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Abstract

In this paper we present a novel label fusion algorithm suited for scenarios in which different 

manual delineation protocols with potentially disparate structures have been used to annotate the 

training scans (hereafter referred to as “atlases”). Such scenarios arise when atlases have missing 

structures, when they have been labeled with different levels of detail, or when they have been 

taken from different heterogeneous databases. The proposed algorithm can be used to 

automatically label a novel scan with any of the protocols from the training data. Further, it 

enables us to generate new labels that are not present in any delineation protocol by defining 

intersections on the underling labels. We first use probabilistic models of label fusion to generalize 

three popular label fusion techniques to the multi-protocol setting: majority voting, semi-locally 

weighted voting and STAPLE. Then, we identify some shortcomings of the generalized methods, 

namely the inability to produce meaningful posterior probabilities for the different labels (majority 

voting, semi-locally weighted voting) and to exploit the similarities between the atlases (all three 

methods). Finally, we propose a novel generative label fusion model that can overcome these 

drawbacks. We use the proposed method to combine four brain MRI datasets labeled with 

different protocols (with a total of 102 unique labeled structures) to produce segmentations of 148 

brain regions. Using cross-validation, we show that the proposed algorithm outperforms the 

generalizations of majority voting, semi-locally weighted voting and STAPLE (mean Dice score 

83%, vs. 77%, 80% and 79%, respectively). We also evaluated the proposed algorithm in an aging 

study, successfully reproducing some well-known results in cortical and subcortical structures.
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1. Introduction

Automatic segmentation of brain structures from MRI data makes it possible to carry out 

neuroimaging studies at larger scales than manual tracings would, since the latter are very 

time consuming to make. Moreover, automatic segmentation methods are also more 

repeatable and reliable than their manual counterparts. Brain MRI segmentation has been 

used in a number of applications, such as tractography[1], surgical planning[2] and studies 

of aging[3], brain development[4] and pathologies like Alzheimer's disease[5].

One family of supervised segmentation techniques that has become popular in brain MRI is 

multi-atlas segmentation [6]. In conventional atlas-based segmentation, the grayscale image 

of the atlas is nonlinearly registered to the space of the test scan, and the resulting transform 

is then used to warp the corresponding labels, which provide an estimate of the 

segmentation. Since a single atlas is not sufficient to cover the whole spectrum of variability 

within a population, multi-atlas segmentation has emerged as a natural extension. Using 

multiple atlases, this family of techniques produces more accurate segmentations [7] by: (1) 

independently registering several atlases to the test scan; (2) using the resulting transforms 

to deform the corresponding label images; and (3) combining the registered label maps into 

a single estimate of the segmentation with a label fusion algorithm. Multi-atlas segmentation 

is becoming widespread for three reasons. First, the maturity of registration algorithms (e.g., 

ANTs/SyN[8], Elastix[9]) enable multi-atlas techniques to achieve very high performance. 

Second, the public availability of such methods makes multi-atlas segmentation easy to 

implement. And third, the relative computational cost associated with nonlinearly registering 

the atlases is quickly diminishing thanks to the rapid increase in processing power of 

computers.

The choice of label fusion method is critical for the performance of multi-atlas 

segmentation. Early algorithms include best atlas selection [6] and majority voting [10]. The 

former estimates the segmentation as the labels of the atlas that is most similar to the test 

scan after registration. In this context, similarity can be measured with the same metrics that 

are typically used in image registration, such as cross-correlation, mutual information or 

sum of squared differences. Majority voting, on the other hand, operates at the voxel level 

by locally assigning the most frequent deformed atlas label at each spatial location - without 

considering the image intensity information. The performance of majority voting can be 

increased by an atlas selection process, in which only the deformed atlases that are most 

similar to the target scan are considered in the fusion[11, 12]

Later fusion methods compute the segmentation as a weighted combination of the labels of 

the registered atlases such that higher weights are given to more similar atlases. The weights 

can be global[13] or local[14, 15, 16, 17]. Sabuncu et al. [17] have shown that many of these 

multi-atlas methods can be written within a unified generative model. Another popular label 

fusion approach is STAPLE[18] and its variants[19, 20, 21, 22]; while this method was 
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originally developed to combine multiple manual segmentations from different human 

raters, it is increasingly being applied in the context of multi-atlas label fusion.

