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ARTICLE

Improving genetic prediction by leveraging genetic
correlations among human diseases and traits
Robert M. Maier 1,2,3, Zhihong Zhu4, Sang Hong Lee1,5, Maciej Trzaskowski4, Douglas M. Ruderfer6,

Eli A. Stahl7, Stephan Ripke2,3,8, Bipolar Disorder Working Group of the Psychiatric Genomics Consortium,

Schizophrenia Working Group of the Psychiatric Genomics Consortium, Naomi R. Wray 1,4, Jian Yang 1,4,

Peter M. Visscher 1,4 & Matthew R. Robinson4,9,10

Genomic prediction has the potential to contribute to precision medicine. However, to date,

the utility of such predictors is limited due to low accuracy for most traits. Here theory and

simulation study are used to demonstrate that widespread pleiotropy among phenotypes can

be utilised to improve genomic risk prediction. We show how a genetic predictor can be

created as a weighted index that combines published genome-wide association study

(GWAS) summary statistics across many different traits. We apply this framework to predict

risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data,

finding substantial heterogeneity in prediction accuracy increases across cohorts. For six

additional phenotypes in the UK Biobank data, we find increases in prediction accuracy

ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor

that combines published summary statistics from multiple traits, as compared to a predictor

based only on one trait.
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Personalised medicine, in which genetic testing is the basis
for informing future health status and determining inter-
vention, is effectively applied for a number of monogenic

disorders1. For common complex disorders, which are those that
are underlain by multiple genetic and environmental factors2,
predictive genetic testing that can discriminate individuals who
are most at risk is currently limited, mainly because much of the
genetic variation remains poorly understood3,4. The potential of
genetic risk prediction to (i) inform early interventions and (ii)
aid diagnosis by identifying individuals with an increased genetic
risk of disease could be improved substantially by increasing the
accuracy of genetic risk predictors5. While genome-wide asso-
ciation studies (GWASs) of increased sample size will continue to
unravel the role of genetic factors for complex diseases6,
improved prediction models are also required to maximise the
accuracy of a risk predictor.

GWASs use linear regression to independently estimate the
effects of single-nucleotide polymorphisms (SNPs) across the
genome, and commonly, these estimated SNP effects are then
used to create a genetic risk predictor in independent samples7–
9. However, this approach is not optimal because it either
ignores linkage disequilibrium (LD) between markers or
accounts for LD by discarding potentially informative SNPs10.
Prediction accuracy of complex phenotypes can be improved by
methods that jointly estimate the SNP associations to obtain
SNP effect estimates with best linear unbiased predictor (BLUP)
properties within a linear mixed model (LMM) approach, a
model termed genomic BLUP (GBLUP)7,11,12. A multi-trait
extension of the LMM approach, yielding multivariate BLUP
(MT-BLUP) predictors of the SNP effects, can further improve
prediction accuracy when phenotypes are genetically correlated,
because measurements on each trait provide information on the
genetic values of the other correlated traits13–16. MT-BLUP has
been shown to improve prediction accuracy for genetically
correlated common psychiatric disorders when combining
individual-level data across independent data sets16,17. However,
the application of MT-BLUP to complex common disorders is
limited as combining individual-level genotype-phenotype data
across case–control studies of all complex diseases is generally
not feasible due to data protection concerns and restrictions on
data sharing.

Here we overcome this limitation by developing a frame-
work that combines publically available GWAS summary sta-
tistics across multiple studies of different traits together in a
weighted index to generate approximate multi-trait summary
statistic BLUP (wMT-SBLUP) predictors (Supplementary
Table 1). We show through theory and simulation study that
MT-BLUP predictors, which traditionally require individual-
level phenotype–genotype data for all traits, can be
approximated accurately by wMT-SBLUP predictors in a
computationally efficient manner using only summary
statistic data and an independent genomic reference
sample. We also show how multi-trait summary statistic
predictors can be created directly from GWAS summary
statistics (wMT-GWAS) or from predictors obtained using the
software LDPred18 that extends a single-trait summary statistic
BLUP model (SBLUP) by assuming that marker effects come
from a mixture of distributions. We apply our approach to
multiple phenotypes in the Psychiatric Genomics Consortium
(PGC) to compare summary statistic approaches to direct
estimation on individual-level data. We further apply our
approach to summary statistics of several other phenotypes to
create predictors that we evaluate using the UK Biobank data.
We show that, for most traits, our multi-trait predictors
improve prediction accuracy as compared to a single-trait
predictors.

Results
Overview of the approach. Standard GWAS summary statistics
are ordinary least squares (OLS) estimates of the SNP effects and
do not have optimal properties for prediction11. Even when LMM
association analysis is used, the estimated SNP effects still
represent marginal effects and not effects conditional on other
SNPs, which is what is desirable for prediction19. Previous studies
have shown how OLS summary statistics can be reanalysed in a
mixed model framework to produce approximate BLUP pre-
dictors (summary statistic BLUP: SBLUP, implemented in the
most recent release of GCTA)18,20,21 or approximate mixture
model predictors (LDPred). We first extend the SBLUP approach
to a multi-trait framework (MT-SBLUP) and find a computa-
tional limitation associated with the inversion of a SNP-by-SNP-
by-trait matrix. To overcome this, we then derive theory to show
how single-trait predictors with BLUP properties can be com-
bined together in a weighted index to generate predictors with
equivalent properties to those gained from a MT-BLUP analysis
(Fig. 1).

Consider two genetically correlated traits for which we have
individual-level genetic predictors with BLUP properties. For
each individual, i, and focal trait of interest, f, we have a genetic

prediction bgBLUPi;k� �
for each trait, k, that we can combine

together using the index weights, wi,k, for each bgBLUPi;k effect to
produce a weighted multi-trait BLUP genetic predictor:bgwMT�BLUPi;f ¼

X
k

wi;kĝBLUPi;k ¼ wi′bgSBLUPi ð1Þ

In the Methods section, we show that the optimal index weights
can be calculated as:
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where h2k is the SNP heritability of trait k (proportion of
phenotypic variance explained by genome-wide SNPs), rG is the
genetic correlation between trait k and the focal trait and R2

k is the
expected squared correlation between a phenotype and a BLUP
predictor, calculated as:

R2
k ¼

h2k

1þMeff
1�R2

k
Nkh2k

ð3Þ

where Meff is the effective number of chromosome segments and
Nk is the sample size of trait k. These weights will ensure that the
contribution of each added trait is approximately proportional to
the square root of its sample size, its SNP heritability and its
genetic correlation with the focal trait (trait 1), while accounting
for different variances of single-trait BLUP predictors.

Both h2k and rG can be estimated from GWAS summary
statistics using LD score regression22,23. Following20, individual-
level genetic predictors with BLUP properties can also be
obtained from GWAS summary statistics (bgSBLUPk , where SBLUP
represents summary statistic approximate BLUP). Therefore, for
any given trait, genetic predictors with BLUP propertiesbgSBLUPk� �

can be created from GWAS summary statistics and

these can then be placed in a weighted index to produce
approximate multi-trait summary statistic BLUP (wMT-SBLUP)
predictors, using only LD score regression and an independent
reference sample. This approach, provided in the freely available
software SMTPred (see Code availability section), approximates
MT-BLUP predictors without the need for individual-level
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phenotype–genotype data for all traits, enabling prediction
accuracy to be improved by fully utilising all of the publically
available GWAS summary statistic data. We also show how
weighted indices can be calculated for GWAS summary statistics
(wMT-GWAS) or from predictors obtained using the software
LDPred18 (wMT-LDPred), therefore depending upon the genetic
architecture of the trait approximate multi-trait summary
statistics can be created to maximise genomic prediction
accuracy.

