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Background. Previous genetic association studies of human immunodeficiency virus-1 (HIV-1) progression have focused on 
common human genetic variation ascertained through genome-wide genotyping.

Methods. We sought to systematically assess the full spectrum of functional variation in protein coding gene regions on HIV-1 
progression through exome sequencing of 1327 individuals. Genetic variants were tested individually and in aggregate across genes 
and gene sets for an influence on HIV-1 viral load.

Results. Multiple single variants within the major histocompatibility complex (MHC) region were observed to be strongly asso-
ciated with HIV-1 outcome, consistent with the known impact of classical HLA alleles. However, no single variant or gene located 
outside of the MHC region was significantly associated with HIV progression. Set-based association testing focusing on genes iden-
tified as being essential for HIV replication in genome-wide small interfering RNA (siRNA) and clustered regularly interspaced short 
palindromic repeats (CRISPR) studies did not reveal any novel associations.

Conclusions. These results suggest that exonic variants with large effect sizes are unlikely to have a major contribution to host 
control of HIV infection.

Keywords. HIV-1 control; exome sequencing; HIV-1 progression; host genetics of infection; HIV host dependency factors.
 

Controlling human immunodeficiency virus-1 (HIV-1) viral 
load in infected patients is necessary to reduce global morbid-
ity, mortality, and viral transmission [1]. Given the difficulties 
in developing an effective anti-HIV vaccine and the lack of effi-
cient strategies to eradicate the virus in infected individuals, 

current and novel drug classes will be required for long-term 
viral suppression and global HIV prevention. Advances in 
understanding of the scope of functional human genetic vari-
ation and its impact on health and disease provide an attractive 
strategy for identification of novel drug targets [2]. Such a strat-
egy leverages population genetic variation in key proteins that 
modify their function, thus honing in on potential novel drug 
targets. This approach has already been successfully applied in 
the development of maraviroc, a CCR5 antagonist that mimics 
the effect of the highly protective CCR5Δ32 polymorphism [3], 
which confers resistance to infection in homozygous carriers.

In recent years, genome-wide association studies of HIV con-
trol have repeatedly underscored the large impact of common 
genetic variation ascertained through genome-wide genotyping 
(minor allele frequency > 5%) [4–6]. These studies have identi-
fied multiple independent polymorphisms within the HLA and 
CCR5 regions that together explain approximately 25% of the 
observed variability in viral load [7]. However, such studies do 
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not directly assess the impact of the full spectrum of functional 
variants within coding regions and such polymorphisms, which 
are not well represented in genome-wide association studies, 
have been proposed to explain an additional proportion of viral 
load variability [8, 9]. Indeed, exome sequencing has uncovered 
functional variants contributing to the genetic architecture of 
a number of complex traits [10–13]. In this study, we sought 
to address this gap by combining exome sequencing data from 
5 independent studies of HIV progression. After quality con-
trol, we obtained high-quality sequence data for 1327 individ-
uals, including 962 people living with HIV that had varying 
rates of spontaneous viral control and disease progression. 
Identification of functional variants that impact HIV disease, 
particularly in genes required for HIV replication identified in 
genome-wide small interfering RNA (siRNA) [14] and clus-
tered regularly interspaced short palindromic repeats (CRISPR) 
[15] screens, may help to inform drug development and stem 
the transmission of the virus.

MATERIALS AND METHODS

Sample Cohorts and Sequencing

Written, informed consent for genetic studies was obtained from 
all participants. Ethical approval for each study was obtained 
from their local Institutional Review Board. A  total of 1003 
nonoverlapping, HIV infected individuals were recruited across 
5 independent studies comprising 3 separate study designs as 
follows (and Supplementary Table 1):

