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GRADE: Gibbs Reaction 

Song Chun Zhu 

Computer Science Department 
Stanford University 
Stanford, CA 94305 

Abstract 
Recently there have been increasing interests in  us- 

ing nonlinear PDEs for  applications in  computer vi- 
sion an.d image processing, in  this paper, we propose a 
general statistical framework for  designing a new class 
of PDEs. For a given application, a Markov random 
jield model p(1)  as learned according to  the minimax 
entropy principle studied in[25][26], so that p(1)  should 
characterize the ensemble of images in  our application. 
p(1)  is a Gibbs distribution whose energy terms can be 
divided into two categories. Subsequently the partial 
differential equations given by gradient descent on the 
Gibbs potential are essentially reaction-diffusion equa- 
tions, where the energy terms in  one category produce 
anisotropic diffusion while the inverted energy terms 
in the second category produce reaction associated with 
pattern formation. W e  call this new class of PDEs 
the Gibbs Reaction And’Diffusion Equations-GRADE 
and we demonstrate experiments where G R A D E  are 
used for  texture pattern formation, denoising, image 
enhancement, and clutter removal. 

1 Introduction 
Nonlinear partial differential equations (PDEs) 

have long been adopted in modeling a vast variety of 
phenomena in chemistry, physics, and biology. Re- 
cently some of these PDEs have inspired interesting 
methods for solving problems in computer vision, im- 
age processing, and graphics, among which the fol- 
lowing two examples are remarkable. (I) The Turing 
reaction-diffusion equations for texture pattern forma- 
tion [21][22][23], and its application in image process- 
ing [IS][ 191. (11) The Perona-Malik anisotropic diffu- 
sion equations for generating scale space and for noise 
removal [ 171 [ 161. 

Despite the success of these PDEs, there lacks a 
general theory to guide the design of PDE in vision 
applications. As the images in a given application are 
often not directly related to the chemical or physical 
processes from which the PDEs are originally derived, 
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there is little justification jfor applying these PDEs in 
computer vision. 

This paper proposes a statistical framework for de- 
signing a new class of PDE, inspired by our previ- 
ous work on modeling texture and natural images. In 
two previous papers [25][5!6], the authors have been 
studying a minimax entropy theory based on which 
a Gibbs distribution p(1)  is learned to characterize 
a set of observed images. We find that the learned 
potential functions in p(1)  can be divided into two 
classes, and subsequently the partial differential equa- 
tion given by gradient descent on the Gibbs poten- 
tial is essentially reaction-dliffusion equation, which we 
named the Gzbbs Reactzon And Dzffvszon Equatzon- 
GRADE.  The GRADE consists of two components: 
the energy terms from one class produce anisotropic 
diffusion, while the energy terms in the second class 
produce reaction associated with pattern formation 
and enhancing preferred image features. Unlike the 
PDEs derived from a chemical or physical process, The 
GRADE is well learned from a given application, and 
their behaviors are specified by the Gibbs probability 
distributions. We demonstrate experiments where the 
GRADE is used for texture pattern formation, denois- 
ing, image enhancement, and clutter removal. 

Section (2) 
briefly reviews previous work on nonlinear PDEs. Sec- 
tion (3) derives the Gibbs reaction and diffusion equa- 
tion and section (4) analyzes its properties. Sec- 
tion (5) presents experiments on pattern synthesis, 
denoising, image enhancement, and clutter removal. 
Then section (6) concluder; with a discussion. 

2 Previous work 
2.1 Reaction-diffusion for pattern forma- 

A set of nonlinear PDEs was first studied in [all 
for modeling the formation of animal coat patterns by 
the diffusion and reaction of chemicals, which Turing 
called the “morphogens” . These equations were fur- 

This paper is organized as follows. 
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ther explored by Murray in theoretical biology [14]. 
For example, let A ( z , y , t )  and B(z,y, t )  be the con- 
centrations of two morphogens a t  location (z, y) and 
time t , the typical reaction-diffusion equations are, 

DaAA + %(A, B) { iI at D b a B + f i b ( A , B )  

where Da, DO are constants, A = & + 62 is the 
Laplacian operator, and &,(A, B), &,(A, B) are non- 
linear functions for the reaction of chemicals, e.g., 
Ra (A,B)  = A * B - A - l 2 a n d R b ( A , B )  = 16-A*B.  