Simulation study. We first conducted a simulation study using
observed SNP genotype data to confirm the expectations from
our theory. We show through theory (see Methods section) that a
wMT-SBLUP genetic predictor has the same expected prediction
accuracy as one created from a multivariate mixed-effects model
(multi-trait BLUP: MT-BLUP) if the linkage disequilibrium
among SNP markers in the individual-level analysis is well
approximated by a reference genotype panel (see Methods sec-
tion). We demonstrate that a wMT-SBLUP predictor increases
prediction accuracy over a single-trait predictor, with the

magnitude of increase being proportional to the ratio of the SNP
heritability of the added traits relative to that of the predicted
trait, the sample size of the added traits relative to that of the
predicted trait and the genetic correlation between the added
traits and the predicted trait (Fig. 2, Supplementary Figs. 1 and 2).
We also demonstrate how genetic predictors generated by
LDPred18 can be combined in an approximate multi-trait
weighting (Supplementary Fig. 3).

We also provide a theoretical expectation for the loss in
prediction accuracy that occurs when using an independent
reference sample to compute SBLUP effects compared to a
predictor based on BLUP effects (see Methods section), and we
detail the loss of prediction accuracy in our simulation study
(Fig. 2b, Supplementary Figs. 1 and 4).

Application to psychiatric disorders. We then applied our
approach to the PGC schizophrenia24,25 and bipolar data, two
psychiatric disorders known to have a high genetic correlation26.
The availability of combined individual-level data for both dis-
orders enabled a direct comparison of the MT-BLUP16 and
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wMT-SBLUP approaches. We calculated all predictors for the
previously used16 PGC wave 1 (PGC1) data sets24 and compared
the prediction accuracy (correlation between predicted values and
phenotypes adjusted for sex, cohort and the first 20 principal
components) across diseases and approaches. We find compar-
able but slightly lower accuracies in the wMT-SBLUP predictors
as compared to the MT-BLUP predictors (0.151 vs 0.156 in
bipolar disorder and 0.217 vs 0.219 in schizophrenia) and an
increase in prediction accuracy as compared to the single-trait
(BLUP) predictors (0.128 in bipolar disorder, 0.198 in schizo-
phrenia) (Fig. 3). Our results demonstrate that creating SBLUP
genetic predictors using an independent LD reference sample and
combining these in a weighted sum results in prediction accuracy
comparable to a full MT-BLUP prediction for common complex
disease traits, at a much lower computational burden.

We then applied our approach to the larger PGC wave 2
(PGC2) data sets for schizophrenia25 and bipolar disorder (see
Methods section), which included the PGC1 data. To test
whether the addition of more cohorts improved prediction
accuracy, we estimate wMT-SBLUP predictors in the PGC2
data. Having shown the resemblance of wMT-SBLUP and MT-
BLUP by theory, simulation and in the PGC1 data, we refrained
from running a MT-BLUP model in the PGC2 data to avoid the
computational burden of analysing the combined schizophrenia
bipolar data set. For schizophrenia, there were 36 cohorts
(26,412 cases and 32,440 controls in total) and for bipolar
disorder there were 23 cohorts (18,865 cases and 30,460 controls
in total). We conducted a cohort-wise leave-one-out cross-
validation approach to examine variation in prediction accuracy
across cohorts.

For schizophrenia, we find that prediction accuracy increases
in 20 of the 36 cohorts of the PGC2 data when using a wMT-
SBLUP predictor as compared to a SBLUP predictor (Supple-
mentary Fig. 5). However, the median correlation (0.300 with an
SBLUP predictor, and 0.304 with a wMT-SBLUP predictor) and
mean correlation (0.295 with a SBLUP predictor and 0.294 with a
wMT-SBLUP predictor) across the 36 PGC2 cohorts did not
improve with a wMT-BLUP predictor. For bipolar disorder, we
find an improvement of the wMT-SBLUP predictor over the
SBLUP predictor in 17 out of the 23 cohorts (Supplementary
Fig. 6), with a mean correlation increase from 0.212 to 0.229 and
a median correlation increase from 0.210 to 0.225. To evaluate
whether this is because the weights we used for schizophrenia and
bipolar disorder do not represent the mixing proportions that
lead to the highest accuracy in this data set or whether other
factors explain the variable results across cohorts, we created
multi-trait predictors using not only weights calculated from Eq.
(17) but also weights corresponding to any other mixing
proportion of the two disorders (Supplementary Figs. 5, 6 and
7). This demonstrates (i) that our calculated weights are very
close to the empirically optimal weights when averaged across
cohorts (Supplementary Fig. 7), (ii) that there is substantial
heterogeneity across cohorts as shown by the variable prediction
accuracies of single-trait and cross-trait predictors across cohorts,
which is supported by previous studies25, and (iii) that, for some
test set cohorts, there is no mixing proportion that will lead to a
multi-trait predictor which outperforms a single-trait predictor.
The larger gain in accuracy that results from supplementing a
bipolar disorder predictor with schizophrenia data compared to
supplementing a schizophrenia predictor with bipolar disorder
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data is consistent with greater power of the schizophrenia
discovery sample. We find that for both single-trait and multi-
trait predictors the SBLUP predictors outperform the OLS
predictors in almost all cohorts (Supplementary Figs. 5 and 6).

Application to traits recorded in a large population study. In
principle, any number of traits can be combined into a multi-trait
predictor at almost no computational cost. We therefore extended
our approach to create wMT-SBLUP predictors from 34 pheno-
types for which we could access summary statistics. In order to
calculate wMT-SBLUP weights, we used LD score regression to
estimate SNP heritability and genetic correlations of the 34 sum-
mary statistics traits. The results are mostly in line with previous
reports23 (Supplementary Fig. 8, Supplementary Data 1). As test
set, we used 112,338 individuals in the UK Biobank data. We
matched 6 of the 34 discovery traits to traits in the UK Biobank
(Supplementary Table 1) and created wMT-SBLUP predictors.
For the wMT-SBLUP predictor of each focal trait, we included
predictor traits with genetic correlation p-value< 0.05. For all
traits, wMT-SBLUP genetic predictors were more accurate than
any single-trait (SBLUP) predictor (Fig. 4). wMT-SBLUP pre-
dictors generally improved prediction accuracy over single-trait
GWAS OLS predictors (Supplementary Fig. 9) and were similar
to wMT-LDPred predictors (Supplementary Figs. 10 and 11.) We
observe the largest increases in accuracy for Type 2 diabetes
(47.8%) and depression (34.8%). Accuracy for height (0.7%) and
body mass index (BMI) (1.4%) increase only marginally. As
shown in our theory and simulation study, the magnitude of
increase in prediction accuracy of a wMT-SBLUP predictor over a
single-trait SBLUP predictor depends upon the prediction
accuracies of all the traits included in the index and the genetic
correlation among phenotypes. As GWAS sample sizes increase
and genomic predictors increase in accuracy, a wMT-SBLUP
approach will likely become increasingly beneficial.

Discussion
In summary, we demonstrate that multivariate predictors derived
from GWAS summary statistics can increase prediction accuracy
in a wide range of traits. This approach has particular utility in
risk prediction of traits for which it is hard to generate large
sample sizes for GWAS, as SNP heritability and sample size are
the two factors that determine prediction accuracy of a polygenic
trait, when using a single-trait predictor. The increase in pre-
diction accuracy of a multi-trait over a standard single-trait
genetic predictor is therefore greatest when the additional traits
included in the predictor have higher SNP heritability and sample
size than the trait to be predicted, as well as a high genetic cor-
relation with the trait to be predicted. We show how genetic
predictors from GWAS OLS effects, LDPred effects or SBLUP
effects can be combined, yielding an approach that is general
across different phenotypes.

