An Algebraic Surface with $\backslash(K \backslash)$ ample，$\backslash\left(K^{\wedge} 2\right)=9$ ， $\left.p _g=q=0 \backslash\right\}$

Citation

Mumford，David B．1979．An algebraic surface with $\backslash(K \backslash)$ ample，$\backslash\left(\left(K^{\wedge} 2\right)=9, p _g=q=0 \backslash\right.$ ．
American Journal of Mathematics 101（1）：233－244．

Published Version

doi：10．2307／2373947

Permanent link

http：／／nrs．harvard．edu／urn－3：HUL．InstRepos：3612860

Terms of Use

This article was downloaded from Harvard University＇s DASH repository，and is made available under the terms and conditions applicable to Other Posted Material，as set forth at http：／／ nrs．harvard．edu／urn－3：HUL．InstRepos：dash．current．terms－of－use\＃LAA

Share Your Story

The Harvard community has made this article openly available．
Please share how this access benefits you．Submit a story．

Accessibility

AN ALGEBRAIC SURFACE WITH K AMPLE, $\left(K^{\mathbf{2}}\right)=\mathbf{9}$,
 $\mathbf{p}_{\mathrm{g}}=\mathbf{q}=\mathbf{0}$
 By D. Mumford

Severi raised the question of whether there existed an algebraic surface X homeomorphic to \mathbf{P}^{2} but not isomorphic to it (as a variety), and conjectured that such a surface did not exist. The essential problem in proving this is to eliminate the possibility that the canonical class K, as a member of the infinite cyclic group $H^{2}(X, Z)$ might be a positive multiple (in fact, 3) of the ample generator of $H^{2}(X, \mathbf{Z})$ instead of a negative multiple (in fact, -3) as it ought to be. That this is the problem is clear from Castelnuovo's criterion for rationality, and was analyzed and generalized to higher dimensions in the paper [3] of Hirzebruch and Kodaira where it was shown that in odd dimensions, \mathbf{P}^{n} is the only variety in its homeomorphism class. Severi's question was finally answered by S. Yau [8] as a Corollary of his result that all variieties X on which K is ample carry a unique Kähler-Einstein metric. In fact, this result shows that when X is a surface on which K is ample, then the Chern numbers satisfy $c_{1}{ }^{2} \leq 3 c_{2}$, with equality if and only if X is isomorphic to $D_{2} / \Gamma\left(D_{2}=\right.$ unit ball in $\mathbf{C}^{2}, \Gamma \subset S U(2,1) /($ center $)$ a discrete torsion-free co-compact subgroup; Hirzebruch in [2] had much earlier shown that the surfaces D_{2} / Γ did satisfy $c_{1}{ }^{2}=3 c_{2}$). However, the question arises: how close can we come to a surface with K ample which mimics the topology of \mathbf{P}^{2} ? In particular, does there exist such a surface with the same Betti numbers as \mathbf{P}^{2} ? By the standard results on algebraic surfaces, this means that we seek a surface X such that:

$$
\begin{gathered}
p_{g}=q=0, \text { hence } \chi\left(\mathcal{O}_{x}\right)=1 \\
\left(c_{1}^{2}\right)=\left(K^{2}\right)=9 \\
B_{0}=B_{2}=B_{4}=1, \quad B_{1}=B_{3}=0, \quad \text { hence } c_{2}=3
\end{gathered}
$$

I shall exhibit one such surface. My method is not by complex uniformization, as used by Shavel [6] and Jenkins (unpublished) in the
construction of a surface with K positive and the same Betti numbers as $\mathbf{P}^{1} \times \mathbf{P}^{1}$, but by the p-adic uniformization introduced recently by Kurihara [1] and Mustafin [5]. After looking for such an example at some length, I would hazard the guess that there are, in fact, very few such surfaces (combining Yau's results with Weil's theorem [7] that discrete co-compact groups $\Gamma \subset S U(2,1)$ are rigid, it follows that there are in any case only finitely many such surfaces). But it seems a difficult matter to find some way of enumerating all such surfaces.