The morphogen theory provides a way for synthe- 
sizing some texture patterns [22][23]. In the texture 
synthesis experiments, chemical concentrations are re- 
placed by various colors, and the equations run for 
a finite steps with free boundary condition starting 
with some initial patterns. In some cases, both the 
initial patterns and the rudning processes have to  be 
controlled manually in order to generate realistic tex- 
tures. Two canonical textures synthesized by the Tur- 
ing reaction-diffusion equation are the leopard blobs 
and zebra stripes. Recently these equations are uti- 
lized in image processing such as enhancement of fin- 
gerprint images and image halftoning [ 181 [ 191. 

In the reaction-diffusion equations above, the re- 
action terms are responsible for pattern formation, 
however they also make the equations unstable or 
unbounded. Even for a small system, the existence 
and stability problems for these PDEs are intractable 
(Grindrod 1996). In fact, we believe that running any 
nonlinear PDEs for a finite steps will render some pat- 
terns, but it is unknown how to design a set of PDEs 
for a given texture pattern. 
2.2 Anisotropic diffusion 

Perona and Malik introduced a family of 
anisotropic diffusion equations for generating image 
scale space I(z, y,  t )  [17]. Their equation simulate the 
“heat” diffusion process, 

a y  

It = div(c(z ,y , t )VI) ,  I(z,y,O) = IO, (1) 

where VI = (Is, Iy) is the intensity gradient and div is 
the divergence operator, d iv (c )  = V,P+V,Q for any 
vector P = (P ,  Q) .  In practice, the heat conductivity 
c ( x ,  y, t )  is defined as function of location gradients, 
for example, Perona and Malik chose 

where b is a scaling constant. It is easy to  see that 
equation (2) minimizes the following energy function 

by gradient descent , 

U(1) = 11 X(V,I) + X(V,I) dzdy,  

where A(<) = const.log(1 + ( < / l ~ ) ~ )  and A’(<) = 
const.& are plotted in figure 1. Similar forms 
of the energy are widely used as prior distributions in 
image restoration and segmentation[6][8][13][4]. 

Although the anisotropic diffusion equations can be 
adopted for removing noise and enhancing edges [16], 
I(z, y, t )  converges to  a flat image as t -+ 00 in the 
Perona-Malik equation. A robust anisotropic diffusion 
equation is recently studied in [l]. 

3 From Gibbs distributions to  
reaction-diffusion equations 

Let I be an image defined on an N x N lattice L.  
In previous work on modeling textures and real world 
scenes, we proposed a new class of Gibbs distributions 
of the following form [25][26], 

In the above equation, Z is a normalization constant, 
S = { F l ,  F2, ..., F,} is a set of filters to character- 
ize the essential features of the images, and A = 
{AI()) ..., A,()} a set of potential functions on the fea- 
tures extracted by S.  The potential is 

n 

U(I ,A,  S) = 2; A,(Fi * I(,,y)), (3) 
2 = 1  (Z ,Y)EL 

where F, * I(,,y) is the filter response of F, a t  (z, y). 
In practice, S is chosen by minimizing the entropy 

of p(I) from a bank of filters such as the Gabor filters 
at various scales and orientations [3][21 and wavelet 
transforms [12][20]. In general, these filters can be 
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non-linear functions of the image intensities. In the 
rest of this paper, we shall only study the following 
linear filters. 

1. An intensity filter 6 0 ,  and gradient filters 

2. The Laplacian of Gaussian filters. 
vx, v y .  

1 (4) LG(z,  y, s) = const . (z 2 + y 2 - s 2 - 9  )e 

where s = I/% stands for the scale of the fil- 
ter. We denote these filters by LG(s).  A spe- 
cial filter is L G ( a ) ,  which has a 3 x 3 window 
[0, a, 0; i, -1, a ;  0, i, 01, and we denote it by A. 