Special consideration should be given to the risk of sample
overlap between the summary statistics data used to create the
predictor and the prediction target. Sample overlap will lead to
inflated estimates of accuracy, and while here we were able to take
steps to avoid individuals being recorded across multiple data
sets, further work is required to negate these effects within this
framework. In principle, assuming perfect homogeneity between
training and test set and perfect estimates of SNP heritability and
genetic correlation, there is no limit to the number of traits that
can be combined using our approach. In practice, however, there
will be little benefit of combining traits with low genetic corre-
lation, as they will not influence the predictor much. Some added
traits might even reduce accuracy, if the genetic correlation is not
estimated accurately. The focus of our analysis was the prediction
of genetic risk and we aimed to provide a fast, computationally
efficient, general framework for genomic prediction. This sets it
apart from other multi-trait approaches like phenome-wide
association studies, which focus on the effects of individual
SNPs on multiple phenotypes. We note, however, that a multi-
trait testing approach can in principle also be used to increase the
power to identify loci associated with specific traits as demon-
strated in the recently developed MTAG method27. Another
potential caveat of our analysis is that prediction accuracy
increases for a focal trait may come from the addition of traits
that are standardly measured on patients, and improved frame-
works are required to identify marker effects conditionally on
known health risk factors. Despite these limitations, current
evidence suggests that genetic correlations among phenotypes are
pervasive23, sample sizes of GWAS are increasing6 and public
availability of genome-wide summary statistics is becoming the
norm28, meaning that genomic prediction of complex common
disease will continually improve especially when predictors of
multiple phenotypes are integrated across studies within this
framework.

Methods
General model. We consider a general linear mixed model:

y ¼ Wbþ ð4Þ

where y is the phenotype, W a matrix of SNP genotypes, where values are stan-
dardised to give the ijth element as: wij ¼ xij � 2pj

� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj 1� pj
� �q

, with xij the
number of minor alleles (0, 1 or 2) for the ith individual at the jth SNP and pj the
minor allele frequency. b are the genetic effects for each SNP, and the residual
error. The dimensions of y, W, b and are dependent upon the number of phe-
notypes, k, the number of SNP markers, M, and the number of individuals, N, and
are described in the sections below. We denote the distributional properties var(b)
= B, var() =R and var(y) =WBW′ + R.

For human complex diseases and quantitative phenotypes, GWASs have
typically estimated the solutions for b of Eq. (1) one SNP at a time using OLS
regression29 as: bbOLS ¼ diag W′W½ ��1W′y ð5Þ
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where diag[W′W] has diagonal elements wj ′wj and off-diagonal elements of zero.
However, by analysing one SNP at a time, GWAS effect size estimates do not
account for the covariance structure among SNPs and they are not unbiased in the
sense that E bjb̂

h i
¼ b̂12. BLUP of the SNP effects have the property E bjb̂

h i
¼ b̂,

are used in genomic prediction in animal and plant breeding30 and more recently
in human medical genetics, yielding improved prediction accuracy for a number of
traits over genetic predictors created from OLS SNP estimates16,17. In a general
form, BLUP solutions for b of Eq. (1) can be written using Henderson’s mixed
model equations31 as:

bbBLUP ¼ W′R�1WþB�1
	 
�1

W′R�1y ð6Þ

and if R is diagonal, then Eq. (6) can be reduced to:

bbBLUP ¼ W′Wþ B�1R
	 
�1

W′y ð7Þ

Below, we describe how Eqs. (6) and (7) can be used to estimate BLUP SNP
effects for a single trait and for multiple traits jointly from individual-level
phenotype–genotype data. We then show how Eqs. (6) and (7) can be
approximated to obtain BLUP SNP effects for single and multiple traits in the
absence of individual-level data from publically available GWAS summary statistics
and an independent reference sample.
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Estimation of BLUP SNP effects for a single trait. For a univariate analysis of
trait k, y of Eq. (4) is a column vector of length N × 1 and W has dimension N ×M.
Assuming b is an M × 1 vector of random SNP effects for trait k, with distribution

b � N 0; IMσ2bk

� �
, then B ¼ IMσ2bk with IM is an identity matrix of dimension M.

of Eq. (1) is a column vector of independent residual effects, with distribution

� N 0; INσ2ϵk

� �
, giving R ¼ INσ2ϵk , with IN an identity matrix of dimension N.

Substituting these expressions into Eq. (6) means that Eq. (7) can then be written
as: bbBLUPk ¼ Wk ′Wk þ IMλk½ ��1Wk ′yk ð8Þ

with λk ¼ σ2ϵk=σ
2
bk
.

Joint estimation of BLUP SNP effects for multiple traits. Phenotypic mea-
surements of a trait can be informative for the genetic values of other traits, if the
traits are genetically correlated with one another14,15,32. Recent studies have shown
that prediction accuracy of common complex disease can be improved by esti-
mating SNP effects for multiple traits jointly within a multivariate mixed-effects
model16,17.

If k traits are measured on different individuals, with Nk observations for trait k,

the elements of Eq. (4) become: y′ ¼ ½y′1:::y′k�;W ¼
W1 0 0

0 . .
.

0
0 0 Wk

264
375, and R =

diag[Rk] = diag INkσ
2
ϵk

h i
, a diagonal matrix of length N ¼P

k
Nk . B ¼ Σb � IM ,

where Σb is a k × k matrix, with diagonal elements σ2bk and off-diagonal elements
the covariances of SNP effects between traits k and l, σbk;l . For Kronecker products,
B�1 ¼ Σ�1

b � IM and substituting these expressions directly into Eq. (6) means that
multi-trait BLUP solutions for b can be obtained in Eq. (7) as:bbMT�BLUP ¼ W′Wþ ΣϵΣ�1

b � IM
	 
�1

W′y ð9Þ

with Σϵ ¼ diag σ2ϵk

h i
, a diagonal k × k matrix. For a two-trait example, Eq. (9)

expands to:

bbMT�BLUP ¼
W1 ′W1 0

0 W2 ′W2

� ��

þ IMσ2ϵ1 0

0 IMσ2ϵ2

" #
IMσ2b1 IMσb1;2
IMσb2;1 IMσ2b2

" #�1#�1

W1 0

0 W2

� �
′
y1
y2

� �
ð10Þ

Multi-trait BLUP SNP effects from summary statistics. Estimating SNP effects
for multiple traits jointly in Eq. (9) requires individual-level genotype and phe-
notype data across a range of common complex diseases and quantitative phe-
notypes, which are not readily available in human medical genetics due to privacy
concerns and data sharing restrictions. Additionally, Eq. (9) requires a series of
computationally intensive M × k equations to be solved. However, these issues can
be overcome by approximating Eq. (9) using publically available GWAS summary
statistic data and an independent genomic reference sample.

Single-trait approximate BLUP SNP effects can be obtained from GWAS
summary statistics (SBLUP: summary statistic approximate BLUP) by replacing
Wk ′Wk and Wk ′yk of Eq. (8) by their expectation, which are E Wk ′Wk½ � ¼ NkL and

E Wk ′yk
	 
 ¼ Nk

bbOLSk , respectively, where L is an M ×M scaled SNP LD correlation

matrix estimated from a reference SNP data set and bbOLSk are obtained from
publically available GWAS summary statistics20. GWAS summary statistics report

effect estimates of SNPs on an unstandardised scale and not bbOLS as it is defined

here. To obtain bbOLS from GWAS summary statistics, the effect of each SNP must

be multiplied by the standard deviation of each SNP: bbOLSj =bbOLS�UNSCALEDj ´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj 1� pj
� �q

. Equation (8) can then be written as:bbSBLUPk ¼ NkLþ IMλk½ ��1Nk
bbOLSk

¼ Lþ IMλk=Nk½ ��1bbOLSk ð11Þ

The shrinkage parameter is λk ¼ σ2ϵk=σ
2
bk
=Mσ2ϵk=h

2
SNPk

=M 1� h2SNPk

� �
=h2SNPk ,

under the assumption of phenotypic variance of 1 that makes the proportion of
phenotypic variance of trait k attributable to the SNPs h2SNPk ¼ Mσ2bk .

