cycle with slow-freezing (RR = 0.49, 95% CI: 0.39–0.60; P < 0.0001;
three studies; 990 and 2271 cycles; I2 = 0.0%, very low quality evi-
dence) (Supplementary Fig. S1a), lower LBRs per transfer
(RR = 0.55, 95% CI: 0.44–0.68; P < 0.0001; three studies; 799 and

2046 cycles; I2 = 0.0%, very low quality evidence), and lower LBRs
per utilized oocyte (RR = 0.26, 95% CI: 0.21–0.32; P < 0.0001; three
studies; 5513 and 6670 cycles; I2 = 0.0%, very low quality evidence)
when slow-freeze was compared to fresh oocytes.

The CPR per cycle (RR = 0.42, 95% CI: 0.31–0.58; P < 0.0001;
five studies, 1809 and 3323 cycles, slow-freezing versus fresh,
respectively; I2 = 64.5%, very low quality evidence) (Supplementary
Fig. S1b), the CPR per transfer (RR = 0.45, 95% CI: 0.29–0.65, five
studies; P < 0.0001; 1534 and 2989 transfers; I2 = 78.5%, very low
quality evidence) and the CPR per utilized oocytes (RR = 0.29, 95%
CI: 0.25–0.35, four studies; 6600 and 9115 oocytes, slow-freezing
versus, fresh, respectively; P < 0.0001; I2 = 4.8%, very low quality
evidence) were all in favor of fresh oocytes as compared to slow-
frozen oocytes (Chamayou et al., 2006; Levi Setti et al., 2006; Borini
et al., 2007,2010; Virant-Klun et al., 2011). Each utilized slow-frozen
oocyte had a 2.27% (150/6600) likelihood of resulting in a pregnancy
in the population of women studied.

Oocyte vitrification versus fresh oocytes:
clinical outcomes
Analysis of a single RCT (Cobo et al., 2010) revealed no evidence for
a difference in ongoing CPR between the two groups when results
were expressed per woman randomized (RR = 1.03, 95% CI: 0.87–
1.21; P = 0.744, 300 women in each group; moderate quality evi-
dence), per cycle (RR = 1.01, 95% CI: 0.86–1.18; P = 0.934; 267 ver-
sus 259 cycles vitrification versus fresh, respectively; moderate quality
evidence) or per utilized oocyte (RR = 1.02, 95% CI: 0.82–1.26;
P = 0.873; 3286 versus 3185 oocytes, vitrification versus fresh,
respectively; moderate quality evidence).

The combined analysis of the cohort studies and the RCTs in
which sibling oocytes were randomized to be vitrified or used fresh
(Sole et al., 2013; Parmegiani et al., 2011; Trokoudes et al., 2011)
revealed no evidence of a difference between cycles using exclusively
vitrified versus fresh oocytes for LBR per cycle (RR = 1.04, 95% CI:
0.61–1.76, P = 0.892; three studies; 171 and 171 cycles, vitrification
versus fresh, respectively; I2 = 52.3%; very low quality evidence)
(Supplementary Fig. S2), LBR per oocyte utilized (RR = 2.35, 95% CI:
0.29–19.3, P = 0.427; two studies; 378 and 367 oocytes, vitrification
versus fresh, respectively; I2 = 58.5%; very low quality evidence)
(Parmegiani et al., 2011; Trokoudes et al., 2011), or LBR per transfer
(RR = 1.10, 95% CI: 0.64–1.88, P = 0.730; three studies; 166 and
170 transfers, vitrification versus fresh, respectively, I2 = 54.6%; very
low quality evidence). The two groups were also similar for CPR per
cycle (RR = 0.94, 95% CI: 0.81–1.10; P = 0.457; eight studies; 526
and 892 cycles, vitrification versus fresh, respectively; I2 = 22.9%,
very low quality evidence) (Sole et al., 2013; Antinori et al., 2007;
Almodin et al., 2010; Rienzi et al., 2010; Ubaldi et al., 2010; Garcia
et al., 2011; Parmegiani et al., 2011; Trokoudes et al., 2011); CPR
per transfer (RR = 0.97, 95% CI: 0.81–1.16; P = 0.714; seven st-
udies, 477 and 754 transfers, vitrification versus fresh, respectively;
I2 = 38.1%, very low quality evidence) (Sole et al., 2013; Antinori et al.,
2007; Almodin et al., 2010; Ubaldi et al., 2010; Garcia et al., 2011;
Parmegiani et al., 2011; Trokoudes et al., 2011); and CPR per oocyte
utilized (RR = 1.16, 95% CI: 0.57–2.69; P = 0.654; six studies; 1759
and 3832 oocytes, vitrification versus fresh, respectively; I2 = 89.5%,
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very low quality evidence) (Antinori et al., 2007; Almodin et al., 2010;
Ubaldi et al., 2010; Garcia et al., 2011; Parmegiani et al., 2011;
Trokoudes et al., 2011). Each utilized vitrified oocyte had an 8.36%
(147/1759) likelihood of resulting in a pregnancy in the population of
women studied.

Embryo slow-freezing versus vitrification
Slow-freezing versus vitrification: CPR
Given the limited number of RCTs available, results obtained in three
RCTs with slow-freezing/thawing versus vitrification/warming for

Figure 2 Comparison of slow-freezing versus vitrification: oocytes. (a) Comparison based on CPR/cycle for oocytes: RCT; (b) Comparison based
on CPR/cycle for oocytes: cohort studies; (c) Comparison based on oocyte cryosurvival rate: RCTs. CPR, clinical pregnancy rate.
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cleavage-stage embryos and blastocysts (Kim et al., 2000; Rama Raju
et al., 2005; Debrock et al., 2015) were pooled. Overall, 638 warming/
thawing cycles (vitrification: n = 247; slow-freezing: n = 391) were
included. Data from pronuclear-stage warming cycles were not available.
A higher CPR per cycle was obtained with embryo vitrification com-
pared with slow-freezing though this was of borderline statistical signifi-
cance (RR = 1.89, 95% CI: 1.00–3.58; P = 0.051, 638 cycles, three
RCTs; I2 = 71.9%, low quality evidence, Fig. 3a). However, a significant
difference in favor of vitrification was observed when CPR per embryo
transfer was calculated (RR = 1.51, 95% CI: 1.03–2.23; P = 0.036; 488
embryo transfers; three RCTs; I2 = 35%, low quality evidence, Fig. 3b).

When pooling data from cohort studies (Kuwayama et al., 2005a,b;
Stehlik et al., 2005; Liebermann and Tucker, 2006; Li et al., 2007;
Rezazadeh Valojerdi et al., 2009; Wilding et al., 2010; Sifer et al., 2012;
Wang et al., 2012; Liu et al., 2013; Van Landuyt et al., 2013; Zhu et al.,
2015; Kaartinen et al., 2016), there was a significantly higher CPR per
cycle (Supplementary Fig. S3a), but not per transfer, with vitrification
compared with slow-freezing (RR = 1.27, 95% CI: 1.05–1.55;
P = 0.015; eight observational studies; 8391 cycles; I2 = 76.5%, very
low quality evidence and RR = 1.07, 95% CI: 0.98–1.16; P = 0.16; 12
observational studies; 22 885 embryo transfers; I2 = 64.7%; very low
quality evidence, respectively).

