Feasibility of Using Existing Public and Private Data Sources for Nationwide Medical Device Post-marketing Safety Surveillance

Citation

Published Version
doi:10.1093/ofid/ofu052.605

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:35982082

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Feasibility of Using Existing Public and Private Data Sources for Nationwide Medical Device Post-marketing Safety Surveillance

Ying P. Tabak, PhD1; RS Johannes, MD, MS2; Xiaowu Sun, PhD3; Cynthia Crosby, PhD3; William Jarvis, MD, FIDSA4; 1Clinical Research, CareFusion, San Diego, CA; 2Harvard Medical School, Boston, MA; 3Medical Affair, CareFusion, San Diego, CA; 4Jason and Jarvis Associates, LLC, Hilton Head Island, SC

Session: 112. HAI Surveillance and Public Reporting
Friday, October 10, 2014: 12:30 PM

Background. The Food and Drug Administration (FDA) initiated a national strategy for monitoring post-market medical product safety using existing public and private electronic data. The Centers for Medicare and Medicaid Services (CMS) publicly report hospital central line-associated bloodstream infection (CLA-BSI) data. We explored the feasibility of expanding the current FDA Sentinel Initiatives on patient-level data to hospital-level data for surveillance of CLA-BSI associated with intravenous needleless connectors (NC).

Methods. We merged the 2013 CMS Hospital Compare CLA-BSI data with the MaxPlus™ Tru-Swab™ Positive Displacement Connector (MP) client database from CareFusion to identify hospitals using the MPs (MP hospitals) vs those not using the MPs (Comparator hospitals). MP is a newer generation of NC with enhanced patient safety engineering design features. We evaluated CLA-BSI rates associated with MPs vs Comparators.

Results. In the CMS Hospital Compare CLA-BSI database, 3,074 hospitals reported central line (CL) days >1, with 25% (n = 758) hospitals using MP NCs. The MP hospitals accounted for 30% (2,923,859/9,887,264) of CL days, and 28% (3,017/10,864) of CLA-BSI episodes. The MP hospitals had a lower observed CLA-BSI rate (1.03 per 1,000 CL days [3,017 CLA-BSIs / 2,923,859 CL-days]) compared to Comparator hospitals (1.13 per 1,000 CL days [7,847 CLA-BSIs / 6,963,405 CL-days], \(P < 0.0001 \)). The univariate relative risk for CLA-BSI of MP hospitals was 0.91 (95% CI: 0.83, 0.98; \(P = 0.02 \)). After adjusting for hospital bed size, teaching, urban status, and geographic regions, the multivariable relative risk for CLA-BSI of MP hospitals was 0.94 (95% CI: 0.86, 1.02; \(P = 0.11 \)).

Conclusion. We demonstrated that it is feasible to link hospital-level data from public-private sources to support the FDA’s electronic post-market medical device safety surveillance efforts. Manufacturers should be encouraged to participate in FDA’s efforts.

Disclosures. Y. P. Tabak, CareFusion: Employee and Shareholder, Salary; R. Johannes, CareFusion: Employee and Shareholder, Salary; X. Sun, CareFusion: Employee, Salary; C. Crosby, CareFusion: Employee and Shareholder, Salary; W. Jarvis, Baxter: Consultant, Consulting fee; CareFusion: Consultant, Consulting fee; Johnson and Johnson: Consultant, Consulting fee; Gojo: Consultant, Consulting fee