This approach was implemented in ref. 21 and is similar to the LDpred model
presented by Vilhjálmsson et al.18 but with a few differences. The first is that it only
considers the infinitesimal case, where all SNPs are considered to be causal and

their effect sizes follow a normal distribution. This corresponds to the LDpred-Inf
model. The second difference is that the shrinkage parameter of Vilhjálmsson
et al.18 is λk ¼ M=h2SNPk as they assume that the error variance is 1 rather than
1� h2SNPk in our implementation. The third difference is that in the LDpred-Inf
model, Vilhjálmsson et al.18 calculate BLUP effects for blocks of a certain number
of SNPs following a tiling window approach giving a block diagonal structure to L,
whereas our implementation within the software GCTA (see URLs) follows a
sliding window approach giving a banded diagonal to L. Assuming an error
variance of 1� h2SNPk is more appropriate because cumulatively the SNP markers
explain h2SNPk of the phenotypic variance. In both implementations, a window is
used to capture the LD around SNP markers in order to avoid the large
computational costs of inverting a dense M dimensional SNP LD matrix, with only
little loss of information (see below).

For multiple phenotypes, the elements of Eq. (11) become: bbOLS′ ¼
bbOLS1 ′ ¼bbOLSk ′h i

and N =
N1 0 0

0 . .
.

0
0 0 Nk

264
375, meaning that Eq. (11) can be

extended as: bbMT�SBLUP ¼ Ik � Lþ ΣϵΣ�1
b N�1 � IM

	 
�1bbOLS ð12Þ

Equation (12) approximates Eq. (9) using only publically available GWAS
summary statistic data and an independent genomic reference sample. However,
there remains the large computational cost associated with the inversion of the
non-diagonal matrix Ik � Lþ ΣϵΣ�1

b N�1 � IM
	 


.

Index weighted multi-trait BLUP SNP effects. An alternative to Eq. (12), is to
obtain k bbMT�SBLUP effects by combining together k single-trait bbSBLUP estimates of
Eq. (11), using an optimal index weighting for each trait. The index weighting to
derive bbMT�SBLUP from bbSBLUP estimates is identical to the index weighting to derivebbMT�BLUP from bbBLUP estimates.

For SNP j and focal trait f, we have bbSBLUP values for k traits, and we wish to
obtain the index weights, wj,k, for each bbSBLUPj;k effect as:bbwMT�SBLUPj;f ¼

X
k

wSBLUP;j;k
bbSBLUPj;k ¼ wSBLUP;j ′bbSBLUPj ð13Þ

In animal and plant breeding, selection indices have been developed, which
combine many single-trait BLUP predictors of an individual’s genetic value
together in an index weighting to optimise the selection of individuals with the
most favourable multi-trait phenotype for breeding programs33–36. Utilising a
selection index approach, the solution for wSBLUP of Eq. (13) can be obtained as:

wSBLUP ¼ V�1
SBLUPCSBLUP ð14Þ

where CSBLUP a k × 1 column vector of the covariance of the bbSBLUPk values of the k
traits, with the true genetic effects of the SNPs for the focal trait, and VSBLUP a k × k
variance–covariance matrix of the bbSBLUP effects:

wSBLUP ¼ V�1
SBLUPCSBLUP

¼
var bbSBLUP1

� �
� � � cov bbSBLUP1 ;

bbSBLUPk� �
..
. . .

. ..
.

cov bbSBLUPk ;
bbSBLUP1

� �
� � � var bbSBLUPk� �

266664
377775
�1

cov bf ;bbSBLUP1

� �
..
.

cov bf ;bbSBLUPk� �
266664

377775

ð15Þ

Therefore, if VSBLUP and CSBLUP can be approximated then bbMT�SBLUP of Eq.
(12) can be obtained from k single-trait bbSBLUP estimates from Eq. (11).

To derive the approximations, we first consider the diagonal elements of VSBLUP,

which comprise the variance of the SBLUP SNP solutions, var bbSBLUPk� �
. These can

be approximated from theory under the assumption that bbSBLUPk have BLUP

properties E bjb̂
h i

¼ b̂, which in turn implies that

cov bk;bbSBLUPk� �
¼ var bbSBLUPk� �

. Following Daetwyler et al.37 and Wray et al.38,

the squared correlation between a phenotype, yk, in an independent sample and a
single-trait BLUP predictor of the phenotype, bgBLUPk , is approximately:

R2
yk ;bgBLUPk ¼ R2

k � h2k= 1þMeff 1� R2
k

� �
= Nkh

2
k

� �� �
ð16Þ

where bgBLUPk ¼ WbbBLUPk and h2k is the proportion of phenotypic variance
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attributable to additive genetic effects for trait k. Note that Meff is the effective
number of chromosome segments or the number of independent SNPs, which is a
function of effective population size (Ne) and can be empirically obtained as an
inverse of the variance of genomic relationships39,40. Here we use an estimate ofMeff

of 60,000, which is in line both with our estimates from the genomic relationships in
our simulation data and with previously reported estimates41. In Eq. (16), R2

k occurs

on both the left- and righ-hand side. Solving for R2
k gives R2

k ¼ φþh2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φþh2ð Þ2�4φh4

p
2φ ,

where φ is Meff
N .

With a phenotypic variance of 1 and individual-level genetic effects gk =Wbk,
then h2k ¼ σ2gk ¼ Mσ2bk and the squared correlation between the true, gk, and
estimated BLUP effects, bgBLUPk , is:

R2
gk ;bgBLUPk ¼ R2

k=h
2
k ð17Þ

Rearranging Eq. (17) gives R2
k ¼ h2kR

2
gk ;bgBLUPk ¼ h2k

cov gk ;bgBLUPk� �2
var gkð Þvar bgBLUPk� �, which given the

BLUP properties cov gk;bgBLUPk� �
¼ var bgBLUPk

� �
and h2k ¼ σ2gk with a phenotypic

variance of 1, reduces to R2
k ¼ cov gk;bgBLUPk� �

= var bgBLUPk� �
¼ Mvar bbBLUPk� �

.

Therefore:

var bbBLUPk� �
¼

var bgBLUPk� �
M

¼ R2
k

M
ð18Þ

Second, we consider the off-diagonal elements of VSBLUP, which are comprised
of the covariance of BLUP SNP solutions among the k traits. These can again be
approximated from theory given the covariance of genetic effects among traits k
and l is cov(bk, bl) = rGhkhl/M, with rG the genetic correlation, and given the

squared correlation between the true genetic effects of the SNPs, bk, and bbBLUPk
which is given by Eq. (17) as R2

bk ;bbBLUPk ¼ R2
k

M =
h2k
M ¼ R2

k=h
2
k . The covariance of BLUP

SNP predictors is then:

cov bbBLUPk′ ;bbBLUPl� �
¼ R2

k

h2k
� R

2
l

h2l
cov bk; blð Þ ¼ rGR2

kR
2
l

hkhlM
ð19Þ

Finally, we can consider the column vector CSBLUP, which is composed of the
covariance between the true genetic effects of the SNPs for the focal trait, bf, andbbSBLUPk for all of the k traits. The first element of CSBLUP is covariance between the

true genetic effects of the SNPs for the focal trait bf and bbSBLUPf for the focal trait

cov bf ;bbBLUPf� �
¼ var bbBLUPf� �

¼ R2
f

M . The remaining elements of CSBLUP are

cov bf ;bbBLUPk� �
, which can be approximated from theory by considering a

regression of bf on bk where the regression coefficient βf ;k ¼ rG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bf
� �

=var bkð Þ
q

.