When restricting the analysis of observational studies to those
including only cleavage-stage embryos (Kuwayama et al., 2005a,b;

Li et al., 2007; Rezazadeh Valojerdi et al., 2009; Wilding et al.,
2010; Sifer et al., 2012; Wang et al., 2012; Liu et al., 2013; Van
Landuyt et al., 2013; Zhu et al., 2015; Kaartinen et al., 2016), there
was no statistically significant difference in CPR per cycle or CPR
per transfer with vitrification compared with slow-freezing
(RR = 1.27, 95% CI: 1.00–1.55; P = 0.62; six observational stud-
ies; 7789 cycles; I2 = 78.8%, very low quality evidence and
RR = 1.05, 95% CI: 0.95–1.16; P = 0.33; 10 observational studies;
17 448 embryo transfers; I2 = 67%; very low quality evidence,
respectively).

When restricting the analysis of observational studies to those
including only blastocyst stage embryos (Kuwayama et al., 2005a,b;
Stehlik et al., 2005; Liebermann and Tucker, 2006), there was no
statistically significant difference in CPR per cycle or CPR per transfer
with vitrification compared with slow-freezing (RR = 1.51, 95% CI:
0.69–3.29; P = 0.31; two observational studies; 602 cycles; I2 =
78.8%, very low quality evidence and RR = 1.16, 95% CI: 0.89–1.50;
P = 0.27; three observational studies; 5437 embryo transfers; I2 =
61.8%; very low quality evidence, respectively).

Slow-freezing versus vitrification LBR
The LBR per cycle and per transfer was reported in only one RCT
performed with embryos at the cleavage-stage (Debrock et al.,
2015), with higher rates observed for vitrification (RR = 2.28; 95%

Figure 3 Comparison of slow-freezing versus vitrification: embryos. (a) Comparison of slow-freezing versus vitrification on CPR/cycle for
cleavage-stage embryos and blastocysts: RCTs; (b) Comparison of slow-freezing versus vitrification on CPR/embryo transfer for cleavage-stage
embryos and blastocysts: RCTs.
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CI: 1.17–4.44; P = 0.016; 216 cycles; low quality evidence and
RR = 1.862 95% CI: 0.97–3.58; P = 0.062; 179 embryo transfers;
low quality evidence, respectively).

Only three observational trials reported LBR per cycle (Wilding
et al., 2010; Wang et al., 2012; Van Landuyt et al., 2013)
(Supplementary Fig. S3b) and six reported LBR per transfer (Kuwayama
et al., 2005a,b; Wilding et al., 2010; Wang et al., 2012; Liu et al., 2013;
Van Landuyt et al., 2013; Kaartinen et al., 2016). No differences were
observed between vitrification and slow-freezing (RR = 1.05, 95% CI:
0.67–1.65; P = 0.831; 1621 cycles; I2 = 74.8%; very low quality evi-
dence and RR = 1.03, 95% CI: 0.91–1.18; P = 0.62; 14 996 embryo
transfers; I2 = 45.8%; very low quality evidence, respectively).

When restricting the analysis of observational studies to those
including only cleavage-stage embryos (Kuwayama et al., 2005a,b; Li
et al., 2007; Rezazadeh Valojerdi et al., 2009; Wilding et al., 2010;
Sifer et al., 2012; Wang et al., 2012; Liu et al., 2013; Van Landuyt
et al., 2013; Zhu et al., 2015; Kaartinen et al., 2016), there was no
significant difference in LBR per cycle or LBR per transfer with vitrifi-
cation compared with slow-freezing (RR = 1.05, 95% CI: 0.67–1.65;
P = 0.83; three observational studies; 1621 cycles; I2 = 74.8%, very
low quality evidence and RR = 1.02, 95% CI: 0.87–1.20; P = 0.77;
five observational studies; 10 153 embryo transfers; I2 = 52.7%; very
low quality evidence, respectively).

When restricting the analysis of observational studies to those
including only blastocyst stage embryos (Kuwayama et al., 2005a,b;
Stehlik et al., 2005; Liebermann and Tucker, 2006), there was no sig-
nificant difference in LBR per cycle with vitrification compared with
slow-freezing (RR = 1.10, 95% CI: 0.87–1.40; P = 0.42; 1 observa-
tional study; 4843 cycles; very low quality evidence).

Slow-freezing versus vitrification: embryo cryosurvival
Data were pooled from the seven RCTs (Kim et al., 2000; Huang et al.,
2005; Rama Raju et al., 2005; Zheng et al., 2005; Balaban et al., 2008;
Fasano et al., 2014; Debrock et al., 2015) involving 3615 cleavage-stage
embryos and blastocysts (slow-freezing: n = 2061; vitrification: n =
1554). The analysis revealed that vitrification was associated with a sig-
nificant improvement in embryo cryosurvival (RR = 1.59, 95% CI: 1.30–
1.93; P < 0.001; I2 = 93%; moderate quality evidence) (Fig. 4).

When restricted to cryosurvival of only cleavage-stage embryos,
vitrification was superior to slow-freezing (RR = 1.74, 95% CI: 1.39–
2.18; 2531 embryos; P < 0.001; I2 = 92.2%; moderate quality evi-
dence) (Rama Raju et al., 2005; Zheng et al., 2005; Balaban et al.,
2008; Fasano et al., 2014; Debrock et al., 2015). Post-warming cryo-
survival rates of vitrified blastocysts were also higher than those
observed with slow-freezing, but did not reach statistical significance
(RR = 1.25: 95% CI: 0.93–1.67; P = 0.13; two RCTs; 1084 blasto-
cysts; I2 = 82.2%, moderate quality evidence).

Twelve cohort studies (Kuwayama et al., 2005a,b; Stehlik et al., 2005;
Liebermann and Tucker, 2006; Li et al., 2007; Rezazadeh Valojerdi
et al., 2009; Wilding et al., 2010; Sifer et al., 2012; Wang et al., 2012;
Liu et al., 2013; Van Landuyt et al., 2013; Zhu et al., 2015; Summers
et al., 2016) with 64 982 cryopreserved pronuclear stage, cleavage-stage
embryos or blastocysts were identified. The pooled data showed that
vitrification was associated with a significant improvement in embryo
cryosurvival (RR = 1.12, 95% CI: 1.07–1.18; P < 0.001; I2 = 98.6% very
low quality evidence) (Supplementary Fig. S4). When stratified by
embryo stage, the cryosurvival rates favored vitrification for both
cleavage-stage embryos (RR = 1.14, 95% CI: 1.07–1.22; P < 0.001; 10
cohort studies; 49 200 embryos; I2 = 99%; very low quality evidence)
and blastocysts (RR = 1.08, 95% CI: 1.02–1.15; P = 0.005; three cohort
studies; I2 = 70.0%, very low quality evidence).

Discussion
The principal findings of this systematic review and meta-analysis
support vitrification as being superior to slow-freezing for cryopreser-
vation of both human oocytes and embryos in clinical ART. While
the quality of the evidence for clinical outcomes comparing the two
cryopreservation methods was mostly low and based on clinical preg-
nancy, rather than live-birth, that for post-thaw cryosurvival of
oocytes and embryos was moderate.

The introduction of vitrification over the last decade and its exten-
sive application has improved human oocyte and embryo cryosurvival
rates and clinical outcomes after replacement of embryos cryopre-
served at different stages of development. As shown in this study,
recent evidence has revealed that this technique has closed the gap

Figure 4 Comparison of slow-freezing versus vitrification on cryosurvival rate for cleavage-stage embryos and blastocysts: RCTs.
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between fresh and cryopreserved oocytes in good-prognosis patients.
However, although vitrification has allowed a substantial improve-
ment in oocyte cryosurvival, when applied in an unselected popula-
tion of patients (e.g. as a result of law) the clinical outcomes
remained generally low (Fig. 2b). For embryo and blastocyst cryosur-
vival, available data suggest an improvement with the use of vitrifica-
tion compared to slow-freezing, albeit over a wide range (30–93%).
Accordingly, a typical laboratory could improve from ~60% embryo
cryosurvival rate using slow-freezing to 78–100% embryo cryosurvival
rate using vitrification. A beneficial treatment effect was also identi-
fied in RCTs for CPRs and LBRs per embryo and/or blastocyst
warming cycle and per transfer.