All the aforementioned label fusion algorithms assume that all structures of interest are 

labeled in all atlases, which is a rather limiting constraint. Eliminating this requirement 

would have several practical implications:

• It would enable us to combine training scans from different datasets even if they 

have different sets of annotated structures. In turn, this would make it possible to 

take advantage of the increasing amount of heterogeneously labeled MRI data that 

are publicly available.

• It would also enable us to segment structures that are not included in any of the 

datasets, but defined as the intersection of labels. For instance, the intersection of 

the lateral postcentral region and the cerebral gray matter would define the primary 

somatosensory cortex.

• It would allow for the fusion of segmentations from different modalities with 

different field of views and resolution. For instance, it would be possible to 

combine standard resolution brain MRI (1 mm resolution) with high-resolution 

MRI with limited field of view or even histology or optical coherence tomography 

data.

• It would be useful if one were to manually relabel a subset of atlases to include 

finer structures in the annotations. For example, in a large dataset with the 

hippocampi already labeled, an expert rater can additionally delineate the 

hipocampal subfields – which is extremely difficult and time consuming – in just a 

few cases. Traditional label fusion methods would only be able to use these few 

scans in the segmentation, having to disregard the information in all the scans in 

which the subfields are not labeled.

Despite the practical implications that a label fusion algorithm which allows for 

heterogeneously labeled atlases would have, this direction remains largely unexplored in the 

literature. To the best of our knowledge, only a particular case of label fusion with 

heterogeneous labels has been considered so far: the situation in which some of the labels 

are missing in some of the atlases. To tackle this problem, Landman et al.[23, 24, 25] 

propose an ad-hoc solution by modifying the STAPLE framework such that unlabeled 

voxels are ignored and the confusion matrix entries corresponding to the missing structures 

are fixed. Commowick et al.[26] propose ameliorating the effect of missing labels by adding 

a prior on the confusion matrices to the STAPLE algorithm that, when a label is missing, 

encourages higher a transition probability from that label to the background. However, such 

an approach treats as background all the voxels that have not been labeled with one of the 

foreground labels.

In this study, we present a family of probabilistic models for label fusion that make it 

possible to use atlases that have been annotated with different protocols. In our models, the 

atlases are assumed to have a hidden “fine” segmentation with all the structures present in 

the training data – including those defined by intersections of labels. The actual observed 
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labels are assumed to have been obtained by collapsing groups of hidden fine labels into 

more general, coarse labels.

The contribution of this study is twofold:

i. We use probabilistic models of label fusion to extend three popular methods 

(majority voting, semi-locally weighted fusion and STAPLE) to the scenario of 

heterogeneously labeled atlases.

ii. We propose a new generative model for label fusion that can overcome the 

limitations of these generalizations – the inability to produce meaningful posteriors 

and to exploit the similarities between the atlases – and show that it outperforms 

the generalizations in experiments with four datasets.

The rest of this paper is organized as follows. In Section 2, we describe the general 

framework for label fusion with heterogeneously labeled atlases, propose the generalizations 

of the different methods, identify their disadvantages, and present a new fusion algorithm to 

address their shortcomings. In Section 3, we assess the performance of the different 

algorithms with experiments on four different datasets. Finally, Section 4 concludes the 

paper.

2. Methods

In this section, we first introduce the general framework and define the variables that we 

will use throughout the paper (Section 2.1). Then, we present the generalizations of majority 

voting, semi-locally weighted voting and STAPLE (Sections 2.2-2.4), and identify their 

weaknesses in Section 2.5. Finally, we introduce a label fusion method that addresses these 

shortcomings in Section 2.6.