The covariance of bf and bbBLUPk can then be written as:

cov bf ;bbBLUPk� �
¼ cov βf ;kbk;bbBLUPk� �

¼ rG
R2
k

M
� hf
hk

ð20Þ

If we consider a two-trait example where the focal trait that we want to predict is
matched to the first of the two traits, Eqs. (18), (19) and (20) combine as:

wSBLUP ¼ V�1
SBLUPCSBLUP ¼

R2
1

M
rGR2

1R
2
2

h1h2M

rGR2
1R

2
2

h1h2M
R2
2

M

24 35�1 R2
1

M

rG
R2
2

M � h1h2

24 35 ð21Þ

giving the index for the focal trait as: bbwMT�SBLUPf ¼ w1
bbSBLUPf þ w2

bbSBLUP2 with
solutions for the index weights of:

wf ¼ 1� r2GR
2
2

h22

� �
= 1� r2GR

2
f R

2
2

h2f h
2
2M

� �
¼ 1� r2GR

2

b2 ;bbBLUP2
� �

= 1� r2GR
2

bf ;bbBLUPf R2

b2 ;bbBLUP2
 !

; and

w2 ¼ rG= hf h2
� �

h2f � R2
1

� �� �
= 1� r2GR

2
f R

2
2

h2f h
2
2M

� �
¼ rG hf =h2

� �
1� R2

bf ;bbBLUPf
 !

= 1� r2GR
2
bf ;b̂BLUPf

R2

b2 ;bbBLUP2
� �

ð22Þ

For traits with low power, R2
k is usually very small. In that case, VSBLUP can be

well approximated by a diagonal matrix with entries
R2
k

M . wf will become 1 and wk for

all other traits will be rGf ;k

hf
hk
. It may appear surprising that traits with higher SNP

heritability have smaller weights than traits with lower SNP heritability. This can be
explained by the fact that the variance of each BLUP predictor R2

k

� �
is

approximately proportional to h4kN if Meff is large, and thus a trait with higher SNP
heritability will still have a larger contribution to the multi-trait predictor than a
trait with lower SNP heritability.

Equation (17) implies R2

bk ;bbBLUPk ¼ R2
gk ;bgBLUPk ¼ R2

k=h
2
k and thus the index weights of

Eq. (15) can be applied equally to BLUP solutions for the SNP effects or BLUP predictors
for individuals of each trait as described in the main text in Eq. (1) through (3). Both rGk;l

and h2k of Eq. (15) can be obtained from summary statistic data using LD score

regression22 and therefore bbMT�BLUP effects of Eq. (10), which would traditionally
require individual-level phenotype–genotype data for all traits, can be approximated
accurately in a computationally efficient manner using only publically available GWAS
summary statistic data and an independent genomic reference sample.

Index weighted multi-trait OLS SNP effects. In the previous section, we have
shown how bbSBLUP estimates for multiple traits can be combined to yield more
accurate bbwMT�SBLUP SNP effects, which can be turned into bgwMT�SBLUP individual
predictors that approach bgMT�BLUP accuracy. However, using a similar weighting
we can also combine bbOLS estimates for multiple traits into bbwMT�OLS.

For SNP j and focal trait f, we have bbOLS values for k traits, and we wish to
obtain the index weights, wj,k, for each bbOLSj;k effect as:bbwMT�OLSj;f ¼

X
k

wj;kb̂OLSj;k ¼ wj ′bbOLSj ð23Þ

Just like before, the optimal weights can be derived as:wOLS ¼ V�1
OLSCOLS, where

COLS is now a k × 1 column vector of the covariances of the bbOLSk values of the k
traits with the true genetic effects of the SNPs for the focal trait, and VOLS is a k × k
variance–covariance matrix of the bbOLS effects:

wOLS ¼ V�1
OLSCOLS

¼
var bbOLS1� �

� � � cov bbOLS1 ;bbOLSk� �
..
. . .

. ..
.

cov bbOLSk ;bbOLS1� �
� � � var bbOLSk� �

266664
377775
�1

cov bf ;bbOLS1� �
..
.

cov bf ;bbOLSk� �
266664

377775

ð24Þ

The diagonal elements of VOLS are:

var bbOLSk� �
¼ h2k

M
þ 1
Nk

ð25Þ

The off-diagonal elements for trait k and l are

cov bbOLSk ;bbOLSl� �
¼ rGhkhl

M
ð26Þ

COLS now has elements

cov bk;bbOLSk� �
¼ rGhkhl

M
ð27Þ

If we again consider a two-trait example, Eqs. (25), (26) and (27) combine as:

wOLS ¼ V�1
OLSCOLS ¼

h21
M þ 1

N1

rGh1h2
M

rGh1h2
M

h22
M þ 1

N2

24 35�1
h21
M

rGh1h2
M

" #
ð28Þ

These weights are considerably different from the BLUP weights, which reflects
the different variances of BLUP effects and OLS effects. Here we include this
section for completeness but focus our analyses on multi-trait BLUP effects,
because they are more accurate in expectation than multi-trait OLS effects.

Index weighted multi-trait SNP effects using LDPred. For phenotypes with a
genetic architecture characterised by a few loci of very large effect sizes, this
approach may not be ideal. Models that assume a mixture distribution for SNP
effects, such as LDpred or BayesR, can yield higher prediction accuracies in traits of
non-infinitesimal genetic architecture18,42. As outlined above, Eq. (17) implies
R2

bk ;bbBLUPk ¼ R2
gk ;bgBLUPk ¼ R2

k=h
2
k and thus the index weights of Eq. (15) can be applied

equally to BLUP solutions for the SNP effects or BLUP predictors for individuals of
each trait as described in the main text in Eq. (1) through (3). LDpred aims to
estimate the posterior mean phenotype that provides best unbiased prediction.
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Therefore, single-trait individual-level predictors obtained from LDPred can also
be weighted together to create an approximate multi-trait predictor.

Prediction accuracy of weighted multi-trait BLUP predictors. The prediction
accuracy of bbwMT�BLUP effects obtained from Eq. (15) can be derived by considering
the correlation of bf and bbwMT�BLUPk as:

r
bf ;bbwMT�BLUPf

¼
cov bf ;bbwMT�BLUPf

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bbwMT�BLUPf

� �
var bf
� �r ð29Þ

Equation (13) gives bbwMT�BLUPf ¼ w′bbBLUP and thus the covariance of bf andbbwMT�BLUPf is:

cov bf ;bbwMT�BLUPf

� �
¼ cov bf ;w′bbBLUP� �

¼ w′cov bf ;bbBLUP� �
¼ w′C ð30Þ

The variance of the bbwMT�BLUP effects obtained from Eq. (15) is:

var bbwMT�BLUP

� �
¼ var w′bbBLUPk

� �
¼ w′var bbBLUPk� �

w ¼ w′Vw ð31Þ

Additionally, w =V−1C and Vw =C, and thus w′C =w′Vw or written another way

cov bf ;bbwMT�BLUPf

� �
¼ var bbwMT�BLUP

� �
following BLUP properties. Substituting

into Eq. (19), the correlation of bf and bbwMT�BLUPk can then be written as:

r
bf ;bbwMT�BLUPf

¼ var bbwMT�BLUP

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bbwMT�BLUP

� �
var bf
� �r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bbwMT�BLUP

� �
=var bf

� �r ; ð32Þ

which gives the squared correlation as R2

bf ;bbwMT�BLUPf

= var bbwMT�BLUP

� �
=var bf

� �
=

R2
f

M =
h2k
M ¼ R2

f =h
2
k . Therefore, the squared correlation between a phenotype and a

multiple trait index weighted BLUP predictor of the phenotype is approximately:

R2
yk ;bgwMT�BLUPk

¼ Mvar bbwMT�BLUP

� �
¼ Mw′Vw ð33Þ

If we consider a two-trait example then prediction accuracy for a focal trait
R2
yf ;bgwMT�BLUPk

can be written as:

R2
yf ;bgwMT�BLUPf

¼ w2
f R

2
yf ;bgBLUPf þ w2

2R
2
y2 ;bgBLUP2 þ 2wfw2V1;2 ð34Þ

where V1,2 is the off-diagonal element of the matrix V of Eqs. (15) and (21). The
value of R2

yf ;bgwMT�BLUPf

can then be compared to the prediction accuracy of the single-

trait BLUP predictor of Eq. (16) and to the prediction accuracy of a cross-trait
predictor43, where a BLUP predictor of the second trait is used to predict the focal

trait phenotype, which is given by: R2
yf ;bgBLUP2 ¼ R2

y2 ;bgBLUP2 rG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=hf
� �q

. This com-

parison is of interest, because we expect the multi-trait predictor to be more
accurate than any available single-trait predictor, even if the most accurate single-
trait predictor is across two different traits. Cross-trait prediction is equivalent to
the proxy-phenotype method, which has been used to predict cognitive perfor-
mance from educational attainment GWAS data44.

