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Abstract

Antiretroviral therapy (ART) for HIV is vulnerable to unplanned treatment interruptions–con-

secutively missed doses over a series of days–which can result in virologic rebound. Yet cli-

nicians lack a simple, valid method for estimating the risk of interruptions. If the likelihood of

ART interruption could be derived from a convenient-to-gather summary measure of medi-

cation adherence, it might be a valuable tool for both clinical decision-making and research.

We constructed an a priori probability model of ART interruption based on average adher-

ence and tested its predictions using data collected on 185 HIV-infected, treatment-naïve

individuals over the first 90 days of ART in a prospective cohort study in Mbarara, Uganda.

The outcome of interest was the presence or absence of a treatment gap, defined as >72

hours without a dose. Using the pre-determined value of 0.50 probability as the cut point for

predicting an interruption, the classification accuracy of the model was 73% (95% CI =

66%– 79%), the specificity was 87% (95% CI = 79%– 93%), and the sensitivity was 59%

(95% CI = 48%– 69%). Overall model performance was satisfactory, with an area under the

receiver operator characteristic curve (AUROC) of 0.85 (95% CI = 0.80–0.91) and Brier

score of 0.20. The study serves as proof-of-concept that the probability model can accu-

rately differentiate patients on the continuum of risk for short-term ART interruptions using

a summary measure of adherence. The model may also aid in the design of targeted

interventions.

Introduction

With more potent and safe antiretroviral (ARV) therapies increasingly available, HIV-infected

individuals are living longer than ever before [1]. For many patients, however, it is difficult to
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maintain the day-to-day consistency in adherence necessary to achieve viral suppression over

the life-time course of the disease [2]. Treatment interruptions–consecutively missed doses

over a series of days–are a common occurrence [3]. Research has found that interruptions

increase the risk of viral replication [4], drug resistance [5], and disease progression [6]. Inter-

ruptions also create a window for the spread of new infections [7] and may prolong the

endemic stability of HIV in many communities [8].

Clincians lack a simple, valid method for estimating the current risk of interruptions. Aver-

age adherence is a commonly used summary measure of ARV regimen adherence that can be

objectively determined from pharmacy refill or pill count data [9]; however, as a indicator of

whether drug concentrations are sufficient to maintain viral suppression, average adherence

can be insensitive to the pattern of missed doses [10]. For example, an average adherence of

0.90 could reflect 1 missed dose every 10 days, or it could reflect a 6-day run of missed doses

over 60 days. Therapeutic drug levels are likely to be less affected by scattered lapses in adher-

ence than by a sustained interruption, which in turn increase risk of virologic breakthrough

[11]. At present, electronic adherence monitoring (EAM) devices–pill containers that electron-

ically record the date and time of each opening–are the instruments most often used to quan-

tify the precise duration of treatment interruptions [9]. Too resource-intensive for routine

clinical care, the devices are used when highly detailed data are needed to answer a research

question. But if the likelihood of antiretroviral therapy (ART) interruptions could be accu-

rately estimated from a summary measure using readily available data [12], interventions to

prevent treatment interruptions could be tailored to the level of individual risk. Therefore, we

aimed to construct a probability model of ART interruptions based on an individual’s average

adherence and to assess the predictive performance of the model.

To maximize clinical relevance, we focused on short-term interruptions, defined as zero

adherence for 72 hours continuously. Short strings of missed doses are more common than

lengthy interruptions [10], and their association with virologic breakthrough has been firmly

established [4,5,13–16].