2.1. General framework

Throughout the remainder of this paper, we will assume that a test scan consisting of J 

voxels is to be segmented. We will use y = {yj, j = 1,…, J} to refer to the image intensities, 

and s = {sj, j = 1,…, J} to refer to its hidden, underlying segmentation. Let us also assume 

that a set of N atlases has been pre-registered to a test scan with a non-linear algorithm. Let 

{in} (where in = {inj, j = 1,…, J}) be the observed image intensities of the N registered 

atlases, and let {ln} (where ln = {lnj, j = 1,…, J}) be the corresponding discrete labels, 

defined at the finest detail level. Their values range from 1 to L, the total number of fine 

labels.

These deformed labels {ln} are not directly observed; instead, we have access to a different 

set of coarse labels {cn} (where cn = {cnj, j = 1,…, J}), which correspond to the actual 

manual delineations. The coarse labels {cn} are obtained by collapsing the fine labels {ln} 

into different groups of labels by means of a set of N deterministic, protocol-specific 

functions: cnj = fn(lnj). A protocol function could, for instance, collapse the hippocampal 

sub-fields into a single hippocampal label. Having a separate fn for each atlas enables us to 

combine different labeling protocols. Different protocol functions can collapse the same fine 
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label into different coarse labels; for instance, orbital cortex could be collapsed into the 

cerebral cortex by one protocol and into the frontal lobe by another.

We will now generalize three existing models - majority voting, locally weighted voting and 

STAPLE - to the scenario with collapsed labels. In all cases, the original algorithm (i.e., 

without heterogeneously labeled atlases) is recovered when all protocol functions are 

bijective (i.e., no labels are collapsed).

2.2. Generalization of majority voting

As explained in [17], majority voting can be seen as the most likely labeling in a 

probabilistic model in which the segmentation sj is sampled randomly from one of the N 

atlases, as indexed by a hidden discrete field m = {mj, j = 1,…, J}. Specifically, the value of 

the field at a certain voxel mj∈{1,…, N} indexes from which atlas we take the label at voxel 

j, i.e, sj = lmjj. The field m follows a flat prior, i.e., p(m) ∝ 1. It is straightforward to show 

that, after marginalizing over m, the distribution of the segmentation at a given location is 

equal to its relative frequency within the propagated labels of the atlases. Therefore, the 

most most likely segmentation is the mode of the propagated labels.

The graphical model for generalized majority voting is shown in Figure 1, and the 

corresponding equations in Table 1; note that we have assumed a flat prior over the hidden 

labels. The main difference with the original model is that the fine labels of the atlases are 

not available; instead, we observe their coarse labels - but still want to compute the 

segmentation at the fine level. To find the most likely segmentation within this model, we 

can operate at each spatial location j independently - since the model factorizes over voxels. 

The problem to solve is ŝj = argmaxsj p(sj|c.j), where c.j denotes all the coarse atlas labels at 

voxel j. The probability p(sj|c.j) is given by:

(1)

(2)

where δ[·] is Kronecker's delta. The interpretation of Equation 2 is simple: at each voxel j, 

every atlas equally spreads its vote over all the fine labels that are compatible with the 

coarse label cnj. The segmentation is just the label that maximizes Equation 2 with respect to 

sj.

2.3. Generalization of semi-locally weighted voting

Here we generalize the model from [17] to the scenario with collapsed labels. The graphical 

model is shown in Figure 2, and the corresponding equations in Table 2. The model for the 

labels is the same as for majority voting; however, now there is a Markov random field 

(MRF) prior with a predefined constant β on the membership field m, in order to encourage 

spatial patterns of labels observed in the training data. In addition to the segmentation, the 
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membership field now also generates the intensities of the test scan at each voxel by 

selecting atlas mj, taking its intensity imjj, and corrupting it with Gaussian noise with 

variance σ2. The variance is independent of the spatial location. In [17], it is set to a 

predefined value; here, we estimate it from the data instead assuming a flat prior for it. The 

segmentation is formulated as:

(3)

(4)

where we have used the mode approximation for the integral. The point estimate σ̂2 of the 

variance is:

(5)

We now describe algorithms to compute the most likely variance σ̂2 (Section 2.3.1) and 

subsequently the most likely segmentation(Section 2.3.2).