3. Gabor filters with both sine and cosine compo- 
nents. 

- -5(42+y2) ,-i TZ G(s ,  y, s, 19) = const o R o t ( @ )  o e z 

(5) 
It is a sine wave at  frequency $ modulated by an 
elongated Gaussian €unction, and rotated at  angle 0. 
We denote the real and image parts of G(z, y, s, 0) by 
Gcos(s, 19) and Gsin(s, 0). 

In equation (3), the filter responses are quantitized 
into a finite number of bins and Xi(),  i = 1,2,  ..., n 
becomes a piecewisely constant function or a vector. 
Thus the form of Xi(), i = 1,2 ,  ..., n is learned from a 
set of training images in a fully non-parametric way 
so that p(1) can reproduce the marginal distributions 
of ~i * IObs, i = 1,2 ,  ..., n over a set of training images 

Verified by stochastic sampling, the learned distri- 
bution is capable of modeling a wild variety of images. 
A detailed account of this theory is referred to  [25].  

In contrast to existing models on natural images 
and texture patterns in the literature, we found that 
the learned X i ( ) ,  i = 1,2,  ..., n can be divided into two 
classes. For example, two typical & ( ) s  are plotted in 
figure 2, which are fit t o  a family of functions (see the 
dashed curves), 

in a given application. 

where t o ,  b are respectively the translation and scaling 
constants, and llall weights the contribution of the fil- 
ter. d(() assigns lowest energy (or highest probability) 
to  filter responses around 50 and ( 0  = 0 in most cases, 
and ~ ( ( )  has lower energy at  the two tails which repre- 
sent salient image features such as object boundaries. 
These inverted potential functions are in contrast to 
all previous image models, and they are essential for 
modeling realistic images. 

a b 

Figure 2: Learned potential functions X i  (). The 
dashed curves are fitting functions: a). fitting 4(<) 
with (U = 5, b = lo,&, = O,-y = 0.7). b). Fitting $(<) 
with (U = -2.0, b = lo,&, = 0,y = 1.6). 

Thus we write equation (3) in the following form, 

nrl n 

i= l  (t ,y) i=nd ( r , y )  

(6) 
Note that the filter set is divided into two parts 
S = Sd US,, with Sd = {Fi,i = 1 , 2  ,.., nd} and 
S,. = {Pi, i = n d  + 1, ..., n}. In most cases Sd consists 
of filters such as V x ,  Vy, A which capture the general 
smoothness appearances of real world images, and S, 
contains filters such as Gabor filters at  various orien- 
tations and scales which characterize salient features 
of images. 

Minimizing U(1; A, S )  by gradient descent, we ob- 
tain the following non-linear parabolic partial differ- 
ential equation: 

n d  n 

i=l i=nd+l 

with F c ( z ,  y) = -s(-z,  -y). Thus starting from 
an input image I(z,  y, t )  = I,, the first term diffuses 
the image by reducing the gradients while the second 
term forms patterns as the reaction forces as they favor 
large filter responses. So we called equation (7) the 
Gibbs Diffusion And Reaction Equation (GRADE). 

Since the computation of equation (7) involves 
twice convolution for each of the selected filters, a con- 
ventional way for efficienl, computation is to  build an 
image pyramid so that filters with large scales and low 
frequencies can be scaled down into small ones in the 
higher level of the image pyramid. This is appropriate 
especially when the filteirs are selected from a bank 
of multiple scales, such as the Gabor filters and the 
wavelet transforms. 
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For a given image I, we build a pyramid with I(') 
being an image on a lattice L(')  at level s = 0,  1 , 2 ,  ... 
and I(') = I. Each pixel intensity of is the 
average of a 2 x 2 pixels of I('). F;(') is a filter Fi used 
at level s. 

Thus the potential function becomes, 

z (e ,y)€L(S)  

The reaction-diffusion equation can be easily de- 
rived for this pyramidal representation. 

4 Froperties of GRADE 
This section studies some properties of the Gibbs 

reaction-diffusion equation. 
First, we note that equation (7) can be considered 

as an extension to equation ( I )  on a discrete lattice by 
defining a vector field, 

and generalizing the divergence operator to 

div = F; * +FF * + . . .+  F; * 

Thus equation (7) can be written as 

It = div(9) .  (8) 

Compared to equation (1) which transfers the "heat" 
among adjacent pixels, equation (8) transfers the 
"heat" in many directions on a graph, and the conduc- 
tivities are defined as functions of the local patterns 
instead ofjust the local gradients. Note that in the dis- 
crete lattice, choosing s d  = {Vz, V,}, S, = 0, we have 
Fl = F; = U,, F:! = F; = V,, and div = V, + V,, 
thus equation (1) and (2) are just special cases of equa- 
tion (8). 