Due to the improved cryosurvival outcomes with vitrification
(Evans et al., 2014; Argyle et al., 2016) many laboratories worldwide
have completely replaced slow-freezing with vitrification. It is there-
fore unlikely that additional prospective comparisons with current
protocols will be performed.

The optimized oocyte/embryo/blastocyst cryosurvival rates and
clinical outcomes achieved with the use of vitrification have important
clinical implications, which together allow a personalized approach in
the care of different patient populations (Fig. 5).

Contribution of cryopreservation to the
cumulative LBR
Cryopreserved embryo transfers contribute substantially to the total
success rate of an IVF cycle. Cumulative live birthrate (CLB) is
defined as the likelihood of having an offspring after the utilization of
all retrieved oocytes and associated embryos, thereby involving the
transfer of fresh as well as all cryopreserved embryos. CLB is
acknowledged as the most appropriate outcome measure in IVF to
be used by practitioners and health administrators (Tiitinen et al.,

2001). It has been estimated that in Europe in 2011 cryopreservation
contributed to the overall LBR by 4% (LBR increasing from 19.7%
with only fresh cycles to 24.0% including cryo-cycles) (Kupka et al.,
2016). In countries where cryopreservation is systematically applied,
the contribution is even more apparent: Finland +13.4%, Switzerland
+10.2% and Australia and New Zealand +13.5% (Macaldowie et al.,
2012; Kupka et al., 2016). These data reflect improvements obtained
in embryo culture, cryopreservation technologies and/or the adop-
tion of a more conservative embryo transfer policy (i.e. when fewer
embryos are transferred in fresh cycles, more are available for
cryopreservation).

Embryo transfer policy and cryopreservation
Considerable differences exist in embryo transfer policies across the
world. Where not legally restricted, the number of embryos transferred
simultaneously depends upon clinical decision-making, reimbursement
strategies and other financial considerations and competency in cryo-
preservation technologies. Despite a general trend towards transferring
fewer embryos (Clua et al., 2012), the mean percentage of single
embryo transfers was only 27% in Europe in 2011 (Kupka et al., 2016)
and 17% in the USA (CDC, 2011). On the other hand, in Australia and
New Zealand, single embryo transfer is performed in more than 75% of
cycles (Macaldowie et al., 2012). The incidence of multiple pregnancies,
an unavoidable outcome of IVF when more than one embryo is
transferred, is strongly correlated to the embryo transfer policy and
varies from 19.8% in USA (CDC, 2011) and 19.2% in Europe (Kupka
et al., 2016) to 6.5% in Australia and New Zealand (Macaldowie
et al., 2012).

The main reasons for transferring more than one embryo are asso-
ciated with the relative low efficiency of IVF, the poor prediction for
embryo implantation potential and concerns regarding the quality of
cryopreservation programmes. Other motivations are also related to
the emotional and financial burden of ART treatment and lack of
strong guidelines or regulatory bodies concerning embryo transfer
policy (ESHRE Campus report 2001). In this context, it is clear that
improvements in embryology technologies, including embryo assess-
ment and cryopreservation protocols, are essential for promoting sin-
gle embryo transfer policies with an aim to reduce the maternal and
neonatal risks associated with multiple gestations. Of note, elective
single embryo transfer policy combined with enhanced embryo selec-
tion and vitrification is also a realistic option in poor-prognosis
patients of advanced maternal age (Ubaldi et al., 2015).

IVF cycle segmentation
A new strategy, called ‘cycle segmentation’, has recently been pro-
posed that comprises a planned ‘freeze all’ of all oocytes and/or
embryos. In this setting ovarian stimulation is optimized, including
final oocyte maturation triggering with GnRH agonist in an antagonist
cycle, all oocytes and/or embryos are cryopreserved (segment A)
and later transferred to a receptive endometrium in a subsequent
cycle (segment B) (Devroey et al., 2011). This approach has been
tested with cryopreserved oocytes, pronuclear-stage and/or cleaved
embryos in patients at risk of ovarian hyperstimulation syndrome
(OHSS) (Griesinger et al., 2007,2011; Herrero et al., 2011). With this
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Figure 5 Clinical implications related to optimization of cryo-
preservation in IVF.
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strategy, the risk of OHSS can be almost eliminated (Fatemi et al.,
2010; Youssef et al., 2014).

Furthermore, transfer of exclusively cryopreserved single blasto-
cysts in a population-based cohort study was found to decrease the
risk of ectopic pregnancy (Li et al., 2015) and increase IVF success
rates with no increase in adverse perinatal outcomes (Li et al., 2014).
Improvements of clinical and ongoing pregnancy rates with the use of
cryopreserved compared to fresh embryos have been reported in a
recent meta-analysis (Roque et al., 2013). Additionally, similar efficacy
was found in an RCT comparing outcomes following fresh transfer to
that following freeze-all at either the blastocyst or the pronuclear-
stage (Shapiro et al., 2015). Although cryopreservation cannot guar-
antee the survival of all embryos, these results clearly underscore the
utility of cryopreservation in increasing the safety of IVF treatments,
especially among high-responder patients, without affecting the cumu-
lative pregnancy rate.

Cryopreservation and enhanced embryo
evaluation
Embryo evaluation continues to be performed primarily by morpho-
logical assessment and/or morphokinetic analysis at different stages
of development. However, static and dynamic morphological evalua-
tions have limited clinical value (Guerif et al., 2007; Racowsky et al.,
2009; Kaser and Racowsky 2014). Significant improvements in
implantation rates in different patient populations have been obtained
by the introduction of chromosomal aneuploidy testing at the blasto-
cyst stage (Dahdouh et al., 2015; Lee et al., 2015). This strategy com-
bines different procedures including blastocyst culture, biopsy and
cryopreservation. The improvements in cryosurvival rates achieved
with vitrification of biopsied blastocysts (Escriba et al., 2008; Zhang
et al., 2009) have provided an important contribution to the wide-
spread implementation of this technology. Future challenges in
embryology will deal with further enhancement of embryo evaluation
beyond aneuploidy testing and to identify the patient populations
best served by such testing. Several studies are currently ongoing that
investigate correlations among ‘-omic’ profiling, metabolism, spent
culture media analysis and embryo quality (reviewed in Gardner
et al., 2015). These studies offer promise in the coming years to
increase the predictive power for implantation. The availability of reli-
able vitrification protocols for cryopreservation allows an extension
of time available for embryo evaluation by such indirect measures,
thereby affording a potential for implementation of new validated
approaches for embryo selection.

New possibilities related to oocyte
cryopreservation
Oocyte cryopreservation is a relatively new technology in ART but
has already important indications. One of the most common applica-
tions of oocyte cryopreservation is for oocyte donation programmes.
The introduction of oocyte banks offers different advantages including
reduced waiting time, no need for patient synchronization, improved
safety to prevent disease transmission and the possibility to increase
donor pools. The increased availability of vitrified donor eggs has, in
turn, allowed the widespread application of oocyte donation and the

implementation of new forms of collaboration between centres (even
when located in different countries). For example, an egg bank may
provide donor evaluation and screening, ovarian stimulation, oocyte
retrieval and cryopreservation, and then release these cryopreserved
donor oocytes for recipient use at associated IVF clinics (Nagy et al.,
2015). Consequently, oocyte vitrification has provided important
benefits for patients requiring donation, especially in those countries
where there is a lack of donors.

Oocyte cryopreservation can be used as a new strategy to accu-
mulate oocytes in poor-responder patients (Cobo et al., 2012). It is
also a back-up procedure, which can be performed in case of failure
to obtain a semen sample on the day of oocyte retrieval.