2.3.1. Computation of the most likely variance σ̂2—We first note that, according to 

the model in Figure 2, the variance σ2 is independent of the coarse labels {cn} when the 

segmentation s is unknown. Therefore, the problem in Equation 5 can be rewritten as 

follows:

(6)

Equation 6 requires marginalizing over m, which leads to an intractable sum due to the MRF 

prior. Instead, we will use the variational expectation maximization (VEM) algorithm to 

estimate an approximate solution. Rather than optimizing Equation 6 directly, we maximize 

a lower bound J:

(7)

(8)

where KL denotes the Kullback-Leibler divergence and H represents the entropy of a 

random variable. The inequality J(q(m, σ2)) ≤ log p(y|σ2, {in}) holds because the KL 

divergence is non-negative. The distribution q(m) represents an approximation to the 

posterior distribution of m given the observed intensities and the variance. This distribution 

is optimized over a class of restricted functions. The standard approximation, known as 
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mean field approximation, is that q factorizes over voxels: , where qj is 

a categorical distribution over the indices of the atlases at voxel j.

VEM alternates between an expectation (E) step and a maximization (M) step. In the E step, 

we maximize the bound J with respect to q(m). In the M step, we maximize J with respect to 

the model parameters - in this case, the variance σ2. In the E step, it is convenient to work 

with Equation 7: maximizing J is equivalent to minimizing the KL divergence, which yields 

the following update:

(9)

which can be solved with fixed point iterations, normalizing qj after each step.

In the M step, it is more convenient to work with Equation 8, since the entropy term can be 

disregarded. The maximization yields the following update:

(10)

The VEM algorithm typically converges in a few (5-6) iterations. Note that, if we set β = 0 

in the model, we recover the standard EM algorithm[27].

2.3.2. Computation of the most likely segmentation ŝ—Given σ̂2, computing the 

segmentation ŝ still requires evaluating an intractable sum over m. However, since q(m) 

minimizes the KL divergence with p(m|y, σ2, {in}), we can approximate the problem in 

Equation 4 with:

Therefore, the optimal segmentation can be computed voxel by voxel as:

which is almost identical to the right hand side of Equation 1, with the difference that the 

term p(mj) has been replaced by qj(mj). It is straightforward to show that the approximate 

posterior label probabilities are given by:
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(11)

This expression is similar to the equation for the label posteriors of generalized majority 

voting (Equation 2). The difference is that the constant term 1/N has been replaced by the 

approximate membership posteriors qj. This term depends on the image intensities, such that 

the contribution is higher for the atlases that are semi-locally more similar to the novel scan. 

The vote of each atlas is still spread equally among the fine labels they are compatible with 

the coarse label at each voxel.

2.4. Generalization of STAPLE

The generative model of STAPLE is as follows: the hidden segmentation is generated by a 

prior , such that p(sj) is a categorical distribution that reflects the prior 

frequencies of the classes. In our scenario, we used a flat prior (i.e., p(sj) ∝ 1); preliminary 

experiments showed that the prior used in the original STAPLE algorithm -in which the 

frequencies are proportional to the volumes of the structures - considerably decreased the 

segmentation accuracy in small structures. Given the segmentation, the (deformed) atlas 

labels are assumed to be independent corrupted observations of the hidden ground truth 

segmentation. Each atlas has a corresponding confusion matrix through which its labels are 

generated, whereas the atlas intensities are disregarded in the fusion. The STAPLE 

algorithm first computes point estimates for the confusion matrices in light of the observed 

data, and the uses them to estimate the segmentation.