1. Quantitative set point viral load (spVL): Patients 
enrolled in the Swiss HIV Cohort Study (SHCS, n = 392) 
were selected based on stability of spVL measurement in 
the absence of antiretroviral therapy (ART). Participants for 
exome sequencing were selected at random from a larger set 
of individuals with high-quality set point HIV viral load deter-
minations. All viral load measurements were made off therapy 
during the chronic phase of infection. Full details of inclusion/
exclusion criteria have been described previously [16]. In this 
group, log10(spVL) was used as a quantitative trait for associ-
ation testing.
2. HIV elite controllers compared to population con-
trols: HIV elite controllers (n  =  219), defined as ART-naive 
individuals having stable spVL measurements below 50 cop-
ies per mL of plasma, were enrolled in the International HIV 
Controllers Study (IHCS) [6]. To enhance discovery at novel 
loci, controllers were preferentially included if they did not 
carry known protective HLA-B alleles (B*57:01, B*14:02 and 
B*27:05). Controllers were matched to 64 HIV-infected indi-
viduals with high spVL enrolled in ART studies led by the AIDS 
Clinical Trials Group (ACTG) and 372 HIV-uninfected individ-
uals included as controls in the Autism Sequencing Consortium 
(ASC) [17], resulting in an initial sample size of 219 cases and 

436 controls. Controller or noncontroller/HIV status was used 
as a binary endpoint for association testing.
3. HIV controllers (HIV-C) compared to rapid progres-
sors (HIV-RP): Patients were recruited to the CASCADE study 
(n = 85 HIV-C, 98 HIV-RP), the Multicenter AIDS Cohort Study 
(MACS, n  =  34 HIV-C, 54 HIV-RP), or the HIV Genomics 
Consortium (HGC, n = 21 HIV-C, 36 HIV-RP), resulting in an 
initial sample size of 140 HIV-C and 188 HIV-RP. HIV-Cs were 
defined as HIV+ individuals with sustained, suppressed viral loads 
and/or long-term survival off therapy. HIV-RPs were defined as 
individuals exhibiting low CD4 counts within 6 months to 3 years 
postinfection (precise phenotype definitions used per cohort are 
given in Supplementary Table 1). HIV-C and HIV-RP were used 
as binary endpoints in a case/control framework for association 
testing.

Participants predominantly reported European ancestry 
(Supplementary Table  1), which was confirmed by principal 
components analysis using EIGENSTRAT [18]. Exon capture 
was performed using the Illumina Truseq 65Mb enrichment 
kit (SHCS), Agilent 38Mb SureSelect v2 enrichment kit (IHCS, 
ACTG, ASC), Agilent SureSelect Human All Exon 37Mb V1 
(MACS), or Agilent SureSelect Human All Exon 50Mb v5 
(CASCADE and HGC) (Supplementary Table  2). All exons 
were sequenced to high coverage on either the Illumina HiSeq 
2000 or Illumina Genome Analyzer II at local sequencing cen-
ters. For all samples, >90% of targeted bases had >10× coverage 
and >80% of targeted bases had >20× coverage.

Sequence Alignment and Variant Calling

Paired-end, short read data passing Illumina quality filters 
were aligned to the human reference genome version 19 (hg19/
GhCR37) using the Burrows–Wheeler Aligner [19], polymerase 
chain reaction (PCR) duplicates were removed using Samtools 
and quality score recalibration and realignment around inser-
tion/deletion variants (indels) was performed using the Genome 
Analysis Toolkit version 3.1-1 (GATK). Variant calling of single 
nucleotide variants (SNVs) and small indels was performed 
on the combined sample using the HaplotypeCaller module of 
the GATK, and variant quality score recalibration (VQSR) was 
done using training sets released with GATK v. 3.1-1 and corre-
sponding best practices. Only variants passing the variant qual-
ity score recalibration (VQSR) thresholds were maintained for 
further analysis. After variant calling, samples were separated 
by phenotype group as outlined in the previous section.

Sample and Variant Quality Control

Sample quality was evaluated using a selected set of high fre-
quency (> 5%) SNVs with low missingness (< 2%). For each 
phenotype group, sample duplicates were detected using iden-
tity-by-descent analysis and a single duplicate was removed 
(n  =  11). Samples having high missingness (>5%, n  =  19) or 
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abnormal heterozygosity levels (inbreeding coefficient > 0.1 or 
< −0.1, n = 13) were removed. Specific to the IHCS set, samples 
with an excessive number of singletons (> 3 standard devia-
tions from the mean of all samples) were also removed (n = 5). 
A summary of the final sample numbers is provided in Table 1.