Methods

Construction of the probability model

In the probability theory literature on discrete random variables, the sample space for many

games of chance is the set of 2 mutually exclusive outcomes: success or failure. A string of con-

secutive failures is represented in standard terminology as a failure run of length r in n trials

[17]. Applying the terminology to ARV treatment interruptions, we define an event of “adher-

ence failure” as any 24-hour period (1 day) in which no ARV dose is taken. A run of consecu-

tive days without an ARV dose is termed a treatment interruption of length r. Our objective is

to determine the probability, by level of average adherence, of at least one treatment interrup-

tion of length r in an observation period of n days. In the absence a closed-form equation, we

use Feller’s approximating formula from general run theory [18]. The probability of at least

one treatment interruption is given by

Prob TIð Þ � 1 �
1 � px

ðr þ 1 � rxÞq
�

1

xnþ1

� �

ð1Þ

where:

TI = at least one treatment interruption,

r = length of treatment interruption in days,
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n = number of days in the observation period,

p = probability of adherence failure on any given day,

q = probability of adherence success on any given day, (q = 1 –p). The unbiased estimate of q is

average adherence, and

x = smallest positive root of 0 = 1 –x + qpr xr + 1

For any sufficiently large sample of patients [19], the model predicts the proportion of

patients who will experience an ARV treatment interruption of length r in a known interval of

time n by level of average adherence q. (See S1 Appendix for supplemental information on Eq

(1) and S2 Appendix for the sample size requirements of prediction models.)

We theorize the model will yield the most accurate predictions under the following

conditions:

1. Non-prescribed interruptions. An unstructured treatment interruption is a patient-initiated

temporary discontinuation of all ART drugs after which treatment is resumed. It excludes

planned treatment interruptions overseen by a physician for medical reasons such as drug

toxicity, suppression failure, or drug-resistance [3].

2. Unencumbered access to medications. The model is not applicable to situations where a

patient does not have continuous access to ARVs. Lack of access might occur for reasons of

pharmacy stock shortages, individual resource constraints, or other circumstances [20,21].

Study setting and participants

We tested the model with data collected on185 HIV-infected individuals initiating ARV ther-

apy in a prospective observational cohort study in southwestern Uganda beginning in 2005

and ending in 2011. The Uganda AIDS Rural Treatment Outcomes (UARTO) study recruited

participants from a public clinic, the Immune Suppression Syndrome Clinic at the Mbarara

Regional Referral Hospital, which dispenses free ARV therapy in the region. Patients greater

than 18 years old and residing within 60 km from the clinic were eligible for study participa-

tion [22].

The data were collected with ethical approval from Mbarara University of Science and

Technology, Uganda National Council for Science and Technology, Partners Healthcare/Mas-

sachusetts General Hospital, and University of San Francisco California. All participants gave

written informed consent.

Adherence and interruption measures

ARV adherence was measured using MEMS (WestRock, Switzerland), an EAM in a bottle cap.

Participant’s EAM data were downloaded monthly at home visits that were for data collection

only. Average adherence was computed as the number of EAM openings divided by the pre-

scribed number of doses in the first 90 days of therapy. Treatment interruption was operation-

ally defined as zero adherence for >72 hours continuously at any point in the first 90 days of

therapy.

To preclude results that would exaggerate the performance of our model, we excluded

observations of average adherence<0.333 (n = 113) and�0.967 (n = 7) because, respectively,

these participants either always experience or never experience 3-day interruptions in a 90-day

timeframe. Thus, modeling the probability of interruption for these groups was unnecessary.

We also excluded average adherence from 0.333 to 0.39 because the number of observations in
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this interval was sparse (n = 3). This left 185 observations for analysis with average adherence

of participants ranging from 0.40 to 0.966. See S3 Appendix for the sensitivity analysis of

excluded cases.

To analyze the frequency of interruptions by level of adherence, we grouped the 185 partici-

pants’ average adherence values into intervals. As the adherence distribution was asymmetrical

with a negative skew (skewness = -1.04), we used wider intervals for the two lower levels of

adherence (0.40 –<0.50, 0.50 –<0.60), narrower intervals in the mid- and upper-range of

adherence (0.60 –<0.65, 0.65 –<0.70, 0.70 –<0.75, 0.75 –<0.80, 0.80 –<0.85, 0.85 –<0.90),

and the narrowest intervals at the highest range where a larger number of observations were

concentrated (0.90 –<0.934, 0.934 –<0.967). The grouping facilitated a more detailed exami-

nation of the adherence-interruption curve in the segments where most of the data points

were concentrated.