1. p-adic uniformizations in general. In this section we wish to summarize and extend somewhat the results of Kurihara and Mustafin cited above, restricting ourselves however to the 2 -dimensional case. Let R be a complete discrete valuation ring with fraction field K and residue field $k=R / \pi R$. We assume k is finite. The basis of the construction is a beautiful scheme \mathfrak{X}, locally of finite type over R, which may be described by charts as follows:

$$
X=\underset{A \in G L(3, K)}{\cup} \operatorname{Spec} R\left[\frac{l_{0}}{l_{1}}, \frac{l_{1}}{l_{2}}, \pi \frac{l_{2}}{l_{0}}\right]-\left(C_{0} \cup C_{1} \cup C_{2}\right)
$$

where $l_{i}=\sum_{j=0}^{2} A_{i j} x_{j}, A=\left(A_{i j}\right)$
$C_{0}=$ set of curves

$$
\pi=\frac{l_{0}}{l_{1}}=0, \quad a\left(\frac{l_{1}}{l_{2}}\right) \cdot\left(\pi \frac{l_{2}}{l_{0}}\right)+b\left(\pi \frac{l_{2}}{l_{0}}\right)+c=0
$$

$a, b, c \in k, a \cdot c \neq 0$, plus the curves

$$
\pi=\frac{l_{0}}{l_{1}}=0, \quad\left(\pi \frac{l_{2}}{l_{0}}\right)+c=0
$$

and $\quad \pi=\frac{l_{0}}{l_{1}}=0, \quad \frac{l_{1}}{l_{2}}+c=0 \quad\left(c \in k^{*}\right)$.
$C_{1}, C_{2}=$ similar sets of curves where the role of $l_{0} / l_{1}, l_{1} / l_{2}$, $\pi\left(l_{2} / l_{0}\right)$ are permuted cyclically.

Here the glueing represented by the union sign is induced by the re-
quirement that \mathscr{X} is irreducible and separated with function field

$$
K\left(\frac{X_{1}}{X_{0}}, \frac{X_{2}}{X_{0}}\right),
$$

which is the common fraction field of all affine rings.
The closed fibre X_{0} of X can be represented graphically by means of the Bruhat-Tits building Σ attached to $\operatorname{PGL}(3, K)$. In fact, the 3 sets:

Components E of \mathfrak{X}_{0}
Free rank $3 R$-submodules $M \subset K \cdot X_{0} \oplus K \cdot X_{1} \oplus K \cdot X_{2}$, modulo $M \sim \pi^{k} \cdot M$
Vertices ν of Σ
are isomorphic. Moreover, the components of X_{0} cross normally, and if $E_{i}, M_{i}, v_{i}, i=1,2,3$, correspond as above, then:
a) $E_{1} \cap E_{2}$ is a curve $\Leftrightarrow M_{1} \nsupseteq \pi^{k} M_{2} \nsupseteq \pi M_{1}$, some $k \in \mathbf{Z}$
$\Leftrightarrow v_{1}, v_{2}$ are joined in Σ by a segment
b) $E_{1} \cap E_{2} \cap E_{3}$ is a triple point $\Leftrightarrow M_{1} \nsupseteq \pi^{k} M_{2} \nsupseteq \pi^{l} M_{3} \nsupseteq \pi M_{1}$, some $k, l \in \mathbf{Z}$ (or same with 2, 3 interchanged)
$\Leftrightarrow v_{1}, \nu_{2}, v_{3}$ are the vertices of 2-simplex in Σ.

To describe \mathscr{X} in a Zariski-open neighborhood of some component E of X_{0}, we can proceed geometrically as follows: let E correspond to M and let Y_{0}, Y_{1}, Y_{2} be an R-basis of M. Start with $\mathbf{P}_{R^{2}}$ based on homogeneous coordinates Y_{0}, Y_{1}, Y_{2} (hence with function field $K\left(X_{1} / X_{0}, X_{2} / X_{0}\right)$ still). First, blow up all k-rational points of the closed fibre $\mathbf{P}_{k}{ }^{2}$ of $\mathbf{P}_{R}{ }^{2}$ (if k has q elements, there are $q^{2}+q+1$ of these). Second, blow up the proper transforms on this scheme of all k-rational lines on the original closed fibre $\mathbf{P}_{k}{ }^{2}$ (again there are $q^{2}+q+1$ of these). Call this X_{M} and let $E_{M} \subset \mathfrak{X}_{M}$ be the proper transform of $\mathbf{P}_{k}{ }^{2}$. Then a suitable Zariskineighborhood of E_{M} in \mathfrak{X}_{M} is isomorphic to a neighborhood of E in \mathfrak{X}. In particular, all surfaces E are rational surfaces gotten by blowing up $\mathbf{P}_{k}{ }^{2}\left(q^{2}+q+1\right)$ times and they meet the $2\left(q^{2}+q+1\right)$ adjacent components in rational curves. These rational curves are either exceptional curves C of the first kind, in which case $\left(C^{2}\right)=-1$, or proper trans-
forms of lines along which $q+1$ points have been blown up, in which case:

$$
\left(C^{2}\right)=+1-(q+1)=-q
$$

Thus geometrically, if $C=E_{1} \cap E_{2}$, then $\left(C^{2}\right)_{E_{1}}=-1$ and $\left(C^{2}\right)_{E_{2}}$ $=-q$ or vice versa; this asymmetry corresponds in (a) above to whether

$$
\operatorname{dim}_{k}\left(M_{1} / \pi^{k} M_{2}\right)=1 \quad \text { or } \quad \operatorname{dim}_{k}\left(\pi^{k} M_{2} / \pi M_{1}\right)=1
$$

and in Σ to the orientation on the segment from v_{1} to v_{2}.
Now if $\Gamma \subset \operatorname{PGL}(3, K)$ is a discrete torsion-free co-compact group, we define first a formal scheme \mathscr{X} / Γ over R by dividing the formal completion of X along $\pi=0$ by Γ (this is possible because Γ acts freely and discontinuously in the Zariski-topology on X_{0}). Secondly, one verifies that the dualizing sheaf ω_{x} is ample on each component of X_{0}, hence it descends to an invertible sheaf $\omega_{(x / \Gamma)}$ on X / Γ with the same property: this allows one to conclude that X / Γ can be algebraized to true projective scheme over R, which, for simplicity, we denote X / Γ. Since the generic fibre X_{η} of X is smooth over K, the generic fibre $(X / \Gamma)_{\eta}$ is also smooth over K, hence

$$
\omega_{(X / \mathrm{\Gamma})_{\eta}}=\Omega_{(X / \Gamma)_{\eta}}^{2}
$$

hence $(X / \Gamma)_{\eta}$ is a surface of general type without smooth rational curves C with $\left(C^{2}\right)=-1$ or -2 . It is not hard to compute the invariants of $(\mathscr{X} / \Gamma)_{\eta}$: to do this, note that $(X / \Gamma)_{0}$ consists of finite set of rational surfaces, crossing each other (possibly crossing themselves) transversally in rational double curves and triple points. Let

$$
\begin{array}{ll}
E_{\alpha}=\text { normalizations of the components of }(X / \Gamma)_{0}, & 1 \leq \alpha \leq \nu_{2} \\
C_{\beta} & =\text { normalizations of the double curves of }(X / \Gamma)_{0}, \\
P_{\gamma} & =\text { triple points of }(X / \Gamma)_{0}, \quad 1 \leq \beta \leq \nu_{1} \\
\end{array}
$$

We get an exact sequence:

$$
0 \rightarrow \mathcal{O}_{(X / \Gamma) 0} \rightarrow \stackrel{\nu_{2}}{\oplus_{=1}} \mathcal{O}_{E_{\alpha}} \stackrel{\lambda}{\rightarrow} \stackrel{\nu}{\beta}^{\nu_{1}} \mathcal{O}_{C_{\beta}} \xrightarrow{\mu} \stackrel{\nu}{\gamma}_{\oplus}^{\nu_{0}} \mathcal{O}_{P_{\gamma}} \rightarrow 0
$$

hence

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\left.(\Upsilon / \Gamma)_{\eta}\right)}\right) & =\chi\left(\mathcal{O}_{(x / \mathrm{\Gamma})_{0}}\right) \\
& =\sum_{\alpha} \chi\left(\mathcal{O}_{E_{\alpha}}\right)-\sum_{\beta} \chi\left(\mathcal{O}_{C_{\beta}}\right)+\sum_{\gamma} \chi\left(\mathcal{O}_{P_{\gamma}}\right) \\
& =\nu_{2}-\nu_{1}+\nu_{0} .
\end{aligned}
$$