For all phenotype groups, variants were removed if they 
diverged from Hardy–Weinberg equilibrium (HWE, P < 1 × 10–5)  
or were missing in > 5% of individuals. Specific to the IHCS 
sample, a stricter threshold was applied to account for variants 
with highly heterozygous calls (HWE P < .01). Additionally, all 
indels were removed from the IHCS set as there was a system-
atic case/control bias in indel calls resulting in inflation of asso-
ciation results.

Variant Annotation, Association Testing, and Meta-analysis

Per phenotype group, variants were annotated for functional 
consequences using SNPeff v3.1. For single variant association 
testing, we restricted to variants with frequency of >1% and 
used linear mixed models as implemented in FaST-LMM v2.07 
[20] to test for association with either spVL (quantitative trait) 
or case/control status. Variant P values were combined across 
groups using a sample size weighted, signed Z-score meta-anal-
ysis method [21] assuming the same direction of effect for 
alleles associating with lower spVL and with a higher frequency 
in HIV controllers compared to rapid progressors or the gen-
eral population. Multiple comparisons were accounted for 
using Bonferroni correction and variants with P < 9 × 10–7 were 
considered significant. Power for variant detection was calcu-
lated using the online Genetic Power calculator [22] assuming 
a sample size of 1000, a case/control ratio of 1, and a trait prev-
alence of 0.05. Linkage disequilibrium and haplotype struc-
ture between associated SNPs in the MHC region and classical 
alleles of HLA-A, -B, and -C were calculated using PLINKv1.9 
[23] in a subset of 367 individuals from the SHCS set with HLA 
types imputed previously [7].

Gene and Gene Set Association Testing

Gene and gene set association testing was performed using the 
default weighting scheme of SKAT-O as implemented in the R 
statistical software [24]. This method evaluates the evidence for 
association across all variants within a gene or gene set, pro-
viding additional weight to low-frequency variants. Analysis 

was performed using all variants and restricting to functional 
variants (SNPeff category MODERATE) or highly damag-
ing variants (SNPeff category HIGH). Association evidence 
was combined across groups using Fisher’s method. We used 
Bonferroni correction assuming 20 000 genes (P < 2.5 × 10−6) 
to consider a gene or set significantly associated. We used the 
power simulation function built in to the SKAT library in R to 
estimate power across a range of scenarios assuming the same 
sample size as for the single variant analysis.

Analysis of Variation in HIV Dependency Factors

Gene lists of HIV dependency factors were taken from recent 
siRNA knockdown [14] and CRISPR [15] studies. Based on 
the criteria used in the siRNA study, we generated gene sets 
of HIV dependency factors at two different significance levels 
(false discovery rate q values of 0.2 and 0.05). In addition, we 
tested sets including all genes in the mediator complex and the 
nuclear pore complex, which were identified in the siRNA study 
as key cellular components required for HIV replication. From 
the CRISPR study, 4 high-confidence HIV dependency factor 
genes not identified by the siRNA studies were included. A list 
of genes included in each set is provided in Supplementary 
Table  3. Association testing for each HIV dependency factor 
gene and gene set was performed using SKAT-O under the 
same framework as the genome-wide screen.