Socio-demographic and health functioning measures

At the enrollment visit, socio-demographic and economic information was collected from

each participant. Baseline data were also collected on potential confounders, including self-

reported distance from clinic (in minutes of travel-time) [23], screen for heavy drinking

(3-item consumption subset of the Alcohol Use Disorders Identification Test) [24], depression

symptom severity (15-item Hopkins Symptom Checklist for Depression, modified for the local

context with the addition of a 16th item, “feeling like I don’t care about my health”) [25], and

CD4.

Statistical analysis

We used visual inspection and graphical analysis to determine the shape of the empirical curve

relating average adherence to ART interruptions. To determine whether the interruptions

observed at each interval of adherence differed from the hypothesized values of the probability

model, we computed exact p-values using the binomial test for goodness of fit [26]. A finding

of nonsignificance indicated a satisfactory fit to the data.

Several criteria were used to evaluate the overall classification and prediction performance

of the probability model. We a priori specified the inflection point of the prediction curve–the

point on the curve where the probability of an ART interruption equals 0.50 –as the cut point

to calculate the sensitivity, specificity, and percent correctly classified. Less than 0.50 predicted

no treatment interruptions of 3 days or more,�0.50 predicted at least one treatment interrup-

tion. The 95% confidence limits for the classification statistics are Clopper-Pearson intervals

[26]. To measure the total difference between the model predictions and observed outcomes,

we used the Brier score which can range from 0 for a perfect model to�0.25 for a non-infor-

mative model [27]. We evaluated the model’s discriminative ability using the area under the

receiver operating characteristic curve (AUROC). AUROC values range from 0.5 to 1.0, with

values� 0.7,� 0.8, and� 0.9 considered as satisfactory, good, and excellent, respectively [28].

To gauge the robustness of the AUROC estimate, we used k-fold cross-validation, with k = 10.

The data set was randomly split into 10 roughly equal-sized parts. A candidate model was

developed based on 9 parts of the data set. The AUROC of the candidate model was then eval-

uated on a test set containing the data in the hold-out part. Using each of the 10 parts as the

test set and repeating the model building and evaluation procedure, the results from the folds

were then averaged to obtain the cross-validated AUROC estimate [29].

We fitted regression models with the baseline demographic and clinical variables to identify

potential confounders or a secular trend affecting the frequency of interruptions [30]. Con-

founding effects were judged to be present if the point estimate of the association between the
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probability model prediction variable and ART interruptions changed by>15%. Outlying

data points were identified and included in all analyses.

All tests of significance were two-sided, with p<0.05 used as the threshold of statistical sig-

nificance. The statistical analysis was performed using Stata version 15.0 (StataCorp, College

Station, TX).

Results

Hypotheses generated by the model and tested using UARTO data

From the model, we derived the following hypotheses:

1. The probability of an interruption is a S-shaped decreasing function of average adherence.
More specifically, the model predicts a sigmoid curve where the rate of change in the proba-

bility of interruptions with respect to average adherence is characterized by a bell-shaped

distribution, approximating 0 at both tails of adherence, and reaching a maximal plateau in

the region surrounding the inflection point. The inflection point corresponds to the 0.50

predicted probability of interruptions which, for r = 3, n = 90, occurs at 0.79 adherence.

2. The expected number of persons with at least one ART interruption of three days or more by
average adherence interval is presented in Table 1.

The mid-point of the adherence intervals provided the q parameter input for the probability

model equation (q, r = 3, n = 90).