The graphical model for generalized STAPLE is shown in Figure 3a. Each atlas is 

characterized by a confusion matrix Ωn. The element  corresponds to the probability that 

the true segmentation s is observed as label l by atlas n. The fine labels of the atlases are 

collapsed into the coarse, observed labels through the protocol functions fn. For our 

purposes, it is actually more convenient to work with a more compact version of this model, 

as shown in Figure 3b. We assume that the collapsed labels are generated directly by 

confusion matrices  corresponds to the probability that the true segmentation s is 

observed as coarse label c by atlas n. The relation between Ωn and Θn is simple: 

. Note that the matrices {Θ n} are not necessarily square, whereas the 

{Ωn} are. Moreover, the matrices {Θ n} will in general have different number of rows.

As in the original STAPLE algorithm, we compute the maximum likelihood estimates of the 

confusion matrices as follows:
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(12)

Equation 12 can be iteratively optimized with EM. In the E step, we compute , a soft 

classification of voxel j:

(13)

In the M step, we update the confusion matrices:

(14)

Once the EM algorithm has converged, the approximate label posteriors are given by:

and the discrete segmentation is just:

2.5. Shortcomings of the generalized methods

The presented generalizations of majority voting, semi-locally weighted voting and 

STAPLE suffer from several limitations. Generalized majority voting inherits from its 

parent the inability to exploit the information in the deformed atlas intensities. In addition, 

this method is unable to produce realistic label posteriors (soft segmentations) in many 

common multi-protocol scenarios due to the spreading of the votes across all the compatible 

fine labels at each location. For example, let's consider the problem of fusing the 

segmentation in Figure 4a – which includes the cortex as a whole and most subcortical 

structures – with the segmentation in Figure 4b – which includes the hippocampal subfields. 

Since the background label of the subfield data is compatible with all non-hippocampal 

labels, this scan would contribute a flat map of non-zero probability for all non-hippocampal 

structures all over the image domain. Even though the hard segmentation (Figure 4c) might 

still be meaningful, the label posteriors given by the method (Figures 4d and 4e) are not 
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realistic. For instance, the posterior for the cortex is close to 0.5 (rather than 1) around this 

structure in Figure 4d, and the same thing happens with the amygdala in Figure 4e.

Soft segmentations are desirable for two reasons: first, they are useful to estimate the 

uncertainty in the boundary locations; and second, they allow to compute more accurate 

estimates of the volumes of the different structures using expectations. If Vl is the volume of 

structure l in voxels [28]:

where  is the posterior label probability at voxel j, given by Equation 2 (majority 

voting), 11 (semi-locally weighted voting) or 15 (STAPLE). If we computed volumes from 

the posteriors in Figure 4d or 4e, the estimates would clearly not be accurate.

In contrast to generalized majority voting, generalized semi-locally weighted voting uses the 

image intensities to estimate the contributions from the different atlases; however, it still 

suffers from the shortcoming that it spreads the votes across all the fine labels and cannot 

generate meaningful posteriors. STAPLE, on the other hand, can produce realistic posteriors 

thanks to the nature of its generative model, but it shares with majority voting the limitation 

that it does not consider the image intensities in the fusion. Moreover, STAPLE was 

originally conceived as a method to merge manual segmentations, and generally performs 

poorly in the label fusion step of multi-atlas segmentation, where it is often outperformed 

even by majority voting (see for instance [29]).

Even though some of these shortcomings could be addressed by newer versions of the 

algorithms (e.g., an extension of STAPLE using image intensities was presented in [20]), 

none of the generalized methods supports exchange of information between the atlases 

during the fusion. In the standard case where all atlases have all possible labels, this is not 

necessary, since there is nothing they can learn from one another. However, in the 

multiprotocol scenario, the exchange of information between atlases with missing labels can 

improve the segmentation.

For instance, let us assume that we have three registered atlases {i1, c1}, {i2,c2}, {i3, c3} and 

that, at a given voxel j, their deformed coarse labels are c1j = c′, c2j = c″ and c3j = c‴, 

respectively. Let us further assume that c′ and c″ correspond to fine labels l′ and l″ without 

any ambiguity, i.e., f1(l) = c′ ⇔ l = l′ and f2(l) = c″ ⇔ l = l″, but that c‴ is the result of 

collapsing l′ and l″, i.e., f3(l′) = f3(l″) = c‴. In that case, if i3j ≈ i1j, we would expect the 

hidden fine label l3j to be l′, whereas if i3j ≈ i2j, we would expect it to be l″ instead.