Let N be the number of orbits when Γ acts on the vertices of Σ. Clearly $N=\nu_{2}$. But each E_{α} contains $2\left(q^{2}+q+1\right)$ double curves, each on two E_{α} 's, so

$$
\nu_{1}=N\left(q^{2}+q+1\right)
$$

And each double curve passes through $(q+1)$ triple points, each on three double curves, so

$$
\nu_{0}=N \frac{\left(q^{2}+q+1\right)(q+1)}{3}
$$

Thus

$$
\begin{aligned}
\chi\left(\mathcal{O}_{(x / \mathrm{\Gamma})_{\eta}}\right) & =N\left[1-\left(q^{2}+q+1\right)+\frac{\left(q^{2}+q+1\right)(q+1)}{3}\right] \\
& =N \frac{(q-1)^{2}(q+1)}{3} .
\end{aligned}
$$

Next:

$$
\begin{aligned}
\left(c_{1,(x / \Gamma)_{\eta}}{ }^{2}\right) & =\left(c_{1}\left(\omega_{(x / \Gamma) 0}\right)^{2}\right) \\
& =\sum_{\alpha}\left(\operatorname{res}_{E_{\alpha}} c_{1}\left(\omega_{(x / \Gamma) 0}\right)^{2}\right) \\
& =\sum_{\alpha}\left(\left(c_{1}\left(\omega_{E_{\alpha}}\right)+\sum_{\beta \neq \alpha} E_{\alpha} \cap E_{\beta}\right)^{2}\right)
\end{aligned}
$$

All E_{α} 's are just $B=$ (the blow-up of $\mathbf{P}_{k}{ }^{2}$ at all $\left(q^{2}+q+1\right)$-rational points). Let $\pi: B \rightarrow \mathbf{P}_{k}{ }^{2}$ be the blow-up map, let h be the divisor class of
a line on $\mathbf{P}_{k}{ }^{2}$, let $\boldsymbol{e}_{i} \subset B$ be the exceptional divisors and let $l_{j} \subset B$ be the proper transforms of the lines. Then $c_{1}\left(\omega_{E_{\alpha}}\right)+\Sigma_{\beta \neq \alpha}\left(E_{\alpha} \cap E_{\beta}\right)$ corresponds on B to:

$$
\begin{aligned}
K_{B}+\sum_{i} e_{i}+\sum_{j} l_{j} \equiv & \left(\pi^{-1}(-3 h)+\Sigma e_{i}\right) \\
& +\left(\sum_{i} e_{i}\right)+\sum_{j}\left(\pi^{-1}(h)-\text { the } e_{i} \text { meeting } l_{j}\right) \\
\equiv & \pi^{-1}\left(\left(q^{2}+q-2\right) h\right)-(q-1)\left(\sum_{i} e_{i}\right)
\end{aligned}
$$

with self-intersection $3(q-1)^{2}(q+1)$. Thus

$$
\left(c_{1,(x / \Gamma)_{\eta}}{ }^{2}\right)=3 N(q-1)^{2}(q+1) .
$$

By Riemann-Roch,

$$
c_{2,(x / \mathrm{F})_{\eta}}=N(q-1)^{2}(q+1) .
$$

To determine the irregularity of $(\mathscr{X} / \Gamma)_{\eta}$, we can use the relative Picard scheme Pic $_{x / \Gamma}{ }^{0}$: its closed fibre is $\operatorname{Pic}_{(x / \Gamma)}{ }^{0}$, and since $(X / \Gamma)_{0}$ has normal crossings and rational components, this is an algebraic torus. In particular points of finite order $l, p \nmid l$, are dense: these correspond to l-cyclic coverings of $(\mathscr{C} / \Gamma)_{0}$ and such coverings lift to $(\mathscr{X} / \Gamma)_{\eta}$. Therefore the points of finite order $l, p \nmid l$, of $\left(\text { Pic }_{x / \Gamma^{0}}\right)_{0}$ lift to points of (Pic $\left.x / \Gamma^{0}\right)_{\eta}$ and hence Pic x / r^{0} is flat over R. On the other hand, a line bundle on $(\mathscr{X} / \Gamma)_{0}$ is a line bundle on X_{0} with Γ action: if it is in Pic ${ }^{0}$, it is the trivial line bundle on X_{0} and a Γ-action is just a homomorphism from Γ to \mathbf{G}_{m}. Thus finally, using Kajdan's theorem [4] that $\Gamma /[\Gamma, \Gamma]$ is finite, we deduce

$$
\text { irregularity of } \begin{aligned}
(X / \Gamma)_{\eta} & =\operatorname{dim}\left(\text { Pic }_{x / \Gamma}{ }^{0}\right)_{\eta} \\
& =\operatorname{dim}\left(\text { Pic }_{x / \Gamma}{ }^{0}\right)_{0} \\
& =\operatorname{dim} \operatorname{Hom}\left(\Gamma, \mathbf{G}_{m}\right) \\
& =r k_{\mathrm{Z}} \Gamma /[\Gamma, \Gamma] \\
& =0 .
\end{aligned}
$$