Participant characteristics

The 185 participants were observed for a period of 90 days each. At enrollment, 123 (66%) of

participants were female, 75 (41%) were married, 148 (80%) were literate, and 138 (75%) had

some form of employment. Median age was 34 years (IQR = 28–39). The most common ART

regimens at initiation were Zidovidine/Lamivudine/Nevirapine, Stavudine/Lamivudine/Nevi-

rapine, and Zidovudine/Lamivudine/Efavirenz, consisting of two tablets per day, used by 114

(62%), 46 (25%), and 19 (10%) of participants, respectively. Median baseline CD4 T-lympho-

cyte count was 138 cells/mm3 (IQR = 83–201). The adherence average for all participants was

0.815 (SD = 14.5), the median was 0.872 (IQR = 0.738–0.923). Over the 90-day interval, 93 of

Table 1. Expected number of persons with at least one ART interruption of three days or more by average adherence.

Average

Adherence

Expected Frequency of Interruptions per

100 persons Number of

Participants in UARTO Cohort

Expected Frequency of Interruptions in UARTO Cohort

0.934–0.967 1 39 0

0.90 –<0.934 5 37 2

0.85 –<0.90 14 25 4

0.80 –<0.85 33 16 5

0.75 –<0.80 55 19 10

0.70 –<0.75 76 11 8

0.65 –<0.70 89 10 9

0.60 –<0.65 96 8 8

0.50 –<0.60 100 12 12

0.40 –<0.50 100 8 8

https://doi.org/10.1371/journal.pone.0194713.t001
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the 185 participants (50.3%) had zero treatment interruptions�3 days and 92 (49.7%) had one

or more (Table 2).

Model performance: Comparing expected and observed interruptions

Fig 1 displays the relationship between average adherence and the probability of at least one treat-

ment interruption of�3 days. From 0.40 through 0.85 average adherence, the UARTO cohort

data follow the sigmoid contours of the prediction curve. The expected slow decrease in the rate

of change from 0.40 through 0.65 adherence is present, as is the sharp decline from 0.65 adherence

through the inflection point to 0.80 adherence. Beyond this point, the probability model antici-

pates that the frequency of interruptions would continue to fall rapidly and then level off toward

0. However, the three data points in the upper adherence intervals (0.85 –<0.90, 0.90 –<0.934,

0.934 –<0.967) show higher interruption frequencies than expected (shaded region).

To assess the empirical fit of the model, we compared the cohort data with model predic-

tions at each adherence interval. The results are presented in Table 3. At the mid- and lower

levels of adherence, <0.85, the model performs generally well with none of the difference tests

statistically significant (0.40 –<0.50, p = 0.99; 0.50 –<0.60, p = 0.11; 0.60 –<0.65, p = 0.28;

0.65 –<0.70, p = 0.61; 0.70 –<0.75, p = 0.31; 0.75 –<0.80, p = 0.26; 0.80 –<0.85, p = 0.06). At

Table 2. Participant characteristics (N = 185).

Characteristics Freq. %
Female 123 66.5

Education

None 25 13.5

Primary 116 62.7

Secondary 44 23.8

Literate 148 80.0

Unemployed 47 25.4

Married 75 40.5

Alcohol use disordera 23 12.9

Depression 64 34.6

ARV regimenb

Zidovidine/Lamivudine/Nevirapinee 114 62.3

Stavudine/Lamivudine/Nevirapine 46 25.1

Zidovudine/Lamivudine/Efavirenz 19 10.4

Other ARV regimens� 4 2.2

ART interruption� 3 days 92 49.7

Mean / Median IQR
Age 34 / 34 28–39

CD4 cell countc 154 / 138 83–201

Travel time to clinic (minutes) 56 / 40 20–60

Average adherence 0.815 / 0.872 0.739–0.923

aSix missing values
b two missing values
ceight missing values

�Stavudine/Lamivudine/Efavirenz, Zidovudine/Nevirapine/Tenofovir, Efavirenz/Emtricitabine/Tenofovir,

Emtricitabine/Nevirapine/Tenofovir.

https://doi.org/10.1371/journal.pone.0194713.t002
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the higher levels of adherence, 0.85 –<0.967, the model underpredicts the proportion of par-

ticipants who experience an interruption. Of the three outliers, the departure from expectation

is greatest at 0.85 –<0.90 adherence where 13 of the 25 participants (0.52) had interruptions

and 4 (0.14) were expected (p<0.01). The model predicted a falling off in the rate of interrup-

tions, but the descent does not occur until 0.90 adherence at which point the decline, as mea-

sured by the linear slope of the three outliers (dy/dx = -0.59, p = 0.039), is more abrupt than

the slope of the prediction curve (dy/dx = -0.45) (Fig 1).