To address the described issues, we present in Section 2.6 below a label fusion method 

specifically designed for multi-protocol scenarios.
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2.6. Proposed fusion method

Figure 5 shows the graphical model of the proposed framework, which we coin “multi-

protocol label fusion” (MPLF). Table 3 displays the corresponding equations. Essentially, 

we are assuming that both the registered atlases and the test scan are generated by a (latent) 

statistical atlas of labels (αℒ) and intensities (αℐ) in the space of the test scan. The 

assumption that the atlases were generated by the same statistical atlas is what allows the 

model to integrate the information across the atlases. Specifically, the vector 

 represents the a priori probability of observing the different labels 

(at the fine detail level) at voxel j. The vector  stores, for each fine 

label, the mean of a Gaussian that models the distribution of intensities at voxel j 

conditioned on that label. All the Gaussians share a predefined variance σ2. The voxels are 

assumed to be independent of one another. As in the previous sections, the fine labels of the 

atlases are hidden, and we only have access to corresponding coarse segmentations {cn}.

The model is completed with priors for (αℒ) and (αℐ), which we assume factorize over 

voxels as well. We use conjugate priors: for , we assume a Dirichlet distribution with 

concentration parameter 1 + ε, i.e., we assume that we have ε prior observations for each 

class at each voxel. For  we assume a Gaussian distribution with mean μ0 and variance 

σ2/ε, which is equivalent to having ε priors observations with sample mean μ0. In practice, ε 

is small and the only objective of these priors is to ensure the numerical stability of the 

algorithm.

Exact inference within this model would require marginalizing over the model parameters, 

i.e., the statistical atlas ((αℒ), (αℐ)), which leads to an intractable integral. We use the 

assumption that the posterior distribution of the model parameters is heavily peaked to 

approximate:

(16)

where the point estimates α̂ℐ and α̂ℒ are given by:

(17)

To compute the point estimates, it is convenient to notice that the test image can be 

considered an extra atlas, such that:
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In other words, the test image is an additional atlas (index N + 1) with a constant coarse 

label 1, which is compatible with all the labels at the fine level. Then, we can use Bayes's 

rule to rewrite the problem in Equation 17 as:

(18)

where

To solve the optimization problem of Equation 18, we use an EM algorithm: we iteratively 

build a lower bound to the objective function of Equation 18 that touches it at the current 

estimate of ((αℒ), (αℐ)) (E step), and then optimize this bound with respect to ((αℒ), (αℐ)) 

(M step).

In the E step, we make a soft assignment of each label l at the fine level of detail to each 

voxel j in each atlas n:

(19)

Note that, if atlas n is labeled at the fine level already, then (fn)−1(cnj) is unique and 

. These soft assignments are used to form the lower bound:
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(20)

where α̃ℒ and α̃ℐ are the current estimates of the parameters.

The M step updates can be derived as:

(21)

(22)

Once the algorithm has converged, we can substitute the point estimates α̂ℒ and α̂ℐ back 

into Equation 16 and use Bayes's rule to compute the segmentation. It is straightforward to 

show that the approximate posterior label probabilities of the voxels – which are 

independent of each other – are given by:

(23)

Therefore, the optimal discrete segmentation is:

(24)

and the expectation of the volume of label l is (in voxels):

(25)
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3. Experiments and results

3.1. MRI data

We used four different datasets of manually labeled T1 MRI scans in this study (see sample 

slices in Figure 6):

• FreeSurfer dataset: 39 T1-weighted, 1 mm isotropic scans with 36 cortical and 

subcortical labels (see delineation protocol in[30]). The cerebral cortex and white 

matter are considered single entities. We note that these are the subjects that were 

used to train the probabilistic atlas in FreeSurfer[31].