RESULTS

Association Testing of Common Polymorphisms

After quality control, high-quality exome sequence data were 
available for 962 HIV-infected patients and 365 HIV-uninfected 
individuals distributed across 3 related study designs (Table 
1). In total across all 3 groups, we tested 55 714 common (fre-
quency >1%) exonic polymorphisms (SNPs and indels) in 12 808 
genes for an impact on HIV control. In line with expectation, 
we observed a strong association between variants in HLA-
B and HIV phenotypes (Figure 1). The top associated variant, 
rs1055821 (P = 4.6 × 10–21), is located in the 3′ untranslated 
region of HLA-B and the minor (A) allele falls on haplotypes 
containing SNPs previously identified by genome-wide associa-
tion studies (Supplementary Table 4) as well as HLA-B*57 (r2 = 
0.60, D′ = 1) and HLA-B*13 (r2 = 0.34, D′ = 1), both known to 

Table 1. Study Designs and Sample Numbers Included

Study design Description n cases n controls n total Phenotype class Contributors

Natural history HIV+ patients with spVL selected 
from full phenotype distribution

na na 392 quantitative Swiss HIV Cohort Study

HIV extreme vs 
population

HIV elite controllers compared to a 
mixed sample of HIV+ and HIV 
negative

191 (HIV-EC) 428 (63 HIV+) 619 binary International HIV Controllers Study, AIDS 
Clinical Trials Group, Autism Sequence 
Consortium

HIV extreme HIV controllers compared to HIV 
rapid progressors

130 (HIV-C) 186 (HIV-RP) 316 binary CASCADE, Multicenter AIDS Cohort Study, 
HIV Genomics Consortium

Abbreviations: HIV-EC, HIV elite controllers; HIV-C, HIV controllers; HIV-RP, HIV rapid progressors; spVL, set point viral load; na, not applicable.
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strongly associate with lower HIV viral load [7]. Outside of the 
MHC region, no variants were significantly associated with HIV 
phenotypes in the individual group analyses or in the meta-anal-
ysis (Supplementary Figure 1).

Gene-based Association Testing

Detecting the impact of rare functional variants individually on 
HIV control would require extremely large sample sizes, due 
to the overall lower frequency (and potentially modest impact) 
of such variation. To overcome this, we next assessed the evi-
dence that multiple variants (common and rare) within a gene 
may contribute to HIV control using SKAT-O [24]. Per group, 
variants were annotated for functional consequences using 
SNPeff [25] and we tested genes for association with viral load 
in three iterations: (1) including all variants, (2) restricting to 
protein-modifying variants (missense, nonsense, frameshift, 
and splice site), and (3) restricting to predicted loss-of-function 
variants (nonsense, frameshift, and splice site). As in the single 
variant analysis, the strongest associations were observed for 
genes in the MHC region. Outside of the MHC region, no sin-
gle gene was associated with the HIV control phenotypes under 
study regardless of the functional consequences of the included 
variants (Figure 2).

Assessment of the Impact of Variation Within HIV Dependency Factors

Genetic screens using small interfering RNA (siRNA) molecules 
[14] or CRIPSR [15] technology to systematically knock out 
expression of host genes have identified multiple genes required 
for efficient HIV replication in vitro (termed HIV dependency 
factors). Although none of these HIV dependency factors were 
individually identified by gene-based testing, we hypothesized 
that functional variation within them taken as a set may play 
a role in control of HIV replication in vivo. To assess this, we 
generated gene sets combining results from both screens (ie 

the union) and for each technology separately. From the siRNA 
screen, we created two sets reflecting different statistical cutoffs 
for classifying a gene as an HIV dependency factor (false discov-
ery rate < 0.2 and 0.05) consistent with the original publication 
[14]. In addition, we tested all genes within the mediator com-
plex and the nuclear pore complex given their over-representa-
tion in the siRNA studies. Applying the same analysis framework 
as for genes, we tested each set for association with HIV control. 
We did not observe a significant association between any set of 
selected HIV dependency factors and HIV viral load (Table 2). 
The lists of genes included in each set and their gene-based asso-
ciation results are listed in Supplementary Table 3.

DISCUSSION

Human genetic variation plays a large role in determining the 
outcome of HIV-1 infection. However, common, genome-wide 
genetic factors identified by genome-wide association studies can 
only explain up to 25% of the observed variability in HIV spVL. 
To assess the evidence for an additional impact of functional 
variation in HIV progression, we combined exome sequence data 
across 5 independent studies that evaluated 3 related models of 
HIV control in a total of 1327 individuals with high-quality data.