The histograms of the prediction variable for the participants who did (and did not) have

an ART interruption�3 days are displayed in Fig 2. Using the pre-determined value of 0.50 as

Fig 1. Comparison of observed and predicted values of ART interruption by average adherence.

https://doi.org/10.1371/journal.pone.0194713.g001
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the cut point for identifying an interruption, the distributions show that the model has supe-

rior specificity (87%, 95% CI = 79%– 93%, panel A), but moderate sensitivity (59%, 95%

CI = 48%– 69%, panel B) partly due to the outliers (false negatives) below 0.20 on the predic-

tion scale. The classification accuracy of the probability model was 73% (95% CI = 66%– 79%).

Allowing the cut point to vary, the model AUROC was 0.85 (95% CI = 0.80–0.91) and the k-

fold cross-validation was 0.84 (95% CI = 0.78–0.90). The maximum classification accuracy for

any cut point was 78% (95% CI = 71%– 83%), which was located at 0.89 average adherence.

The receiver operating characteristic curve is displayed in Fig 3.

Examining overall performance, the Brier score for our prediction variable was 0.20. For

comparison, we also examined the prediction performance of average adherence. The Brier

score was 0.29, indicating that average adherence did not predict short-term interruptions.

No confounding effects (see S4 Appendix) or secular trends (S5 Appendix) were identified

in the statistical analysis.

Discussion

The probability model of treatment interruption based on average adherence demonstrated

satisfactory performance in classification metrics, global fit, and discriminative ability. Short-

term ART interruptions generally followed the prediction curve. At the mid-to-upper levels of

adherence, we hypothesized and the data substantiated that small increases in average adher-

ence would produce large decreases in the frequency of interruptions. This finding suggests

the possibility of greater returns on efforts to improve adherence in the region surrounding

the inflection point. Interestingly, the probability model predicted that the sharpest drop in the

frequency of interruptions would occur at a lower level of adherence than found in the UARTO

data. Also, the adherence–interruption slope was slightly more vertical in the UARTO data than

expected. In all, we found that the probability model could distinguish individuals on a contin-

uum of risk for short-term treatment interruptions. Sensitivity analysis and cross-validation

confirmed the robustness of the results.

A probability model that provides a satisfactory fit to the data has traditionally been open to

two interpretations. The first is that a model derived from a probability theorem represents a

null hypothesis, and that observations which do not depart from expectation are said,

Table 3. Comparison of the predicted and observed proportion of participants with at least one�3 day ART

interruption in the course of 90 days (r = 3, n = 90) by average adherence.

Average Adherence

(q)

Probability of at Least One Interruption of 3 Days

or More in 90 Days

p-value�

Predicted Observed

0.934 –<0.967 0.01 0.08 <0.01

0.90 –<0.934 0.05 0.30 <0.01

0.85 –<0.90 0.14 0.52 <0.01

0.80 –<0.85 0.33 0.56 0.06

0.75 –<0.80 0.55 0.68 0.26

0.70 –<0.75 0.76 0.64 0.31

0.65 –<0.70 0.89 1.00 0.61

0.60 –<0.65 0.96 0.88 0.28

0.50 –<0.60 1.00 0.92 0.11

0.40 –<0.50 1.00 1.00 0.99

� Two-sided p-values were computed using the exact binomial test for goodness of fit. The midpoint of the adherence

intervals provided the q parameter input for the probability model generating the point predictions.

https://doi.org/10.1371/journal.pone.0194713.t003
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therefore, to be consistent with chance. The second interpretation is that a balance of forces is

present that mimics the chance process defined by the null hypothesis [31]. We have not

found evidence of positive and negative effects in balance, and are reluctant to label short-term

interruptions as simply “random.” We are modeling interruptions at the incipient stage, the

period before the lengthier strings of nonadherent days have emerged. We conjecture that lon-

ger strings are associated with clinical and behavioral causes such as alcohol abuse or depres-

sion [32]; however, in this study of short-term interruptions, no such associations were found.