• Brainstem dataset: ten T1-weighted, 1 mm isotropic scans with manual labels for 

the medulla oblongata, pons and midbrain, i.e., the substructures of the brainstem. 

The delineation protocol is described in [32].

• Winterburn dataset: five 0.6 mm isotropic scans1 with annotations of the 

hippocampal subfields - subiculum, CA1, CA23, CA4 and molecular layer. The 

acquisition and manual delineation of the data are described in[33]. The dataset 

includes T1-weighted and T2-weighted scans; only the T1-weighted volumes were 

used here.

• Hammers dataset2: 20 T1-weighted, 1 mm isotropic scans with 67 labels of cortical 

and subcortical structures. The labels of the cortical structures do not separate white 

from gray matter, and there is a single cerebellar label, which groups its gray and 

white matter. Further details on the dataset and on the manual labeling protocol can 

be found in [34] and [35].

The scans from all four datasets have fields of view covering the whole brain. Additional 

details on the acquisition can be obtained from the corresponding publications.

3.2. Definition of fine labels and protocol functions

In the fusion, we defined a set of 148 labels given by all the possible intersections of regions 

defined in the four datasets; note that this process generates more regions than the total 

number of unique labels in the four datasets (102). Specifically, we defined two labels for 

each lobe in the Hammers dataset, one for the corresponding white matter and one for the 

corresponding cortex, based on their intersections with the gray and white matter in the 

FreeSurfer dataset. We also defined a number of labels to cope with differences in labeling 

protocols of the same structure; even though the protocols are in general very similar to each 

other, there are two exceptions. First, the Hammers hippocampus does not include the tail, 

while the FreeSurfer and Winterburn protocols do. To cope with this, we split up each of the 

five hippocampal subfields into an anterior (head/body) and a posterior (tail) region; this 

yields a total of 20 hippocampal labels – 10 per side. Second, the midbrain of the Brainstem 

dataset coincides with the superior part of the brainstem in the Hammers dataset, but extends 

further in the superior direction than the brainstem in FreeSurfer. To model this difference, 

we split the midbrain into an inferior and a superior part; the latter is further split into left 

1In the original publication they work with 0.3 mm upsampled data, but the native resolution is 0.6 mm.
2www.brain-development.org. ©Copyright Imperial College of Science, Technology and Medicine 2007. All rights reserved.
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and right. The mid-brain label in the Brainstem dataset and the brainstem in the Hammers 

dataset include all three regions, while the FreeSurfer dataset considers the inferior region 

part of the brainstem and the superior regions part of the left and right diencephala, 

respectively.

Given these region definitions, we specified four unique protocol functions f (one per 

dataset, as illustrated in Figure 7):

• FreeSurfer dataset: the protocol collapses all cortical structures into two generic 

cortex labels (left and right), all white matter structures (including the left and right 

corpus callosum, only defined in the Hammers dataset) into two white matter 

regions, all the hippocampal subfields into whole hippocampi, and the brainstem 

labels into a whole brainstem region – except for the superior midbrain regions, 

which are collapsed together with the diencephala.

• Brainstem dataset: the protocol collapses all the non-brainstem regions into a single 

background label.

• Winterburn dataset: the protocol collapses all the non-hippocampal regions into a 

generic background label.

• Hammers dataset: the protocol collapses the white and gray matter labels of each 

lobe into a single label, all the brainstem and hippocampal regions into two generic 

labels, and the white matter and cortex of the cerebellum into a single structure.

3.3. Experimental setup

All 74 brain scans were resampled to 1 mm isotropic resolution skull stripped bias field 

corrected and intensity normalized with FreeSurfer[31]. The intensity normalization is 

necessary because it enables us to directly compare image intensities (even across datasets), 

which is a critical assumption in semi-locally weighted fusion and MPLF. The scans were 

then pairwise registered with the software package ANTS [8]). We used the default 

parameters for the deformation model (SyN[0.25]) number of iterations (30 × 90 × 20) and 

cost function (neighborhood cross correlation). However we increased the radius of the 

window of the cost function from 4 to 6 and the regularization parameter from 3 to 4; these 

values better coped with the differences in intensity profile between datasets that cannot be 

completely eliminated by the intensity normalization step.