The developments in oocyte cryopreservation after the introduc-
tion of vitrification have also increased incentives to offer fertility
preservation for patients receiving gonadotoxic therapies for cancer
or other medical diseases (ASRM 2013; De Vos et al., 2014). The
possibility of preserving oocytes is of considerable importance in this
context. Oocyte cryopreservation, instead of the use of male-partner/
donor sperm to create embryos, allows the possibility of reproductive
autonomy in women without partners at the time when their fertility
preservation is desired (Rienzi and Ubaldi, 2015). Finally, oocyte vitri-
fication can also be used for elective fertility preservation for women
who are conscious of the decline in oocyte quality and quantity with
advancing maternal age but who are not ready to become pregnant
(Stoop 2011).

Of note, when oocyte cryopreservation is imposed by law restric-
tions and applied to an unselected population of infertile patients the
clinical outcomes are compromised.

Standardization of protocols and automation
Unlike slow-freezing, vitrification does not require a programmable
freezing machine to provide specific cooling parameters. The technique
is exclusively manual and is thus operator dependent. Furthermore, dif-
ferent commercial kits for vitrification are available and differ with
respect to the solutions and devices utilized. Vitrification effectiveness
may thus be highly variable and dependent on the protocols and
experience of a laboratory. The heterogeneity of methods applied can
create challenges with transportation of vitrified samples between
laboratories using different cryoprotectant mixtures and/or vitrification
devices. A rigorous process of standardization is therefore advocated.
Comparative studies should be undertaken to establish best practices
that would then be adopted universally (as occurred for slow-freezing
30 years ago). Indeed, attempts to promote standardization, consi-
stency and efficiency are already underway with the introduction
of automation (Roy et al., 2014). However, this approach requires
considerable financial investment and its implementation is thus still
limited.

Obstetric and perinatal outcomes
Although cryopreservation of oocytes and embryos is now a well-
established procedure, long-term follow-up studies of children are
still sparse. Data from systematic reviews and individual cohort stud-
ies are mostly reassuring, suggesting that pregnancies obtained from a
cryopreserved oocyte and/or embryo transfer are not associated
with increased perinatal risks compared with those resulting from

151Slow-freezing versus vitrification in ART



fresh embryo transfer (Wang et al., 2005; Chian et al., 2009; Noyes
et al., 2009; Wennerholm et al., 2009; Cobo et al., 2010; Pelkonen
et al., 2010; Pinborg et al., 2010; Maheshwari et al., 2012; Levi-Setti
et al., 2013; Liu et al., 2013; Cobo et al., 2014; Belva et al., 2016; De
Munch et al., 2016; Levi-Setti et al., 2016). Obstetric and perinatal
complications (e.g. antepartum haemorrhage, preterm birth, small for
gestational age, low birthweight and perinatal mortality) are even
lower when frozen or vitrified embryos are replaced, likely as a con-
sequence of the natural uterine environment that may better support
early placentation and embryogenesis (Wennerholm et al., 2009;
Maheshwari et al., 2012; Belva et al., 2016). Moreover, further
reassuring evidence comes from studies evaluating the safety of
oocyte vitrification in oocyte donation programmes (Chian et al.,
2009; Noyes et al., 2009; Cobo et al., 2010; Cobo et al., 2014; De
Munch et al., 2016) and in fertility preservation patients (Martinez
et al., 2014).

Conclusions
Cryopreservation is an essential component in the treatment of
patients undergoing ART and should be optimized in every IVF
laboratory, as it allows for increased cumulative LBRs and offers the
possibility to reduce multiple gestations and OHSS risk. According to
the available evidence appraised in this systematic review and meta-
analysis, vitrification is the best strategy for cryopreservation of all
developmental stages from mature oocyte to embryos at the blasto-
cyst stage. As this technique significantly increases oocyte and
embryo cryosurvival rates when compared to slow-freezing, it has led
to an improvement in clinical outcomes in cryopreserved cycles and
also has made fertility preservation and donor oocyte banks a viable
option for patients. Furthermore, it allows for reliable segmentation
of the IVF cycle by temporally disconnecting the stimulation process
from embryo transfer; consequently, this affords additional time for
new invasive and non-invasive methods of embryo selection. Finally, if
standardized and/or automated, the consistency and efficiency of the
technique would likely be assured across all laboratories.
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online.

Acknowledgements
The authors acknowledge the assistance of Ms Jessica Goldstein, RN,
with the systematic search of the literature pertaining to oocyte cryo-
preservation and Mary D. Sammel, ScD, with data analysis.

Authors’ roles
Conception and design (LR, CR, SV, CG); search strategy (RM, AL,
DJK); data extraction, analysis (CG) and interpretation (all authors);
drafting the manuscript (LR); critical revision of the manuscript (all
authors).

Funding
This study was funded by the World Health Organization (WHO) to
support the gathering of evidence in the context of the WHO Global
Consultation for the development of global guidance: Addressing
evidence-based guidance on infertility diagnosis, management and
treatment.

Conflict of interest
None declared.

References
AbdelHafez FF, Desai N, Abou-Setta AM, Falcone T, Goldfarb J. et al. Slow-freezing,

vitrification and ultra-rapid freezing of human embryos: a systematic review and
meta-analysis. Reprod Biomed Online 2010;20:209–222.

Abdelhafez F, Xu J, Goldberg J, Desai N. Vitrification in open and closed carriers at dif-
ferent cell stages: assessment of embryo survival, development, dna integrity and
stability during vapor phase storage for transport. BMC Biotechnol 2011;11:29.

Almodin CG, Minguetti-Camara VC, Paixao CL, Pereira PC. Embryo development
and gestation using fresh and vitrified oocytes. Hum Reprod 2010;25:1192–1198.

Antinori M, Licata E, Dani G, Cerusico F, Versaci C, Antinori S. Cryotop vitrifica-
tion of human oocytes results in high survival rate and healthy deliveries. Reprod
Biomed Online 2007;14:72–79.

Argyle CE, Harper JC, Davies MC. Oocyte cryopreservation: where are we now?
Hum Reprod Update 2016;22:440–449.

Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, Gardner DK. A ran-
domized controlled study of human Day 3 embryo cryopreservation by slow-
freezing or vitrification: vitrification is associated with higher survival, metabolism
and blastocyst formation. Hum Reprod 2008;23:1976–1982.

Belva F, Bonduelle M, Roelants M, Verheyen G, Van Landuyt L. Neonatal health
including congenital malformation risk of 1072 children born after vitrified
embryo transfer. Hum Reprod 2016;31:1610–1620.

Bernal D, Colturato LF, Leef DM, Kort HI, Nagy ZP. Evaluation of blastocyst recu-
peration, implantation and pregnancy rates after vitrification/warming or slow
freezing/ thawing cycles. Fertil Steril 2008;90:277–278.

Borini A, Lagalla C, Bonu MA, Bianchi V, Flamigni C, Coticchio G. Cumulative preg-
nancy rates resulting from the use of fresh and frozen oocytes: 7 years’ experi-
ence. Reprod Biomed Online 2006a;12:481–486.

Borini A, Sciajno R, Bianchi V, Sereni E, Flamigni C, Coticchio G. Cinical outcome
of oocyte cryopreservation after slow-cooling with a protocol utilizing a high
sucrose concentration. Hum Reprod 2006b;21:512–517.

Borini A, Bianchi V, Bonu MA, Sciajno R, Sereni E, Cattoli M, Mazzone S, Trevisi
MR, Iadarola I, Distratis V et al. Evidence-based clinical outcome of oocyte slow-
cooling. Reprod Biomed Online 2007;15:175–181.