Second, in figure 3,  $ ( E )  has round tip for y 2 1, 
and a cusp occurs at = 0 pr 0 < y < 1 which 
leaves $'(o) undefined, i.e. 4 (0) can be any value 
in (-co,m) as shown by the dotted curves in fig- 
ure 3d. An interesting fact is that the potential func- 
tion learned from real world images does have cusp as 
shown in figure 2a where the best fit is y = 0.7. This 
cusp forms because large part of objects in real world 
images have flat intensity appearances, and thus $ ( E )  
with y < 1 will produce piecewisely constant regions 
with much stronger force than y 2 1. 

By continuity, $ ' ( E )  can be assigned any value in 
the range [ -w,w]  for E [ - € , E ]  and w = $ ' ( E ) ,  as 
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- 0 1  ' ' ' ' ' I . , . , , I  
10 20 .,n 0 10 20 0 & -20 -10 0 $0 20 30 

c 4 ' ( 0 ,  7 2 1 d &'W, 7 < 1 

Figure 3: The potential function 4(c) = a(1 - 
) a > 0, and its derivative 4 (c) for a,c) 1+( l l< l l /b)~ 

y = 2.0 and b,d) y = 0.8. 

shown by the dashed line in figure 3d. In numerical 
simulations, for E [ - E ,  E ]  we take 

i f o < - w  
if u E [-U, w] 
i f a > w  

+U 

& ' ( E )  = { --; 
where o is the summation of the other terms in the 
GRADE whose values are well defined. Intuitively 
when y < 1 and = (F, * I ) ( z ,y )  = 0,  &:((I) forms 
an attractive basin in the neighborhood N,(x, y) spec- 
ified by the filter window Fi at (z,y). For a pixel 
( u , ' ~ )  E N,(z,y), the depth of the attractive basin is 
I I U  F,- (U - x, 'U - y) 1 1 .  If a pixel is involved in multiple 
zero filter responses, it will accumulate the depth of 
the attractive basin generated by each filter. Thus 
unless the absolute value of the driving force from 
other well-defined terms is larger than the total depth 
o of the attractive basin at (U,.), I (u ,w) will stay 
unchanged, i.e. I ( u , v )  will be locked a t  the current 
intensity by the attractive basin. In the image restora- 
tion experiments in later sections, y < 1 shows better 
performance in forming piecewise constant regions. 

Third, in contrast to existing diffusion equations, 
the GRADE includes reaction terms .to produce pat- 
terns and to enhance preferred features. But unlike 
the Turing reaction-diffusion equation, the reaction 
terms in GRADE are defined intuitively by filters, and 



their behavior is well specified by the learned Gibbs 
distribution. We will demonstrate this property in the 
experiments below. 

5 Experiments 
In this section, we demonstrate the applications of 

GRADE in pattern synthesis, denoising and image en- 
hancement, and clutter removal. 
5.1 Texture pattern formation 

Two canonical patterns that the Turing reaction- 
diffusion equations can synthesize are the leopard 
blobs and zebra stripes [22][23]. In this section, we 
show that these patterns can be easily generated with 
only 2 or 3 filters using GRADE. We run equation (7) 
starting with I(z, y, 0) as a uniform noise image, and 
GRADE converges to a local minimum. Some synthe- 
sized texture patterns are displayed in figure 4. 

a 

C 

b 

d 

e f 
Figure 4: Leopard blobs and zebra stripes synthesized 
by GRADES. 