The definition of “short-term” varies in interruption research, although a common defini-

tion is a run of consecutively missed doses over 3 or 4 days. Definitions of “long-term” inter-

ruptions are more heterogeneous. At the low end, a run of 15 or 30 days of consecutively

Fig 2. Distribution of model prediction variable by interruption status. Panel A: histogram of the prediction variable for subset of participants who did not have an

ART interruption (n = 93). Panel B: histogram of the prediction variable for subset of participants who had at least one� 3-day ART interruption (n = 92). Outliers

refer to the larger than expected number of participants with a low probability of interruption (�0.20) who experienced at least one interruption. Pre-determined

classification cutpoint for both participant subsets was 0.50. Specificity [true negatives / (true negatives + false positives)] = 87.1%. Sensitivity [true positives / (true

positives + false negatives)] = 58.7%. The classification accuracy of the probability model [(true negatives + true positives) / total N] was 73.0%. Outliers were included

in the calculations.

https://doi.org/10.1371/journal.pone.0194713.g002
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missed doses is commonly considered long-term; at the higher end, a run of several months [3].

We have focused our model on short-term interruptions as they are the occasion of most suppres-

sion failures. Consistent with the theory of runs [33], short-term interruptions occur more fre-

quently than long-term interruptions, and the greater frequency is sufficient to offset the higher

rate of viral rebound arising from long-term interruptions–patterns evident in the UARTO data

[10]. Thus, models of short-term interruptions may be especially apt in resource-limited settings

where second-line treatment regimens are often not available or affordable [34].

Our model fills an important gap, a means of predicting short-term interruptions using

average adherence as an input parameter. We also note that our study found that average

adherence, when regarded as an independent variable apart from the probability model equa-

tion, lacked the ability to predict interruptions. One reason is that the rate of change in the

slope of the adherence–interruption relationship varies with the parameters r and n, the run

length of missed doses and the period of observation, respectively. By itself, average adherence

does not carry sufficient information to make exact predictions of ART interruptions.

Fig 3. Receiver operating characteristics curve.

https://doi.org/10.1371/journal.pone.0194713.g003

Predicting short-term ART interruptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0194713 March 22, 2018 10 / 15

https://doi.org/10.1371/journal.pone.0194713.g003
https://doi.org/10.1371/journal.pone.0194713


As a prediction instrument, our model has several notable strengths. Because it is a straight-

forward application of probability theory (and not developed from any particular data set), the

inductive two-sample development and external validation approach to instrument construc-

tion was unnecessary. When tested against observations, prediction accuracy was not subject

to shrinkage requiring a “correction for optimism” [35]. Another strength of the model is the

strategic information it provides to clinicians and planners for optimizing scarce case manage-

ment resources. For example, while any non-adherence is concerning, the instrument can help

center attention on those patients for whom modest improvements in average adherence are

likely to produce large decreases in interruptions. As noted, the interval surrounding the

inflection point is the optimal target since at this amount of adherence, the smallest increases

(e.g., induced by an intervention) yield the greatest reduction of interruptions. In our study,

patients who increase average adherence by 0.10, from 0.74 to 0.84, would reduce their inter-

ruption probability from 0.70 to 0.26. By contrast, at the lower levels of adherence, a compara-

ble improvement in adherence will not produce a meaningful drop in interruptions–e.g., an

increase in adherence from 0.60 to 0.70 will reduce the interruption probability from 0.98 to

0.83. For these patients, a qualitatively different type of intervention may be needed, one that

might deploy a comprehensive network of supports. Familiarity with the adherence–interrup-

tion relationship might aid in the design of targeted interventions.