Borini A, Levi Setti PE, Anserini P, De Luca R, De Santis L, Porcu E, La Sala GB,
Ferraretti A, Bartolotti T, Coticchio G et al. Multicenter observational study on
slow-cooling oocyte cryopreservation: clinical outcome. Fertil Steril 2010;94:
1662–1668.

Cao YX, Xing Q, Li L, Cong L, Zhang ZG, Wei ZL, Zhou P. Comparison of sur-
vival and embryonic development in human oocytes cryopreserved by slow-
freezing and vitrification. Fertil Steril 2009;92:1306–1311.

CDC, Centres for Disease Control and Prevention. Reproductive Health. Assisted
Reproductive Technology. National Summary and Fertility Clinic Reports 2011.
http://www.cdc.gov/ART/ART2011.

Chamayou S, Alecci C, Ragolia C, Storaci G, Maglia E, Russo E, Guglielmino A.
Comparison of in-vitro outcomes from cryopreserved oocytes and sibling fresh
oocytes. Reprod Biomed Online 2006;12:730–736.

Chian RC, Huang JY, Gilber L, Son WY, Holzer H, Cui SJ, Buckett WM, Tulandi T,
Tan SL. Obstetric outcomes following vitrification of in vitro and in vivo matured
oocytes. Fertil Steril 2009;91:2391–2398.

Cil AP, Bang H, Oktay K. Age-specific probability of live birth with oocyte cryo-
preservation: an individual patient data meta-analysis. Fertil Steril 2013;100:492–
499.

152 Rienzi et al.

http://humupd.oxfordjournals.org/lookup/suppl/doi:10.1093/humupd/dmw038/-/DC1
http://humupd.oxfordjournals.org/lookup/suppl/doi:10.1093/humupd/dmw038/-/DC1
http://www.cdc.gov/ART/ART2011


Clua E, Tur R, Coroleu B, Boada M, Rodríguez I, Barri PN, Veiga A. Elective single-
embryo transfer in oocyte donation programmes: should it be the rule? Reprod
Biomed Online 2012;25:642–648.

Cobo A, Kuwayama M, Pérez S, Ruiz A, Pellicer A, Remohí J. Comparison of con-
comitant outcome achieved with fresh and cryopreserved donor oocytes vitri-
fied by the Cryotop method. Fertil Steril 2008;89:1657–1664.

Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an
ovum donation programme: a prospective, randomized, controlled, clinical trial.
Hum Reprod 2010;25:2239–2246.

Cobo A, Remohí J, Chang CC, Nagy ZP. Oocyte cryopreservation for donor egg
banking. Reprod Biomed Online 2011a;23:341–346.

Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and
meta-analysis of randomized controlled trials. Fertil Steril 2011b;96:277–285.

Cobo A, Garrido N, Crespo J, José R, Pellicer A. Accumulation of oocytes: a new
strategy for managing low-responder patients. Reprod Biomed Online 2012;24:
424–432.

Cobo A, Serra V, Garrido N, Olmo L, Pellicer A, Remohí J. Obstetric and peri-
natal outcome of babies born from vitrified oocytes. Fertil Steril 2014;102:
1006–1015.

Cohen J, Simons RF, Edwards RG, Fehilly CB, Fishel SB. Pregnancies following the
frozen storage of expanding human blastocysts. J In Vitro Fert Embryo Transf 1985;
2:59–64.

Coetsier T, Dhont M. Avoiding multiple pregnancies in in-vitro fertilization: who’s
afraid of single embryo transfer? Hum Reprod 1998;13:2663–2664.

Debrock S, Peeraer K, Fernandez Gallardo E, De Neubourg D, Spiessens C, D’Hooghe
TM. Vitrification of cleavage stage day 3 embryos results in higher live birth rates
than conventional slow-freezing: a RCT. Hum Reprod 2015;30:1820–1830.

De Munck N, Santos-Ribeiro S, Stoop D, Van de Velde H, Verheyen G. Open ver-
sus closed oocyte vitrification in an oocyte donation program: a prospective ran-
domized sibling oocyte study. Hum Reprod 2016;31:337–384.

De Santis L, Cino I, Rabellotti E, Papaleo E, Calzi F, Fusi FM, Brigante C, Ferrari A.
Oocyte cryopreservation: clinical outcome of slow-cooling protocols differing in
sucrose concentration. Reprod Biomed Online 2007;14:57–63.

De Vos M, Smitz J, Woodruff TK. Fertility preservation in women with cancer.
Lancet 2014;384:1302–1310.

Devroey P, Polyzos NP, Blockeel C. An OHSS-Free Clinic by segmentation of IVF
treatment. Hum Reprod 2011;26:2593–2597.

Doyle JO, Richter KS, Lim J, Stillman RJ, Graham JR, Tucker MJ. Successful elective
and medically indicated oocyte vitrification and warming for autologous in vitro
fertilization, with predicted birth probabilities for fertility preservation according
to number of cryopreserved oocytes and age at retrieval. Fertil Steril 2016;105:
459–466.

Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus
vitrification) of human oocytes and embryos. Hum Reprod Update 2012;18:536–
554.

Escribá MJ, Zulategui JF, Galán A, Mercader A, Remohí J. de los Santos MJ.
Vitrification of preimplantation genetically diagnosed human blastocysts and its
contribution to the cumulative ongoing pregnancy rate per cycle by using a
closed device. Fertil Steril 2008;89:840–846.

Ethics Committee of American Society for Reproductive Medicine. Fertility preser-
vation and reproduction in patients facing gonadotoxic therapies: a committee
opinion. Fertil Steril 2013;100:1224–1231.

Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, Salamonsen
LA, Rombauts L. Fresh versus frozen embryo transfer: backing clinical decisions
with scientific and clinical evidence. Hum Reprod Update 2014;20:808–821.

Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C. Human oocyte
cryopreservation: new perspectives regarding oocyte survival. Hum Reprod 2001;
16:411–416.

Fadini R, Brambillasca F, Renzini MM, Merola M, Comi R, De Ponti E, Dal Canto
MB. Human oocyte cryopreservation: comparison between slow and ultrarapid
methods. Reprod Biomed Online 2009;19:171–180.

Fasano G, Fontenelle N, Vannin AS, Biramane J, Devreker F, Englert Y, Delbaere
A. A randomized controlled trial comparing two vitrification methods versus
slow-freezing for cryopreservation of human cleavage stage embryos. J Assist
Reprod Genet 2014;31:241–247.

Dahdouh EM, Balayla J, García-Velasco JA. Impact of blastocyst biopsy and compre-
hensive chromosome screening technology on preimplantation genetic

screening: a systematic review of randomized controlled trials. Reprod Biomed
Online 2015;30:281–289.

ESHRE Campus Course Report. Prevention of twin pregnancies after IVF/ICSI by
single embryo transfer. Hum Reprod 2001;4:790–800.

Fatemi HM, Kyrou D, Bourgain C, Van den Abbeel E, Griesinger G, Devroey P.
Cryopreserved-thawed human embryo transfer: spontaneous natural cycle is
superior to human chorionic gonadotropin-induced natural cycle. Fertil Steril
2010;94:2054–2058.

Forman EJ, Li X, Ferry KM, Scott K, Treff NR, Scott RT Jr. Oocyte vitrification does
not increase the risk of embryonic aneuploidy or diminish the implantation
potential of blastocysts created after intracytoplasmic sperm injection: a novel,
paired randomized controlled trial using DNA fingerprinting. Fertil Steril 2012;3:
644–649.

Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation
embryo viability. Hum Reprod Update 2015;21:727–747.

García JI, Noriega-Portella L, Noriega-Hoces L. Efficacy of oocyte vitrification com-
bined with blastocyst stage transfer in an egg donation program. Hum Reprod
2011;26:782–790.