Thus the numbers $h^{p, q}$ of $(X / \Gamma)_{\eta}$ fit into the pattern:

$$
\left\{\begin{array}{rcc}
q_{A}-1 & 0 & 1 \\
0 & M & 0 \\
1 & 0 & M-1
\end{array} \quad M=N \frac{(q-1)^{2}(q+1)}{3}\right.
$$

In particular, if $N=1, q=2$, then $M=1$ and $(X / \Gamma)_{\eta}$ is a surface of the desired type. In this case, in fact $(X / \Gamma)_{0}$ is one rational surface, \mathbf{P}^{2} blown up 7 times, crossing itself in 7 rational double curves, themselves crossing in 7 triple points. The confusion arising from trying to draw the result brings vividly to mind Lewis Carroll's comment on the sandy shore-"If seven maids with seven brooms were to sweep it for half a year, do you suppose, the Walrus said, that they could get it clear?"
2. The Example. The example is based on the 7th roots of unity: fix the notation:

$$
\begin{aligned}
& \zeta=e^{2 \pi i / 7} \\
& \lambda=\zeta+\zeta^{2}+\zeta^{4}=\left(\frac{-1+\sqrt{-7}}{2}\right) \\
& \bar{\lambda}=\zeta^{3}+\zeta^{5}+\zeta^{6}=\left(\frac{-1-\sqrt{-7}}{2}\right)
\end{aligned}
$$

We have the fields:

Note $\mathbf{Q}(\lambda)$ is a UFD, $2=\lambda \cdot \bar{\lambda}$ is the prime factorization of 2 and $7=$
$-(\sqrt{-7})^{2}$ is the prime factorization of 7 . We set $\mathbf{Q}(\zeta)=V$ and think of it only as a 3-dimensional vector space over $\mathbf{Q}(\lambda)$. We put the Hermitian form

$$
h(x, y)=\operatorname{tr}_{\mathbf{Q}(\zeta) / \mathbf{Q}(\lambda)}(x \bar{y})=\left[x \bar{y}+\sigma(x \bar{y})+\sigma^{2}(x \bar{y})\right]
$$

on V. Taking $1, \zeta, \zeta^{2}$ as a basis of V, we find that h has the matrix

$$
H=\left(\begin{array}{lll}
3 & \bar{\lambda} & \bar{\lambda} \\
\lambda & 3 & \bar{\lambda} \\
\lambda & \lambda & 3
\end{array}\right)
$$

so that h is positive definite with determinant 7 . Note that V contains the lattice $L=\mathbf{Z}[\zeta]$, with basis $1, \zeta, \zeta^{2}$ over $\mathbf{Z}[\lambda]$. Define

$$
\begin{aligned}
\Gamma_{1}= & \mathbf{Q}(\lambda) \text {-linear maps } \gamma: V \rightarrow V \text { which preserve the form } h \\
& \text { and map } L[1 / 2] \text { to } L[1 / 2]
\end{aligned}
$$

Since 2 splits in $\mathbf{Q}(\lambda)$, the λ-adic completion of $\mathbf{Q}(\lambda)$ is isomorphic to the 2-adic completion \mathbf{Q}_{2} of \mathbf{Q} (in fact, in \mathbf{Q}_{2}, we may take $\lambda=$ (unit) $\cdot 2$, $\bar{\lambda}=$ unit). So we have a canonical map $V \rightarrow(\lambda$-adic completion of $V)$ $\cong \mathbf{Q}_{2} \cdot 1 \oplus \mathbf{Q}_{2} \cdot \zeta \oplus \mathbf{Q}_{2} \cdot \zeta^{2}$ and a canonical homomorphism

$$
\boldsymbol{\Gamma}_{1} \rightarrow \mathrm{GL}\left(3, \mathbf{Q}_{2}\right) \rightarrow \operatorname{PGL}\left(3, \mathbf{Q}_{2}\right) .
$$