Loss of prediction accuracy from BLUP approximation. Equations (16), (17),
(18), (19), (20), (21), (22), (23), (24), (25), (26), (27), (28), (29), (30), (31), (32),

(33) and (34) assume that cov bk;bbSBLUPk

� �
= var bbSBLUPk

� �
¼ var bbBLUPk

� �
, or in

other words that SBLUP SNP solutions have BLUP properties. The use of an
independent LD reference sample to create an approximate single-trait BLUP
predictor in Eq. (11) does not affect the covariance between the true SNP effect
sizes and the approximate BLUP SNP solution, meaning that the approximate
single-trait BLUP predictors have BLUP properties. However, the variance ofbbSBLUP is likely affected, which may potentially result in a loss of prediction

accuracy of a weighted multi-trait BLUP predictor. The variance of bbSBLUP is:

σ2bbSBLUP ¼ NLþ IMλ½ ��1W′
	 


W′Wσ2b þ Iσ2e
	 


W NLþ IMλ½ ��1	 

¼ NLþ IMλ½ ��1 W′Wð Þ W′Wð Þσ2b

	
þW′Wσ2e



NLþ IMλ½ ��1

¼ NLþ IMλ½ ��1 W′Wð Þ W′Wð Þ NLþ IMλ½ ��1�	
þ NLþ IMλ½ ��1W′Wλk

�
NLþ IMλ½ ��1
σ2b

ð35Þ

The loss of information from using an independent data set as an LD reference to

obtain L, rather than directly using the individual-level data to calculate W′W,
can be approximated by considering the scenario where SNP makers are
unlinked, resulting in diag[L]. The diagonal elements of σ2bbSBLUPjj

for SNP j are

then:

σ2bbSBLUPjj

¼ N þ λ½ ��2diag W′Wð Þ W′Wð Þ½ � þ Nλ N þ λ½ ��2� �
σ2b ð36Þ

The diagonal elements of diag[(W′W)(W′W)] can be approximated as
diag W′Wð Þ W′Wð Þ½ � ≈ N2 1þ E r2½ �Mð Þ + N2 1þM=Nð Þ, where the expectation of
the LD correlation of the SNPs, E r2½ �, is 1/N as the SNP markers are unlinked.
Equation (36) can then be written as:

σ2bbSBLUPjj

¼ N2 þ NM þ Nλð Þ= N þ λð Þ2� �
σ2b

¼ σ2bN=ðN þ λÞ þ σ2bNM=ðN þ λÞ2
ð37Þ

From Eq. (37), the squared correlation between true SNP effects and SBLUP SNP
effects can be written as:

R2

b;bbSBLUP ¼ N= N þM þ λð Þ ¼ N= N þM=h2
� �

ð38Þ

This can be contrasted to Eq. (17), which gives the squared correlation between

the true genetic effects of the SNPs, bk, and bbBLUPk as:

R2

bk ;bbBLUPk ¼ R2
k

M =
h2k
M ¼ R2

k=h
2
k

¼ 1= 1þM 1� R2
k

� �
= Nkh2k
� �� �

¼ Nk= Nk þM 1� R2
k

� �
=h2k

� � ð39Þ

Equation (39) is similar to Eq. (38) apart from the factor 1� R2
k . Therefore, the

relative loss of prediction accuracy from using an SBLUP predictor is given as a
ratio of Eqs. (39) and (38) as:

R2

b;bbSBLUP
R2

bk ;bbBLUPk ¼ Nh2 þM

Nh2 þM 1� R2
k

� � ð40Þ

For a phenotype of SNP heritability 0.5, with effective number of independent
markers (independent genomic segments), Meff, of ~ 60,000 and sample size, N, of
500,000, R2

b;bbSBLUP from summary statistics in an independent reference sample will

be 91% of the value of R2

bk ;bbBLUPk if individual-level data were available. Likewise, for

a two-trait example where both traits have h2 = 0.5 and N = 500,000, the accuracy of
the multi-trait SBLUP predictor will also be 91% of the accuracy of the multi-trait
BLUP predictor.

It should be noted that here we assume L to be a a diagonal matrix, which will
lead to a conservative estimate of the accuracy of SBLUP relative to the accuracy of
BLUP, and that this estimate is in fact equivalent to the expected accuracy of a
polygenic risk predictor based on marginal OLS effects28. In practice,
approximating L through an external reference data set leads to SBLUP predictors,
which are more accurate than predictors based on marginal OLS effects but less
accurate than predictors based on BLUP effects.

Computation time. Computing weights and combing up to 930,000 SNP effects of
34 traits takes <10 min on an Intel Xeon E7-8837 processor with 2.76 GHz.
Memory requirements do not extend much beyond the amount necessary to read
in the summary statistics. Calculation of single-trait SBLUP effects is more com-
putationally demanding, so we split the data by chromosome. Runtime for chro-
mosome one was <40 min, with memory usage just under 10 GB.

Simulation study. To compare the accuracy of single-trait and multi-trait genetic
predictors created from SNP effects obtained from both individual-level and
summary statistic data, we conducted a simulation study based on real genotypes
from the Kaiser Permanente study (Genetic Epidemiology Research on Adult
Health and Aging: GERA cohort) and simulated phenotypes.

From the GERA cohort, we selected 50,000 individuals of European ancestry
(for definitions of European individuals and quality control (QC) of the
genotypic data, see ref. 45). SNP QC procedures on the initial data sets consisted
of per-SNP missing data rate of <0.01, minor allele frequency >0.01, per-person
missing data rate <0.01 and Hardy–Weinberg disequilibrium p-value < 1 × 10
−6. For the subsequent imputation, the data were first haplotyped using HAPI-
UR. After that, Impute2 was used to impute the haplotypes to the 1000 genomes
reference panel (release 1, version 3). Best-guess genotypes at common SNPs
included in the HapMap 3 European sample were then extracted and filtered for
imputation info score >0.5, missing data rate of <0.01, minor allele frequency
>0.01, per-person missing data rate <0.01 and Hardy–Weinberg disequilibrium
p-value < 1 × 10−6. Next, we performed principal component analysis and
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removed individuals with principal eigenvector values that were >7 SD from the
mean of the European cluster. Lastly, we identified pairs of individuals with
genetic relatedness matrix >0.05 and removed one individual from each of these
pairs.

The Atherosclerosis Risk in Communities study (ARIC data) was used as an
independent LD reference when estimating SBLUP SNP effects of Eq. (11). Eight
thousand seven hundred and forty-four European individuals were selected and the
data were imputed and QC conducted in the same way as described above for the
GERA cohort. We then reduced the SNPs used in both the GERA and ARIC
cohorts to overlapping HapMap3 SNPs, which gave 557,034 SNPs that were used
in the simulation study.