Glujovsky D, Riestra B, Sueldo C, Fiszbajn G, Repping S, Nodar F, Papier S,
Ciapponi A. Vitrification versus slow-freezing for women undergoing oocyte
cryopreservation. Cochrane Database Syst Rev 2014;5:CD010047.

Griesinger G, von Otte S, Schroer A, Ludwig AK, Diedrich K, Al-Hasani S,
Schultze-Mosgau A. Elective cryopreservation of all pronuclear oocytes after
GnRH agonist triggering of final oocyte maturation in patients at risk of develop-
ing OHSS: a prospective, observational proof-of-concept study. Hum Reprod
2007;22:1348–1352.

Griesinger G, Schultz L, Bauer T et al. Ovarian hyperstimulation syndrome preven-
tion by gonadotropin-releasing hormone agonist triggering of final oocyte matur-
ation in a gonadotropin-releasing hormone antagonist protocol in combination
with a ‘freeze-all’ strategy: a prospective multicentric study. Fertil Steril 2011;95:
2029–2033.

Grifo JA, Noyes N. Delivery rate using cryopreserved oocytes is comparable to
conventional in vitro fertilization using fresh oocytes: potential fertility preserva-
tion for female cancer patients. Fertil Steril 2010;93:391–396.

Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R, Gasnier O, Royere D.
Limited value of morphological assessment at days 1 and 2 to predict blastocyst
development potential: a prospective study based on 4042 embryos. Hum
Reprod 2007;2:1973–1981.

Heng BC. Oocyte cryopreservation as alternative to embryo cryopreservation -
some pertinent ethical concerns. Reprod Biomed Online 2007;14:402–403.

Herrero L, Pareja S, Losada C, Cobo AC, Pellicer A, Garcia-Velasco JA. Avoiding
the use of human chorionic gonadotropin combined with oocyte vitrification and
GnRH agonist triggering versus coasting: a new strategy to avoid ovarian hyper-
stimulation syndrome. Fertil Steril 2011;95:1137–1140.

Huang CC, Lee TH, Chen SU et al. Successful pregnancy following blastocyst cryo-
preservation using super-cooling ultra-rapid vitrification. Hum Reprod 2005;20:
122–128.

Isachenko V, Montag M, Isachenko E, Dessole S, Nawroth F, van der Ven H.
Aseptic vitrification of human germinal vesicle oocytes using dimethyl sulfoxide
as a cryoprotectant. Fertil Steril 2006;85:741–747.

Jelinkova L, Selman HA, Arav A, Strehler E, Reeka N, Sterzik K. Twin pregnancy
after vitrification of 2-pronuclei human embryos. Fertil Steril 2002;77:412–414.

Jericho H, Wilton L, Gook DA, Edgar DH. A modified cryopreservation method
increases the survival of human biopsied cleavage stage embryos. Hum Reprod
2003;18:568–571.

Jin B, Mazur P. High survival of mouse oocytes/embryos after vitrification without
permeating cryoprotectants followed by ultra-rapid warming with an IR laser
pulse. Sci Rep 2015;5:927.

Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplan-
tation embryos with time-lapse monitoring: a systematic review. Hum Reprod
Update 2014;20:617–631.

Kaartinen N, Kananen K, Huhtala H, Keränen S, Tinkanen H. The freezing method
of cleavage stage embryos has no impact on the weight of the newborns. J Assist
Reprod Genet 2016;33:393–399.

Kim S, Lee S, Lee J et al. Study on the vitrification of human blastocysts. II: Effect of
vitrification on the implantation and the pregnancy of human blastocysts. Korean
J Fertil Steril 2000;27:67–74.

153Slow-freezing versus vitrification in ART



Kolibianakis EM, Venetis CA, Tarlatzis BC. Cryopreservation of human embryos by
vitrification or slow-freezing: which one is better? Curr Opin Obstet Gynecol 2009;
21:270–274.

Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A. Birth following vitrifica-
tion of a small number of human oocytes: case report. Hum Reprod 1999;14:
3077–3079.

Kuleshova LL, Shaw JM. A strategy for rapid cooling of mouse embryos within a
double straw to eliminate the risk of contamination during storage in liquid nitro-
gen. Hum Reprod 2000;15:2604–2609.

Kupka MS, D’Hooghe T, Ferraretti AP, de Mouzon J, Erb K, Castilla JA, Calhaz-
Jorge C, De Geyter CH, Goossens V. Assisted reproductive technology in
Europe, 2011: results generated from European registers by ESHRE. Hum Reprod
2016;31:233–248.

Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method
for cryopreservation of human oocytes. Reprod Biomed Online 2005a;11:
300–308.

Kuwayama M, Vajta G, Ieda S et al. Comparison of open and closed methods for
vitrification of human embryos and the elimination of potential contamination.
Reprod Biomed Online 2005b;11:608–614.

La Sala GB, Nicoli A, Villani MT, Pescarini M, Gallinelli A, Blickstein I. Outcome of
518 salvage oocyte-cryopreservation cycles performed as a routine procedure in
an in vitro fertilization program. Fertil Steril 2006;86:1423–1427.

Lassalle B, Testart J, Renard JP. Human embryo features that influence the suc-
cess of cryopreservation with the use of 1,2 propanediol. Fertil Steril 1985;44:
645–651.

Lee E, Illingworth P, Wilton L, Chambers GM. The clinical effectiveness of preim-
plantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): sys-
tematic review. Hum Reprod 2015;30:473–483.

Leibo SP, Songsasen N. Cryopreservation of gametes and embryos of non-
domestic species. Theriogenology 2002;57:303–326.

Levi Setti PE, Albani E, Novara PV, Cesana A, Morreale G. Cryopreservation of
supernumerary oocytes in IVF/ICSI cycles. Hum Reprod 2006;21:370–375.

Levi Setti PE, Albani E, Morenghi E, Morreale G, Delle Piane L, Scaravelli G, Patrizio
P. Comparative analysis of fetal and neonatal outcomes of pregnancies from
fresh and cryopreserved/thawed oocytes in the same group of patients. Fertil
Steril 2013;100:396–401.

Levi Setti PE, Porcu E, Patrizio P, Vigiliano V, de Luca R, d’Aloja P, Spoletini R,
Scaravelli G. Human oocyte cryopreservation with slow-freezing versus vitrifica-
tion. Results from the National Italian Registry Data, 2007-2011. Fertil Steril
2014;102:90–95.

Levi-Setti PE, Borini A, Patrizio P, Bolli S, Vigiliano V, De Luca R, Scaravelli G. ART
results with frozen oocytes: data from the Italian ART registry (2005-2013).
J Assist Reprod Genet 2016;33:123–128.

Li Y, Chen ZJ, Yang HJ et al. Comparison of vitrification and slow-freezing of human
day 3 cleavage stage embryos: post vitrification development and pregnancy out-
comes. Zhonghua Fu Chan Ke Za Zhi 2007;42:753–755.

Li Z, Wang YA, Ledger W, Edgar DH, Sullivan EA. Clinical outcomes following
cryopreservation of blastocysts by vitrification or slow-freezing: a population-
based cohort study. Hum Reprod 2014;29:2794–2801.

Li Z, Sullivan EA, Chapman M, Farquhar C, Wang YA. Risk of ectopic pregnancy
lowest with transfer of single frozen blastocyst. Hum Reprod 2015;30:
2048–2054.

Liebermann J, Tucker MJ. Comparison of vitrification and conventional cryopreser-
vation of day 5 and day 6 blastocysts during clinical application. Fertil Steril 2006;
86:20–26.

Liu SY, Teng B, Fu J, Li X, Zheng Y, Sun XX. Obstetric and neonatal outcomes
after transfer of vitrifiedearlycleavageembryos. Hum Reprod 2013;28:2093–2100.

Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I,
Tarlatzis BC. Cryopreservation of human embryos by vitrification or slow-freez-
ing: a systematic review and meta-analysis. Fertil Steril 2008;90:186–193.

Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and
perinatal outcomes in singleton pregnancies resulting from the transfer of frozen
thawed versus fresh embryos generated through in vitro fertilization treatment:
a systematic review and meta-analysis. Fertil Steril 2012;98:368–337.

Macaldowie A, Wang YA, Chambers GM, Sullivan EA. Assisted Reproductive
Technology in Australia and New Zealand 2010. Sydney, NSW: Australian Institute
of Health and Welfare, 2012.

Martinez M, Rabadan S, Domingo J, Cobo A, Pellicer A, Garcia-Velasco JA.
Obstetric outcome after oocyte vitrification and warming for fertility preserva-
tion in women with cancer. Reprod Biomed Online 2014;29:722–728.

Mazur P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian
embryos. Cell Biophys 1990;17:53–92.

Mukaida T, Wada S, Takahashi K, Pedro PB, An TZ, Kasai M. Vitrification of human
embryos based on the assessment of suitable conditions for 8-cell mouse
embryos. Hum Reprod 1998;13:2874–2879.

Nachtigall RD, Mac Dougall K, Lee M, Harrington J, Becker G. What do patients
want? Expectations and perceptions of IVF clinic information and support regard-
ing frozen embryo disposition. Fertil Steril 2010;94:2069–2072.

Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Elsner CW, Mitchell-Leef D, Toledo
AA, Kort HI. Clinical evaluation of the efficiency of an oocyte donation program
using egg cryo-banking. Fertil Steril 2009;92:520–526.

Nagy ZP, Cobo A, Chang C. Oocyte Vitrification: ‘donor egg banking’ in Vitrification in
Assisted Reproduction, 2nd edn. CRC Press, 2015;129–136.

Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with
no apparent increase in congenital anomalies. Reprod Biomed Online 2009;18:
769–776.

Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis.
Fertil Steril 2006;86:70–80.

Paffoni A, Alagna F, Somigliana E, Restelli L, Brevini TA, Gandolfi F, Ragni G.
Developmental potential of human oocytes after slow freezing or vitrification: a
randomized in vitro study based on parthenogenesis. Reprod Sci 2008;15:1027–
1033.

Parmegiani L, Cognigni GE, Filicori M. Ultra-violet sterilization of liquid nitrogen
prior to vitrification. Hum Reprod 2009;24:2969.

Parmegiani L, Cognigni GE, Bernardi S, Cuomo S, Ciampaglia W, Infante FE,
Tabarelli de Fatis C, Arnone A, Maccarini AM, Filicori M. Efficiency of aseptic
open vitrification and hermetical cryostorage of human oocytes. Reprod Biomed
Online 2011;23:505–512.

Pelkonen S, Koivunen R, Gissler M, Nuojua-Huttunen S, Suikkari AM, Hyde´n-
Granskog C, Martikainen H, Tiitinen A, Hartikainen AL. Perinatal outcome of
children born after frozen and fresh embryo transfer: the Finnish cohort study
1995–2006. Hum Reprod 2010;25:914–923.

Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant out-
come of 957 singletons born after frozen embryo replacement: the Danish
National Cohort Study 1995–2006. Fertil Steril 2010;94:1320–1327.

Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and
post-warming fertility outcomes: a systematic review and meta-analysis. Reprod
Biomed Online 2014;29:159–176.

Racowsky C, Ohno-Machado L, Kim J, Biggers JD. Is there an advantage in scoring
early embryos on more than one day? Hum Reprod 2009;24:2104–2113.

Rama Raju GA, Haranath GB, Krishna KM et al. Vitrification of human 8-cell
embryos, a modified protocol for better pregnancy rates. Reprod Biomed Online
2005;11:434–437.

Rezazadeh Valojerdi M, Eftekhari-Yazdi P, Karimian L et al. Vitrification versus slow-
freezing gives excellent survival post warming embryo morphology and pregnancy
outcomes for human cleavedembryos. J Assist Reprod Genet 2009;26:347–354.

Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, Colamaria S,
Sapienza F, Ubaldi F. Embryo development of fresh ‘versus’ vitrified metaphase II
oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod
2010;25:66–73.

Rienzi L, Ubaldi FM. Oocyte versus embryo cryopreservation for fertility preserva-
tion in cancer patients: guaranteeing a women’s autonomy. J Assist Reprod Genet
2015;32:1195–1196.

Roy TK, Brandi S, Tappe NM, Bradley CK, Vom E, Henderson C, Lewis C, Battista
K, Hobbs B, Hobbs S et al. Embryo vitrification using a novel semi-automated
closed system yields in vitro outcomes equivalent to the manual Cryotop meth-
od. Hum Reprod 2014;29:2431–2438.

Roque M, Lattes K, Serra S, Sola I, Geber S, Carreras R, Checa MA. Fresh embryo
transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic
review and meta-analysis. Fertil Steril 2013;99:156–162.

Schoolcraft WB, Treff NR, Stevens JM, Ferry K, Katz-Jaffe M, Scott RT Jr. Live birth
outcome with trophectoderm biopsy, blastocyst vitrification, and single-
nucleotide polymorphism microarray-based comprehensive chromosome
screening in infertile patients. Fertil Steril 2011;96:638–640.

154 Rienzi et al.



Selman HA, El-Danasouri I. Pregnancies derived from vitrified human zygotes. Fertil
Steril 2002;77:422–423.

Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the
blastocyst or bipronuclear stage: a randomized clinical trial. Fertil Steril 2015;104:
1138–1144.

Siano L, Engmann L, Nulsen J, Benadiva C. A prospective pilot study comparing fer-
tilization and embryo development between fresh and vitrified sibling oocytes.
Conn Med 2013;77:211–217.

Sifer C, Sermondade N, Dupont C, Poncelet C, Cédrin-Durnerin I, Hugues JN,
Benzacken B, Levy R. [Outcome of embryo vitrification compared to slow-
freezing process at earlycleavage stages. Report of the first French birth]. Gynecol
Obstet Fertil 2012;40:158–161.

Smith GD, Serafini PC, Fioravanti J, Yadid I, Coslovsky M, Hassun P, Alegretti JR,
Motta EL. Prospective randomized comparison of human oocyte cryopreserva-
tion with slow-rate freezing or vitrification. Fertil Steril 2010;94:2088–2095.

Sole M, Santalo J, Boada M, Clua E, Rodriguez I, Martinez F, Coroleu B, Barri PN,
Veiga A. How does vitrification affect oocyte viability in oocyte donation cycles?
A prospective study to compare outcomes achieved with fresh versus vitrified
sibling oocytes. Hum Reprod 2013;28:2087–2092.

Stehlik E, Stehlik J, Katayama KP, Kuwayama M, Jambor V, Brohammer R, Kato O.
Vitrification demonstrates significant improvement versus slow-freezing of human
blastocysts. Reprod Biomed Online 2005;11:53–57.

Stoop D, Nekkebroeck J, Devroey P. A survey on the intentions and attitudes
towards oocyte cryopreservation for non-medical reasons among women of
reproductive age. Hum Reprod 2011;3:655–661.

Stoop D, Cobo A, Silber S. Fertility preservation for age-related fertility decline.
Lancet 2014;384:1311–1319.

Summers D, Check JH, Choe JK. A prospective comparison of outcome following
cryopreservation using vitrification versus a modified slow-freeze protocol of 2
pronuclear (2PN) and day 3 multi-cell embryos. Clin Exp Obstet Gynecol 2016;
43:330–331.