From standard results on the theory of arithmetic groups*, the image $\overline{\Gamma_{1}}$ of Γ_{1} is discrete and co-compact. We introduce 3 elements of Γ_{1} : the first is σ itself; the second is

$$
\tau(x)=\zeta \cdot x
$$

Note that $\sigma^{3}=e, \tau^{7}=e$ and $\sigma \tau \sigma^{-1}=\tau^{2}$, so together σ and τ generate

[^0]a subgroup $\Gamma_{2} \subset \Gamma_{1}$ of order 21 . The third is a map ρ given by
\[

$$
\begin{aligned}
& \rho(1)=1 \\
& \rho(\zeta)=\zeta \\
& \rho\left(\zeta^{2}\right)=\lambda-\frac{\lambda^{2}}{\bar{\lambda}} \zeta+\frac{\lambda}{\bar{\lambda}} \zeta^{2}
\end{aligned}
$$
\]

It can be checked easily that $\rho \in \Gamma_{1}$. It can also be checked that

$$
(\rho \cdot \tau)^{3}=\text { multiplication by } \lambda / \bar{\lambda}
$$

Note that the scalar matrices in Γ_{1} are exactly

$$
\pm(\lambda \bar{\lambda})^{k} \cdot I_{3}
$$

Proposition. ρ, σ, τ and $-I$ generate Γ_{1}. All torsion elements in $\overline{\Gamma_{1}}$ are conjugate to either $\sigma^{i} \cdot \tau^{j}$ or to $(\rho \cdot \tau)^{i}($ some $0 \leq i \leq 2,0 \leq j \leq 6)$.

Proof. Consider the action of Γ_{1} on $\Sigma_{0}{ }^{\prime}=$ [the set of free rank $3 \mathbf{Z}_{2}$-submodules of $\mathbf{Q}_{2}{ }^{3}$. Let M_{0} be the submodule $\mathbf{Z}_{2} \cdot 1 \oplus \mathbf{Z}_{2} \cdot \zeta \oplus$ $\mathbf{Z}_{2} \cdot \zeta^{2}$ or $\mathbf{Z}_{2}{ }^{3}$ for short. If an element $\alpha \in \Gamma_{1}$ maps M_{0} to itself, then back in V, α is given by a 3×3 matrix with coefficients in $\mathbf{Z}[\lambda][1 / \bar{\lambda}]$. Since α is H-unitary, its coefficients are also in $\mathbf{Z}[\lambda][1 / \lambda]$, so α in fact has coefficients in $\mathbf{Z}[\lambda]$ and maps L to itself. But in L, it is easy to see that $\left\{ \pm \zeta^{i}\right\}$ are the only elements $x \in L$ with $h(x, x)=3$. So α permutes them. Then $\pm \tau^{i} \circ \alpha$ also carries the element $1 \in L$ to itself. Now the equations

$$
\begin{aligned}
& h(x, x)=3 \\
& h(1, x)=\bar{\lambda}
\end{aligned}
$$

have only 3 solutions in $L: x=\zeta, \zeta^{2}$ or ζ^{4}. So $\left(\pm \tau^{i} \cdot \alpha\right)$ carries ζ to ζ, ζ^{2} or ζ^{4}. Then $\left(\pm \sigma^{j} \circ \tau^{i} \circ \alpha\right)$ fixes 1 and ζ and it is easy to check that such a map must be the identity. Thus $\pm \Gamma_{2}$ is the stabilizer of M_{0}.

As in the Bruhat-Tits building, call $M, M^{\prime} \in \Sigma_{0}{ }^{\prime}$ adjacent if M $\supset M^{\prime}$ and $\operatorname{dim}_{z / 2 z} M / M^{\prime}=2$ or vice versa. Then $\rho\left(M_{0}\right) \subset M_{0}$ and is adjacent to M_{0}. Because $M / 2 M \cong(\mathbf{Z} / 2 \mathbf{Z})^{3}$, there are only 7 modules $M^{\prime} \subset M_{0}$ adjacent to M_{0}. One checks easily that these are the modules $\tau^{i} \rho\left(M_{0}\right), 0 \leq i \leq 6$. Thus $\left(\tau^{i} \rho\right)^{ \pm 1}\left(M_{0}\right)$ is the set of all $M \in \Sigma_{0}{ }^{\prime}$ adjacent
to M_{0}. Since $\Sigma_{0}{ }^{\prime}$ is connected under adjacency, this shows that all elements of $\Sigma_{0^{\prime}}$ can be expressed as:

$$
\left(\tau^{i_{1}} \rho\right)^{\epsilon_{1}} \cdot \ldots \cdot\left(\tau^{i_{k}} \rho\right)^{\epsilon k}\left(M_{0}\right), \quad 0 \leq i_{l} \leq 5, \quad \epsilon_{l}= \pm 1
$$

Thus the subgroup of Γ_{1} generated by ρ, σ, τ and $-I$ acts as transitively as Γ_{1} on $\Sigma_{0}{ }^{\prime}$ and M_{0} has the same stabilizer in both groups, so they are equal.

Now let $\alpha \in \Gamma_{1}$ be torsion in $\overline{\Gamma_{1}}$. If α is torsion in Γ_{1}, then α fixes e.g. the module

$$
M_{1}=\sum_{i=1}^{\text {order }(\alpha)} \alpha^{i}\left(M_{0}\right)
$$

and, if $M_{1}=\beta\left(M_{0}\right)$, then $\beta^{-1} \alpha \beta$ fixes M_{0}. Thus $\beta^{-1} \alpha \beta \in \pm \Gamma_{2}$ and $\bar{\alpha}$ is conjugate to $\sigma^{j}{ }^{\circ} \tau^{i}$, some i, j. In general, we consider det α. Then $|\operatorname{det} \alpha|^{2}=1$ and $\operatorname{det} \alpha \in \mathbf{Z}[\lambda][1 / 2]$, hence

$$
\operatorname{det} \alpha= \pm(\lambda / \bar{\lambda})^{i}
$$

Replacing α by $\pm(\lambda / \bar{\lambda})^{i} \alpha^{ \pm 1}$, we may assume $\operatorname{det} \alpha=\lambda / \bar{\lambda}$. Then

$$
(\lambda / \bar{\lambda})^{-1} \alpha^{3}
$$

has determinant 1 and is torsion in PGL(3), so it is torsion in GL(3). Now consider α and α^{3} / λ acting on $\mathbf{Q}_{2}{ }^{3}$. Since $\mathbf{Z}_{2}\left[\alpha, \alpha^{3} / \lambda\right]$ is a finite ring over \mathbf{Z}_{2}, there is a free rank $3 \mathbf{Z}_{2}$-module $M \subset \Phi_{2}{ }^{3}$ such that $\alpha(M)$ $\subset M, \alpha^{3} / \lambda(M) \subset M$. Since $\alpha^{3} /(\lambda / \bar{\lambda})$ is torsion and $\bar{\lambda}$ is a λ-adic unit, it follows that

$$
M \supset \alpha(M) \supset \alpha^{2}(M) \supset \alpha^{3}(M)=2 M
$$

As before, replacing α by a conjugate, we can assume $M=M_{0}$. But now it is easily checked that the 21 maps $\sigma^{i}{ }^{\circ} \tau^{j}$ act simply transitively on the flags

$$
M_{0} / 2 M_{0} \supset\left(2-\operatorname{dim}^{l} \text { subspace }\right) \supset\left(1 \operatorname{dim}^{l} \text { subspace }\right)
$$

So conjugating α by $\sigma^{i} \circ \tau^{j}$, we can assume

$$
\alpha\left(M_{0}\right)=(\rho \circ \tau)\left(M_{0}\right)
$$

$$
\alpha^{2}\left(M_{0}\right)=(\rho \circ \tau)^{2}\left(M_{0}\right)
$$

Then $\left(\rho^{\circ} \tau\right)^{-1} \circ \alpha$ carries M_{0} into itself and fixes a flag in $M_{0} / 2 M_{0}$. The former implies that $(\rho \circ \tau)^{-1} \circ \alpha= \pm \sigma^{i} \circ \tau^{j}$, some i, j, and the latter implies that $i=j=0$. Thus in $\overline{\Gamma_{1}}, \alpha=\rho \circ \tau$. Q.E.D.