For all the six patterns in figure 4, we choose only 
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one diffusion filter F,(O) = A - the Laplacian of Gaus- 
sian filter at level 0 and we fix a = 5, b = lo,[' = 
0 ,y  = 1.2 for #j"'(t). For the three patterns in fig- 
ure 4 a,b,c we choose isotropic center-surround filter 
L G ( 4 )  of widow size 7 x 7 pixels as the reaction fil- 
ter Fl1) at level l of the image pyramid, and we set 
( U  = -6.0,b = 10,y  = 2!.0) for $JP)([)* The differ- 
ences between these three patterns are caused by CO 
in +a"([). to = 0 forms the patterns with symmetric 
appearances for both black and white part as shown in 
figure 4a. As eo becomes negative, black blobs begin to 
form as shown in figure 4b where to = -6, and positive 
to generates white blobs in the black background as 
shown in figure 4b where &, = 6. The general smooth- 
ness appearance of the images is attributed to the dif- 
fusion filter. Figure 4d is generated with two reaction 
filters - LG(&) at level 1 and level 2 respectively, thus 
blobs of mixed sizes appear. Similarly we selected one 
cosine Gabor filter Gcos(4,30') ( size 7 x 7 pixels ori- 
ented at 30') at level 1 as the reaction filter Pi2' for 
figure 4e where (a = -3 5, b = 10,y = 2.0,10 = 0) 
for $ ? ) ( E ) .  Figure 4f is generated with two reac- 
tion filters Gcos(4, 30°) ,  Gkos(4, 60°) a t  level 1 where 
a = -3.5, b = 10,y = 2.0,<, = -3 for $2 (1) (t) and 

*P (<I. 
It seems that the leoptrd blobs and zebra stripes 

are among the most canoinical patterns which can be 
generated with easy choices df filters and parameters. 
As shown in [25], this new class of Gibbs distributions 
are capable of modeling a large variety of texture pat- 
terns, but specific forms for $(<) have to be learned 
for a given texture pattern. 
5.2 Denoising, edge enhancement, and 

So far we have studied the GRADE for minimiz- 
ing a single energy function U(1) by gradient descent. 
In image processing, we often need to model both the 
underlying images and the distortions, and to  maxi- 
mize a posterior distribution. Suppose the distortion 
is additive, i.e., an input image is, 

1'" = I +  c. 

clutter removal 

In many applications, the distortion C is often not 
i.i.d. Gaussian noise, but clutter with structures such 
as trees in front of a building or a military target. Such 
clutter will be very hard to handle by edge detection 
and image segmentation algorithms, and recently they 
have received increasing alltention from people in var- 
ious fields. 

We propose to  model clutter by an extra Gibbs dis- 
tribution, which can be learned from some training 



images by the minimax entropy theory as we did for 
the underlying image I. Thus an extra pyramidal rep- 
resentation for 1’” - I is needed in a Gibbs distribution 
form as shown in figure 5. The filter set for the clutter 
is SC. The resulting posterior distribution is still of 
the Gibbs form with potential function, 

U*(I) = Uc(1’” - I; A c ,  S c )  + U ( I ;  A,  S ) ,  (9) 

where U c ( )  is the potential of the clutter distribution. 

A imagepyrarmd <,“,,er fCa,“iSS 

for tareels 
r q c t  fCsNrsl 

Figure 5: The computational scheme for removing 
noise and clutter. 

Thus the MAP estimate of I is the minimum of U * .  
In the experiments which follow, we use the Langevin 
equation which adds perturbations to  the gradient de- 
scent process and therefore is a variant of simulated 
annealing: 

dI, = -VU*(I)df + m d w t  (10) 

where W ( Z ,  y,  t )  is the standard Brownian motion pro- 
cess, i.e., 

W ( Z , Y , t )  - N P ( W ) ,  IN, d w t  = am, 1). 

T( t )  is the “temperature” which controls the magni- 
tude of the random fluctuation. Under mild conditions 
on U*,  equation (10) approaches a global minimum of 
U* at a low temperature. The analyses of convergence 
of the equations can be found in [9, 7, 51. The com- 
putational load for the annealing process is notorious, 
but for applications like denoising, a fast decrease of 
temperature may not affect the final result very much. 

Experiment Denoising and enhancing edge 
In the first set of experiments, we take C as an i.i.d. 