We then randomly assigned 20,000, 20,000 and 10,000 individuals from the
GERA cohort to create three data sets: training set one, training set two, and a
testing set. We simulated two genetically correlated traits by randomly selecting
2000 causal SNPs. Effect sizes for the causal markers were simulated from a
bivariate normal distribution with mean 0, variances of h

2
1
M and h22

M and covariance of
rG

ffiffiffiffiffiffiffiffiffi
h21h

2
2

p
. These effect sizes were then multiplied with the standardised genotype

dosages (mean 0 and variance 1) to create a genetic value for each individual.
Normally distributed environmental effects e ~N(0, 1 − h2) were added to this
genetic value for each individual to create phenotypes with mean 0 and variance of
1. To remove any effects of population stratification, the simulated phenotypes
were then regressed against the first 20 genetic principal components, and the
residuals from this regression were used in all subsequent analyses.

In training set 1, we simulated trait 1 and we then estimated: (i) OLS SNP

effects using Eq. (5) bbOLS� �
, (ii) BLUP SNP effects from the individual-level data

using Eq. (8) bbBLUP� �
, and (iii) approximate SBLUP effects using the OLS SNP

effects from Eq. (5) and the ARIC data as a reference bbSBLUP� �
. In training set 2,

we simulated trait 2 and estimated bbOLS, bbBLUP and bbSBLUP in the same manner. We

then estimated multi-trait BLUP SNP effects using Eq. (9) bbMT�BLUP

� �
from

individual-level data by combining trait 1 from training set 1 and trait 2 from
training set 2.

In the testing set, we then used the estimated SNP effects from the training sets
to produce genetic predictors for both traits. Single-trait genetic predictors were
created for both simulated traits from (i) the OLS SNP effects bgOLS� �

, (ii) the BLUP
SNP effects bgBLUP� �

and (iii) the SBLUP SNP effects bgSBLUP� �
. We then created

multi-trait predictors where trait 1 was the focal trait from: (i) individual-level
multi-trait BLUP predictor bgMT�BLUP

� �
, (ii) weighted multi-trait SBLUP predictorbgwMT�SBLUP

� �
, (iii) a weighted multi-trait BLUP predictor-based individual-level

single-trait BLUP estimates bgwMT�BLUP

� �
, and (iv) a weighted multi-trait GWAS

predictor based on GWAS OLS estimates bgwMT�OLS

� �
. We simulated phenotypic

values for both traits using the same effect sizes as those used to generate the
phenotypes in the training sets and normally distributed environmental effects
sampled independently for each trait as e ~N(0, 1 − h2). We also compared
estimates obtained using LDPred with the proportion of SNPs in the model of
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1 or using the LDPred-Inf option.

We created two simulation scenarios. Heritability of the first and second trait
and genetic correlations were h21 = 0.2, h

2
2 = 0.8 and rG = 0.8, respectively, in the first

scenario and were h21 = 0.5, h
2
2 = 0.5, and rG = 0.5, respectively, in the second

scenario. In each set-up, six replicates were conducted, each with a different set of
randomly selected causal markers. We then repeated all analyses on a permuted
data set, where the values of the genotype matrix were permuted across all
individuals, for each SNP. This creates a genotype matrix where the allele frequency
distribution remains the same, but all LD structure is removed, allowing us to
determine the degree to which differences between the simulations results are
driven by the LD structure in the real genotype data. Finally, because prediction
accuracy is expected to be reduced by the error introduced by using an external LD
reference data set and a restricted LD window when implementing Eq. (8) (see
above), we examined how changing the LD reference and restricting the LD
window size influences to optimal value of shrinkage parameter λ when
implementing Eq. (8) (see Supplementary Fig. 3).

Application to PGC schizophrenia and bipolar disorder. We then applied our
approach to the schizophrenia (SCZ) and bipolar disorder (BIP) samples from both
wave 1 and wave 2 data of the PGC (PGC1 and PGC2). A description of the data
collection and imputation of the SNP genotype data can be found elsewhere25,26,46.

We selected these two disorders because there is a high genetic correlation
between them (estimate for rG between schizophrenia and bipolar disorder
using ldsc: 0.72, SE: 0.03; estimated using meta-analysis of all
PGC2 schizophrenia and bipolar cohorts, excluding cohorts which were used
as test set in the initial PGC1 analysis), and it enabled us to draw a direct
comparison between the approach described here and a previous study, which

estimated multi-trait BLUP SNP effects bbMT�BLUP

� �
from individual-level

data in an approach equivalent to Eq. (9). The previous study used PGC1 data
in the training set and selected four cohorts for schizophrenia and three
cohorts for bipolar disorder as test sets. For schizophrenia, the training set
comprised 17 cohorts (8826 cases, 6106 controls) and for bipolar disorder the

training set comprised 11 cohorts (5867 cases, 3328 controls). The test set of 4
cohorts for schizophrenia contained 4068 cases and 5471 controls, and the test
set of 3 cohorts for bipolar disorder contained 2029 cases and 5338 controls.
The analyses on the PGC1 data were performed on 745,705 HapMap3 SNPs in
common across all data sets. To have a direct comparison to our previous
study, we began by re-analysing the same PGC1 training set data to estimate:

(i) OLS SNP effects using Eq. (5) bbOLS

� �
, (ii) BLUP SNP effects from the

individual-level data using Eq. (8) bbBLUP

� �
, and (iii) approximate SBLUP

effects using the OLS SNP effects from Eq. (5) and the ARIC data as a

reference bbSBLUP

� �
using Eq. (11). For the estimation of schizophrenia SBLUP

effects, λ was set to 1,100,000, corresponding roughly to 1,000,000 markers
and an observed scale SNP heritability estimate of 0.47, and for the estimation
of bipolar disorder SBLUP effects, lambda was set to 1,200,000, corresponding
roughly to 1,000,000 markers and an observed scale SNP heritability estimate
of 0.45. For the four SCZ testing cohorts and the three BIP testing cohorts
used in the previous study, we created: (i) weighted multi-trait SBLUP
predictors bgwMT�SBLUP

� �
, (ii) weighted multi-trait BLUP predictor-based

individual-level single-trait BLUP estimates bgwMT�BLUP

� �
, and (iii) weighted

multi-trait GWAS predictor based on GWAS OLS estimates bgwMT�OLS

� �
. We

then compared the prediction accuracy we obtained using the weighted multi-
trait SBLUP predictors to the individual-level multi-trait BLUP predictorbgMT�BLUP

� �
used in the previous study16.

We then extended our analysis to the PGC2 data set. There were 36 cohorts for
schizophrenia (26,412 cases and 32,440 controls in total) and 23 cohorts for bipolar
disorder (18,865 cases and 30,460 controls in total) available to us. The number of
SNPs used in the PGC2 analyses varied between cohorts. Summary statistics for
each of the PGC2 cohorts was available to an imputed SNP set of >10,000,000
SNPs. After intersecting this set of SNPs with the HapMap3 SNPs and the ARIC
SNPs, 932,344 SNPs remained that were used to create predictors.

We applied a cross-validation approach as we observed that prediction accuracy
as well as accuracy differences between predictors can be highly dependent on the
choice of the test set in the extended PGC2 data set (Supplementary Figs. 5 and 6),
which is supported by previous results showing highly variable prediction accuracy
across cohorts in the PGC2 data set25. A cross-validation approach allowed us to
get a more robust estimate of the increase of prediction accuracy achieved by our
multi-trait prediction method compared to a single-trait predictor. We employed a
leave-one-out cross-validation approach, where, for each test set cohort, all cohorts
of the same disease without any highly related individuals were chosen to be in the
training set for the single-trait predictor and all cohorts of both diseases without
any highly related individuals were chosen to be in the training set for the multi-
trait predictor. To identify pairs of cohorts with highly related individuals, genetic
relatedness for all pairs of individuals (across all pairs of cohorts) was calculated
based on chromosome 22, and whenever at least one pair of individuals had
relatedness >0.8, that pair of cohorts was not simultaneously used in the training
set and the test set.