It remains to choose a suitable subgroup $\Gamma \subset \Gamma_{1}$ of finite index such that:
a) $\Gamma /$ scalars is torsion-free
b) Γ acts transitively on $\Sigma_{0}{ }^{\prime}$, (hence $\Gamma /$ scalars acts transitively on Σ_{0}, the vertices of the Bruhat-Tits building).

It will then follow from the results of Section 1 that the corresponding surface $(\mathscr{X} / \Gamma)_{\eta}$ is a surface of the desired type. To find Γ, it is convenient to use a congruence subgroup for the prime 7. In fact, consider the maps:

$$
\begin{aligned}
& \mathbf{Z}[\lambda, 1 / 2] \rightarrow \mathbf{Z}[\lambda, 1 / 2] /(\sqrt{-7}) \cong \mathbf{Z} / 7 \mathbf{Z} \\
& \lambda, \bar{\lambda} \mapsto 3 \\
& L[1 / 2] \rightarrow L[1 / 2] /(\sqrt{-7}) L[1 / 2] \cong(\mathbf{Z} / 7 \mathbf{Z})^{3} \\
& \quad \text { call this } L_{0}
\end{aligned}
$$

The induced form h_{0} on L_{0} is of rank 1 and has null-space $L_{1} \subset L_{0}$ spanned by $\zeta-1, \zeta^{2}-1$. Taking $1, \zeta-1,(\zeta-1)^{2}$ as a basis of L_{0}, it is easy to check that $\bmod 7$:

$$
\begin{array}{lr}
\sigma \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 1 & 4
\end{array}\right), & \tau \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
\rho \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right), & \rho^{\circ} \tau \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 5 & 4 \\
0 & 1 & 1
\end{array}\right)
\end{array}
$$

In particular, considering the action of Γ_{1} on L_{1}, we get a homomor-
phism

$$
\pi: \Gamma_{1} \rightarrow \mathrm{GL}(2, \mathrm{Z} / 7 \mathbf{Z}) \cap\{X \mid \operatorname{det} X= \pm 1\} \underset{\text { def }}{=} G
$$

The group G on the right has order $2^{5} \cdot 3 \cdot 7$. Let H be a 2 -Sylow subgroup and define $\Gamma=\pi^{-1}(H)$. Since all 21 elements $\sigma^{i} \tau^{j}$ and all 3 elements $(\rho \circ \tau)^{i}$ except e have non-zero images in G of orders 3 or 7, Γ is torsion-free. As the full group Γ_{1} is set-theoretically $\Gamma \times \Gamma_{2}, \Gamma$ acts transitively on $\Sigma_{0}{ }^{\prime}$. This completes the construction.

HARVARD UNIVERSITY

REFERENCES

[1] A. Kurihara, "On certain varieties uniformized by q-adic automorphic functions," to appear
[2] F. Hirzebruch, "Automorphe Formen und der Satz von Riemann-Roch," Symp. Int. de Top. Alg., UNESCO, 1958
[3] F. Hirzebruch and K. Kodaira, "On the complex projective spaces," J. Math. Pures et Appl., 36 (1957), p. 201.
[4] D. Kajdan, "Connection of the dual space of a group with the structure of its closed subgroups," Funct. Anal. and its Applic., 1 (1967), p. 63 in English transl.
[5] G. A. Mustafin, "Non-Archimedean Uniformizations," Mat. Sbornik, 105 (1978), p. 207.
[6] Ira Shavel, "A class of algebraic surfaces of general type constructed from quaternion algebras," to appear, Pac. J. Math.
[7] A. Weil, "On discrete subgroups of Lie groups," Ann. of Math., 72 (1960), p. 369.
[8] S. T. Yau, "Calabi's conjecture and some new results in algebraic geometry," Proc. Nat. Acad. Sci., USA, 74 (1977), p. 1798

[^0]: * Consider $U(V, h)$ as an algebraic group over $\mathbf{Q} . \Gamma_{1}$ is its $\mathbf{Z}[1 / 2]$-rational points. Since U is compact at the infinite place, Γ_{1} is discrete and co-compact in $U(V, h)\left(\mathbf{Q}_{2}\right)$. But over $\mathbf{Q}_{2}, U(V, h) \cong G L(3)$, so \bmod scalars Γ_{1} defines a discrete co-compact subgroup of $\operatorname{PGL}(3, K)$.