Testart J, Lassalle B, Belaisch-Allart J, Hazout A, Forman R, Rainhorn JD, Frydman R.
High pregnancy rate after early human embryo freezing. Fertil Steril 1986;46:268–272.

Tiitinen A, Halttunen M, Härkki P, Vuoristo P, Hyden-Granskog C. Elective single
embryo transfer: the value of cryopreservation. Hum Reprod 2001;6:1140–1144.

Trokoudes KM, Pavlides C, Zhang X. Comparison outcome of fresh and vitrified
donor oocytes in an egg-sharing donation program. Fertil Steril 2011;95:1996–2000.

Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and
transfer of an eight-cell embryo. Nature 1983;305:707–709.

Ubaldi F, Anniballo R, Romano S, Baroni E, Albricci L, Colamaria S, Capalbo A,
Sapienza F, Vajta G, Rienzi L. Cumulative ongoing pregnancy rate achieved with
oocyte vitrification and cleavage stage transfer without embryo selection in a
standard infertility program. Hum Reprod 2010;25:1199–1205.

Ubaldi FM, Capalbo A, Colamaria S, Ferrero S, Maggiulli R, Vajta G, Sapienza F,
Cimadomo D, Giuliani M, Gravotta E et al. Reduction of multiple pregnancies in
the advanced maternal age population after implementation of an elective single
embryo transfer policy coupled with enhanced embryo selection: pre- and post-
intervention study. Hum Reprod 2015;30:2097–2106.

Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H. Open
Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova
and embryos. Mol Reprod Dev 1998;51:53–58.

Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo labora-
tory? Review on vitrification. Reprod Biomed Online 2006;12:779–796.

Vajta G, Rienzi L, Ubaldi FM. Open versus closed systems for vitrification of human
oocytes and embryos. Reprod Biomed Online 2015;30:325–333.

Van Landuyt L, Van de Velde H, De Vos A, Haentjens P, Blockeel C, Tournaye H,
Verheyen G. Influence of cell loss after vitrification or slow-freezing on further
in vitro development and implantation of human Day 3 embryos. Hum Reprod
2013;28:2943–2949.

Vanderzwalmen P, Ectors F, Grobet L, Prapas Y, Panagiotidis Y, Vanderzwalmen S,
Stecher A, Frias P, Liebermann J, Zech NH. Aseptic vitrification of blastocysts
from infertile patients, egg donors and after IVM. Reprod Biomed Online 2009;19:
700–707.

Veeck LL, Bodine R, Clarke RN, Berrios R, Libraro J, Moschini RM, Zaninovic N,
Rosenwaks Z. High pregnancy rates can be achieved after freezing and thawing
human blastocysts. Fertil Steril 2004;82:1418–1427.

Virant-Klun I, Bacer-Kermavner L, Tomazevic T, Vrtacnik-Bokal E. Slow oocyte
freezing and thawing in couples with no sperm or an insufficient number of
sperm on the day of in vitro fertilization. Reprod Biol Endocrinol 2011;9:19.

Wang YA, Sullivan EA, Black D, Dean J, Bryant J, Chapman M. Preterm birth and
low birth weight after assisted reproductive technology-related pregnancy in
Australia between 1996 and 2000. Fertil Steril 2005;83:1650–1165.

Wang XL, Zhang X, Qin YQ, Hao DY, Shi HR. Outcomes of day 3 embryo trans-
fer with vitrification using Cryoleaf: a 3-year follow-up study. J Assist Reprod
Genet 2012;29:883–889.

Wennerholm UB, Söderström-Anttila V, Bergh C, Aittomäki K, Hazekamp J, Nygren
KG, Selbing A, Loft A. Children born after cryopreservation of embryos or
oocytes: a systematic review of outcome data. Hum Reprod 2009;24:2158–2172.

Whittingham DG, Leibo SP, Mazur P. Survival of mouse embryos frozen to −196
degrees and −269 degrees C. Science 1972;178:411–414.

WHO Handbook for Guideline Development, 2nd edn. Geneva: WHO Press, World
Health Organization, 2012. Available: http://apps.who.int/iris/bitstream/
10665/75146/1/9789241548441_eng.pdf.

Wilding MG, Capobianco C, Montanaro N, Kabili G, Di Matteo L, Fusco E, Dale B.
Human cleavage-stage embryo vitrification is comparable to slow-rate cryo-
preservation in cycles of assisted reproduction. J Assist Reprod Genet 2010;27:
549–554.

Willadsen SM Factors affecting the survival of sheep embryos during deep freezing
and thawing. In: Elliott K, Whelan L (eds). The Freezing of Mammalian Embryos,
Ciba Foundation Symposium 52. Amsterdam: Elsevier, 1977;175–194.

Youssef MA, Van der Veen F, Al-Inany HG, Mochtar MH, Griesinger G, Nagi
Mohesen M, Aboulfoutouh I, van Wely M. Gonadotropin-releasing hormone
agonist versus HCG for oocyte triggering in antagonist-assisted reproductive
technology. Cochrane Database Syst Rev 2014;10:CD008046.

Zhang X, Trokoudes KM, Pavlides C. Vitrification of biopsied embryos at cleavage,
morula and blastocyst stage. Reprod Biomed Online 2009;19:526–531.

Zheng WT, Zhuang GL, Zhou CQ et al. Comparison of the survival of human
biopsied embryos after cryopreservation with four different methods using non-
transferable embryos. Hum Reprod 2005;20:1615–1618.

Zhu HY, Xue YM, Yang LY, Jiang LY, Ling C, Tong XM, Zhang SY. Slow freezing
should not be totally substituted by vitrification when applied to day 3 embryo
cryopreservation: an analysis of 5613 frozen cycles. J Assist Reprod Genet 2015;
32:1371–1377.

Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two preg-
nancies following transfer of intact frozen-thawed embryos. Fertil Steril 1984;42:
293–296.

155Slow-freezing versus vitrification in ART

http://apps.who.int/iris/bitstream/10665/75146/1/9789241548441_eng.pdf
http://apps.who.int/iris/bitstream/10665/75146/1/9789241548441_eng.pdf

	Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus v...
	Introduction
	Methods
	Oocyte cryopreservation: study eligibility criteria
	Oocyte cryopreservation: study search methods
	Oocyte cryopreservation: study descriptions
	Slow-frozen versus vitrified oocytes: clinical outcomes and cryosurvival
	Slow-frozen versus fresh oocytes: clinical outcomes
	Vitrified versus fresh oocytes: clinical outcomes

	Embryo cryopreservation: study eligibility criteria
	Embryo cryopreservation: study search methods
	Embryo cryopreservation: study descriptions
	Vitrified versus slow-frozen embryos: clinical outcomes
	Slow-frozen versus vitrified embryos: survival

	Assessing the quality of each study
	Data synthesis and meta-analysis
	Assessment of the quality of the literature as a whole

	Results
	Oocyte slow-freezing versus vitrification: clinical outcomes and oocyte cryosurvival
	Oocyte slow-freezing versus fresh oocytes: clinical outcomes
	Oocyte vitrification versus fresh oocytes: clinical outcomes
	Embryo slow-freezing versus vitrification
	Slow-freezing versus vitrification: CPR
	Slow-freezing versus vitrification LBR
	Slow-freezing versus vitrification: embryo cryosurvival


	Discussion
	Contribution of cryopreservation to the cumulative LBR
	Embryo transfer policy and cryopreservation
	IVF cycle segmentation
	Cryopreservation and enhanced embryo evaluation
	New possibilities related to oocyte cryopreservation
	Standardization of protocols and automation
	Obstetric and perinatal outcomes

	Conclusions
	Supplementary data
	Acknowledgements
	Authors’ roles
	Funding
	Conflict of interest
	References