The full genotypes from the PGC2 cohorts that were used as test sets underwent
stringent QC and only comprised 458,744–860,576 SNPs for schizophrenia and
556,278–859,034 SNPs for bipolar disorder. We refrained from using the
intersection between all these cohorts to not reduce the number of SNPs used in
prediction by too much. This meant that different iterations in the cross-
validations were based on predictions using a different number of SNPs. However,
each comparison between a single-trait predictor and a multi-trait predictor is
based on the same number of SNPs.

In each iteration of the cross-validation, a different cohort acts as the test set
and a different set of cohorts comprises the training set. To create a predictor from
a particular set of cohorts, we first had to obtain effect size estimates from this
particular set of cohorts. This is achieved by performing a meta-analysis of the
summary statistics of the cohorts that comprise the training set. The meta-analysed
beta values bMETA are calculated as:

bMETA ¼
P

s
bs
SE2sP

s
1
SE2s

ð41Þ

where bs is the effect size in cohort s and SEs is the standard error in cohort s.
Conversion between beta values and odds ratios (OR) simply follows the equality b
= log(OR). The weights derived for each trait make assumptions about the variance
of SNP effects. We found that, in the summary statistics we used, the observed
variance across SNP effects often departed from the expected value. To correct for
that, we scaled the SNP effect estimates for each trait to have a variance of one and
multiplied the weights for the unscaled SNP effects by the expected standard
deviation across all SNPs.

We created approximate SBLUP effects bbSBLUP� �
using the OLS SNP effects

from Eq. (5) and the ARIC data as an LD reference using Eq. (11) and set the
shrinkage parameter, λ, to 1,300,000 for schizophrenia and to 2,000,000 for bipolar
disorder, corresponding to observed scale SNP heritability estimates of 0.43 and
0.33 for schizophrenia and bipolar disorder, respectively. We then used the PLINK

“--score” function to turn SNP effects bbSBLUP;bbGWAS

� �
into individual predictors
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bgSBLUP;bgGWAS

� �
for each meta-analysed schizophrenia or bipolar disorder cross-

validation set. For the multi-trait weighting, we estimated the heritability of
schizophrenia and bipolar disorder and their genetic correlation using LD score
regression from publicly available PGC2 schizophrenia summary statistics and the
PGC1 bipolar disorder summary statistics. These estimates were then used to
calculate the index weights of Eq. (15) for the weighted multi-trait SBLUP
predictors bgwMT�SBLUP;bgwMT�GWAS

� �
of SCZ and BIP, and these were not altered

between different cross-validation sets.
To test the degree to which the choice of weights affects the accuracy of the

multi-trait predictor, we compared the accuracy of multi-trait predictors based on a
spectrum of other weights (Supplementary Figs. 5 and 6). For this, we took
advantage of two things: First, when individual predictors bgSBLUP;bgGWAS

� �
are

weighted rather than SNP effects bbSBLUP;bbGWAS

� �
, the conversion from SNP

effects to individual effects does not have to be repeated for different weights.
Second, the scaling of a predictor does not influence its accuracy in terms of
correlation between prediction and outcome. Therefore, rather than testing each
combination of weights of schizophrenia and bipolar disorder, it is sufficient to
vary the relative weight of schizophrenia to bipolar disorder to explore the whole
range of possible multi-trait predictors for these two traits. For each test cohort,
this enabled us to test whether the weights of our multi-trait predictor derived from
theory deviate from the weights that would result in the highest prediction accuracy
for that data set.

Application to phenotypes in the UK Biobank study. We applied our approach
to a large range of phenotypes for which GWAS summary statistics are publicly
available. We started with GWAS summary statistics for 46 phenotypes. However,
in some circumstance the same studies (i.e., based on the same individuals) had
generated summary statistics for multiple similar phenotypes, so we chose only one
phenotype per study, which left us with 34 phenotypes. For example, out of
“Cigarettes per day” and “Smoking Ever” we only selected the latter to have only
one trait for smoking. We used 112,338 unrelated individuals of European descent
in the UK biobank data as the testing set. We paired 6 phenotypes out of the
34 summary statistic phenotypes to phenotypes in the UK Biobank: Height, BMI,
fluid intelligence score, depression, angina, and diabetes. The first three are
quantitative traits and the latter three are disease traits for which we could identify
at least 1000 cases in the UK Biobank data. For details, see Supplementary Table 1.

For the disease traits, we used the self-reported diagnoses rather than ICD10
diagnoses, as they tend to have larger sample sizes. For depression, we used a more
refined definition of cases and controls, where individuals were not counted as
cases if they had any history of psychiatric symptoms or diagnoses other than
depression or if they were prescribed drugs that are indicative of such diagnoses.
Individuals were selected as controls only when there was an absence of any
psychiatric symptoms or diagnoses and only when they were not prescribed any
drugs that could be indicative of such diagnoses. All 6 traits in the UK Biobank
were corrected for age, sex and the first 10 principal components by regressing the
phenotype on these covariates and using the residuals from that regression for
further analysis. For each trait, the SNPs that went into the analysis were based on
the overlap between the GWAS summary statistics, the HapMap3 SNPs, the GERA
data set, which was used as an LD reference in the SBLUP analysis, and the
imputed SNPs from the UK Biobank. (For details on the QC process and
imputation, see URLs.) Depending on the trait, the total number of SNPs ranged
from around 660,000 to around 930,000.

We created single-trait bgSBLUP� �
as well as multi-trait bgwMT�SBLUP

� �
predictors

for the six paired phenotypes. To create SBLUP SNP effects bbSBLUP� �
from

summary statistic trait, we used a λ value of M 1� h2SNPk

� �
=h2SNPk for each trait k,

where M is assumed to be 1,000,000. As LD reference set, we used a random subset
of 10,000 people of European descent from the GERA data set, and we set the LD
window size to 2000 kb. We then used the PLINK “–score” function to turn SNP

effects bbSBLUP� �
into individual predictors bgSBLUP� �

for each trait. For the multi-

trait weighting, we used LD score regression to calculate SNP heritability and
genetic correlation between all pairs of cohorts. For dichotomous disease traits,
SNP heritability was calculated on the observed scale. For each phenotype for
which a multi-trait predictor was created, we selected all phenotypes that had a
genetic correlation estimate significantly different from 0 at p = 0.05 with the focal
trait, as well as the focal trait itself. The summary statistics based single-trait SBLUP
predictors of the selected phenotypes were then combined into multi-trait SBLUPbgwMT�SBLUP

� �
predictors. The weights for each phenotype were calculated

according to Eq. (15). These weights require the single-trait predictors to have
exactly the right variance. Since the summary statistics data slightly diverged from
this expectation, we scaled each single-trait SBLUP predictor to have mean 0 and
variance 1 and then multiplied it with its expected standard deviation, to ensure
everything is on exactly the correct scale. We followed the same approach when
using single-trait LDPred predictors.

We compared the performance of the multi-trait predictors bgwMT�SBLUP

� �
not

only to the performance of the single-trait predictor bgSBLUP� �
for the same trait but

also to the performance of all other (cross-trait) single-trait predictors for the traits
that exhibited significant rG with the focal trait (Fig. 4). This is appropriate because

in some traits the single-trait predictor from the same trait is not the most accurate
single-trait predictor.

Code availability. Code reported in this manuscript is available from https://
github.com/uqrmaie1/smtpred.

For GCTA, see http://cnsgenomics.com/software/gcta/
For LDSC, see https://github.com/bulik/ldsc
For MTG2, see https://sites.google.com/site/honglee0707/mtg2
For LDpred, see https://github.com/bvilhjal/ldpred/
For UK Biobank, see http://www.ukbiobank.ac.uk/
For PLINK2, see http://www.cog-genomics.org/plink2

Data availability. PGC summary statistics data are available from http://www.
med.unc.edu/pgc/results-and-downloads

For UK Biobank data, see https://www.ukbiobank.ac.uk/
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