In the UARTO data, a higher average adherence value (0.89) was found for the binary classi-

fication cut point than was predicted by the model (0.79), suggesting that intervention resources

might be allocated to patients at the upper levels of adherence as well. We caution that such an

adjustment may be premature. For any cut point, the maximum classification accuracy was

78%, which was within the confidence interval observed for our pre-determined cut point (95%

CI = 66%– 79%). The post-hoc selection of a cut point usually overstates diagnostic utility when

applied to other samples [36–38]. A retest of the model using a different study population will

help determine whether the departures from prediction require model calibration.

The identification of “high-yield” intervention points entails a tradeoff between sensitivity

and specificity, between the “false calls” and “missed calls” of treatment interruption, an area

of decision analysis presently unexplored in ART interruption studies. In quantifying the like-

lihood of a treatment gap, our model provides a framework for a more explicit examination of

tradeoffs. We stress, however, that the instrument is not prescriptive. Clinicians should con-

sider the circumstances and unique needs of each patient, including the likelihood of ART

interruption, when deciding whether to mobilize adherence supports. No single adherence

intervention or package of interventions will likely be effective for all populations and all

settings.

For most patients, the consistent level of adherence needed to suppress viral replication

over a lifetime remains a major challenge. Clinicians seldom know the extent that individuals

are at risk of an interruption. Even people with excellent adherence who typically meet the

optimal target of�0.95 average adherence, or�1 one missed dose per month, will occasionally

experience treatment interruptions owing to inevitable disruptions in daily routine, onset or

worsening of a co-morbid condition, or simple pill fatigue [39]. Lower levels of adherence

(0.85–0.90) that elicit only minor decreases in viral load suppression have been demonstrated

with improved, second-generation ARV formulations, e.g., non-nucleoside reverse transcrip-

tase inhibitors [40], but generalizability remains undefined [41] and may depend on prior sup-

pression time [11]. For the time being, perfect adherence continues to be the goal for every

patient.

Our model provides a new understanding of the relationship between average adherence

and the risk of short-term ART interruptions, which we tested for r = 3, n = 90. For each value

of average adherence there is a corresponding interruption probability. The relationship can
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be displayed as a table or graph as in Fig 1. In settings where objective adherence measurement

is a component of clinical practice, the instrument is a ready fit. However, some front-line

facilities may not measure adherence [42], or measure precisely, and operations in those set-

tings may need to be augmented. We also expect that each health facility will undergo a brief

“learning curve” to find the right balance between risk and resource expenditures. Using the

prediction instrument, clinicians and team members will see at a glance where each patient

falls on the risk curve, and depending on patient circumstances and needs, and the adherence

supports available (e.g., individual or group counseling, adherence training, mobile phone

reminders, case managers, peer support), will find opportunities to increase cost-effectiveness

by aligning services to risk.

A limitation of this study is the possibility of an observer effect [43,44]. EAM may alter the

medication-taking behavior of some participants, the devices providing a visual reminder that

adherence patterns are being observed, although the evidence to date suggests that if present,

the effect is small [45]. Data collected through EAMs are also subject to measurement error

since the caps can be opened and closed without taking any medication (“curiosity checks,”

influence of social desirability) and more than one dose can be removed when a bottle is

opened (“pocket dosing”) [9,46].

In conclusion, our study serves as proof-of-concept that the probability model can accu-

rately differentiate patients on the continuum of risk for short-term treatment interruptions. It

may also aid in the design of targeted interventions. However, to be a practical tool for clini-

cians, the model will need to be validated using more accessible data sources for measuring

average adherence than EAM. An assessment of the predictive performance of the model

using pharmacy records would be an appropriate next step. Average adherence based on refill

data is a valid, simple to calculate measure easily incorporated into clinical practice [12, 47].

The adherence calculations can be automated in tandem with our prediction instrument. This

strategy is ripe for testing.
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