In the single variant analysis, we observed several strongly 
associated sites, all located in or near the HLA-B gene. The top 
associated SNP, rs1055821, is in strong linkage disequilibrium 
with classical HLA-B alleles known to protect against HIV pro-
gression and several other variants previously reported in large, 
genome-wide association studies (Supplementary Table  4). 
This suggests that the observed association at this SNP is sim-
ply a tag for previously identified functional variants (such as 
valine at position 97 in the HLA-B peptide binding groove) and 
that functional variants with large effect sizes not identified by 
genome-wide association studies are unlikely to play a major 
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role in HIV control. We further assessed the role of an accumu-
lation of variants within a gene for an impact on HIV outcome 
by using a gene-based association framework. This method has 
been shown by simulation and in practice to enhance power for 
genetic discovery, even with relatively small sample sizes [24]. 
Though we did observe several genes with significant P values, 
each was located within the MHC region and likely a result of 
the complex linkage disequilibrium and extended haplotype 
structure between these genes and class I HLA genes.

We also performed a focused analysis on a high-confidence set 
of HIV dependency factors and a detailed evaluation of the impact 
of their genetic variation on disease. Although a previous genetic 
study based on earlier siRNA screens observed associations 
between polymorphisms in HIV dependency factors and clini-
cal HIV phenotypes [26], we did not see a similar effect. Further, 
combining variants across the entire set of high-confidence HIV 
dependency factors or across genes in cellular complexes impli-
cated by siRNA studies (ie the mediator complex and the nuclear 
pore complex) did not reveal significant associations. This sug-
gests that functional polymorphisms within these genes does not 
have a large impact on HIV replication in vivo, although we can-
not rule out an impact of such variation on HIV acquisition.

This study design was aimed at directly interrogating the 
impact of functional genetic variation on HIV-1 control across the 
frequency spectrum. To identify maximum genetic effects detect-
able in our study, we preformed power simulations reflecting the 
combined sample size of n = approximately 1000. In the single 
variant analysis, we had approximately 99% power to detect vari-
ants with 10% allele frequency and an odds ratio of 2.0 or greater 
assuming a case/control ratio of 1 to 1.  However, we had only 
limited power (approximately 0.2%) to detect rare alleles (<1%) 
with that same effect size. Similarly, for the gene-based associa-
tion testing, this study was well powered to detect signals of large 
effect (power was approximately 80% to detect a gene contain-
ing 50% causal variation, no protective variation, and a variant 
with a maximum odds ratio of 8 at P = 1 × 10–6; Supplementary 
Figure 2) but not more subtle effects (power was approximately 
10% to detect a gene containing 10% causal variation, no protec-
tive variation, and a variant with a maximum odds ratio of 8 at 
P = 1 × 10–6; Supplementary Figure 2). Thus, we cannot rule out 
that subtler genetic effects would be detected in a larger study. 
Additionally, sequencing was restricted to the exonic regions 
of the genome in a largely European sample. This prevented us 
from assessing the potential contribution of large structural poly-
morphisms, rare variants in regulatory regions, and large effect 
coding variants present in non-European populations. A combi-
nation of whole-genome sequencing, in-depth genomic explora-
tion of additional populations from varied ancestral backgrounds 
in large-scale studies, extension to other clinical phenotypes, and 
functional in vitro and ex vivo validation studies, performed in 
step with sequencing of the virus itself, provides an attractive next 
frontier in HIV host genomics research.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
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Table 2. Set Test Association Results for HIV Dependency Factor Genes

Gene set
n 

genes
All variants 

(P)
Protein changing 

variants (P)
High impact 

(P)

All HDFs 496 0.08 0.09 0.73

CRISPR 5 0.24 0.10 0.31

siRNA FDR <0.2 492 0.09 0.10 0.75

siRNA FDR <0.05 91 0.38 0.40 0.81

Mediator complex 26 0.47 0.48 0.11

Nuclear pore 
complex

27 0.56 0.69 0.36

Abbreviations: FDR, false discovery rate; HDFs, HIV dependency factors.
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are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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