Gaussian noise image. 
Figure 6a is image with additive i.i.d. Gaus- 

sian noise. We choose two diffusion filters sd = 
{Vio) ,Vr)} at level 0 ,  and fix a = 5 , b  = 10,y  = 

0.7,( ,  = 0 for $(’)((), V,,V, are also used 
as the reaction filters at level 1 ,2 ,3 ,  i.e., S, = 
{Vp),  V c ) ,  V c ) ,  Or), Vi3), Vc)}. We choose a = 

15, y = 2.0 for $:2)()) and a = -10.0, b = 22, y = 5.0 
for $I!”(). Figure 6b is the recovered image. 

-2.0, b = 10,[0 = 0, y = 1.6 for Gi (1) (), a = -4.8,b = 

a b 

Figure 6: a .  the image distorted with Gaussian noise, 
b. the restored image using the GRADE. 

In figure 6b, noise is removed while boundaries are 
enhanced due to  the reaction terms which have low 
energy for large gradients at the high levels of the 
pyramid, and this effect is not observed in the Perona- 
Malik anisotropic diffusion as in equation (2). 

Experiment 11: Clutter removal 

a b 
Figure 7: a. the observed image, b ,  the restored image 
using 6 filters. 

Figure ?’a shows tree branches in front of a building, 
which will make image segmentation and object recog- 
nition extremely difficult because they cause strong 

852 



edges across the image. Modeling such clutter is a 
challenging problem in many applications. In this pa- 
per, we only consider clutter as two dimensional pat- 
tern despite its geometry and 3D structures. 

We collected a set of images of buildings and a set 
of images of trees all against clean background - the 
sky. For the tree images, we translate the image inten- 
sities to  [-31,0], i.e., 0 for sky. In this case, since the 
trees are always darker than the buildings, then such 
negative intensity will approximately take care of the 
occlusion effects. We learn the Gibbs distributions for 
each set respectively in the pyramid, then such models 
are respectively adopted as the prior distribution and 
the likelihood as in equation (9). We recovered the 
underlying images by maximizing a posteriori distri- 
bution using the stochastic process. 

For example, figure 7b is computed using 6 filters 
with 2 filters for I: {V,,O, Vy,o}, and 4 filters for IC: 
(6, V,, V,, Gcos(2,  30° ) } ,  i.e., the potential for IC is, 

UC(1) = d(VZI(3, Y)) + d(VYI(2, Y)) 

d*(I(z, Y>) + 1L*(Gcos * I(z,  Y)). 

(X>Y) 

+ 

a b 
Figure 8: a. an observed image, b. the restored image 
using 8 filters. 

In the above equation, $ * ( E )  and $*(,f) are fit to  the 
potential functions learned from the set of tree images, 

'l(' - 1+(lC-~t01/6)7) E Eo { - l+(I t -L,1/6)7) t > t o ,  '2 
b'(0 = 

So the energy term d*(I(z,  g)) forces zero intensity 
for the clutter image while allowing for large negative h - -  
intensities for the dark tree branches. Figure 9: a. t i e  observed image, b. the restored image 

1 using 13 filters. 

0 

Figure 8b is computed using 8 filters with 4 filters 
for I and 4 filters for IC.  13 filters are used for figure 9 
where the clutter is much heavier. 

As a comparison, we run the anisotropic diffusion 
process [17] on figure Sa, and images at iterations t = 
50 and ,300 are displayed in figure 10. 

6 Discussion 
Unlike previous PDEs motivated by chemical or 

physical processes, the GRADE is derived from Gibbs 
distribution, and the latter is learned €rom images in 
a given application. Therefore the GRADE is well 
tuned, and its behavior is well specified by the Gibbs 
distributions. 

It is our belief that most of the PDEs currently used 
in image processing and computer vision can be uni- 
fied under a general statistical framework] or can be 

a (t=50) b (t=300) 
Figure 10: Images by anisotropic diffusion at iteration 
t = 50,300 
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replaced by PDEs of similar function derived from the 
statistical framework as we did. We note that the “re- 
gion competition” algorithm studied in [24] is also a 
diffusion equation maximizing the posterior distribu- 
tion for image segmentation. Similarly the scale space 
of shapes studied by Kimia etc. is also generated by 
a diffusion equation maximizing the prior distribution 
on a certain shape representation [11][15]. It is our 
hope that this work will st imulate further research ef- 
forts along this direction. 
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