The four proposed label fusion schemes were used to segment the scans in a leave-one-out 

manner where the test subject was left out from the atlas set {in, ln}. The parameter setting 

and initialization was as follows. In semi-locally weighted fusion we initialized σ2 = 100 and 

set β = 0.75 - as in[17]. In STAPLE we initialized each column of each Θn such that 0.95 of 

the probability mass is equally distributed among the coarse labels that are compatible with 

the fine label corresponding to that column; the remaining 0.05 is equally spread across the 

non-compatible coarse labels. In MPLF we set ε = 10−6, μ0 = 65 (which is the typical 

intensity of gray matter after normalization) and σ2 = 100 (again inspired by[17]).

We evaluated the label fusion methods in two different ways: directly with Dice scores and 

indirectly through an aging experiment. First we computed Dice scores between the manual 
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delineations and the protocol-transformed automated segmentations produced by the 

different label fusion methods, i.e., we compared ctj with ft(ŝj) (where we use the subscript t 

to refer to the test scan) for all four datasets. In addition we also evaluated the performance 

of MPLF against the number of training scans. In this experiment we used the FreeSurfer 

dataset which has the most scans and therefore provides the largest range for the analysis. 

We computed segmentations of the FreeSurfer scans using Nfs other randomly selected 

FreeSurfer scans (“fs” stands for FreeSurfer) and a pool of (randomly selected) scans from 

the other datasets such that the proportion of atlases from each of the datasets in the pool 

was approximately constant (see Table 4). This ensures that the performance depends on the 

number of atlases, rather than the proportion of scans from the FreeSurfer dataset in the pool 

of training images. The experiment was repeated 10 times for each Nfs with different 

random selections of scans except for the cases Nfs = 1, where we used all 38 left-out scans 

in the dataset, and Nfs = 38, where there is only one possible combination scans (since we 

are using all the available atlases).

In a second set of experiments, we evaluated MPLF indirectly by analyzing the effect of age 

on the median thickness of each cortical region, as well as on the volume of the different 

subcortical structures. This analysis was carried at the fine level of label detail, so we 

measured volumes and thicknesses of structures that were not defined in any of the training 

datasets. Both the thicknesses and the volumes were computed from the soft segmentations: 

the volumes were computed with Equation 25, and the thicknesses were estimated from the 

label posteriors (Equation 23) using the algorithm described in [36]. This technique 

estimates the thickness at a point of interest by minimizing the line integral over the 

probability map of the gray matter on line segments centered at that point. For each cortical 

region, we took the median (a robust estimate) of the thicknesses given by this method for 

the voxels belonging to that region, as estimated by the hard segmentation from Equation 

24. Note that both the estimation of the volume and of the cortical thickness from soft 

segmentations require faithful posteriors; probability maps like the ones showed in Figure 4c 

or 4c would yield unrealistic estimates.

The aging experiment was performed on the FreeSurfer dataset, which has the most subjects 

and the widest age range (53.3±23.3 years). For each subcortical brain structure, we first 

fitted a generalized linear model (GLM) predicting its volume as a linear combination of the 

age of the subject, his intracranial volume (as estimated by FreeSurfer) and a bias. Then, for 

each cortical structure, we fitted a GLM predicting its median thickness as a linear 

combination of the age of the subject and a bias. Finally, a statistical t-test was used to 

assess whether the coefficient related to age in each GLM was significantly different from 

zero. In order to increase the power of the analysis in the subcortical structures, we left-right 

averaged their volumes – for the median cortical thickness this is not as advantageous, since 

it is a robust estimate already.

3.4. Results

3.4.1. Direct validation: Dice scores—Table 5 shows the mean Dice scores across the 

structures defined within each dataset. Generalized STAPLE produces very variable results, 

yielding excellent segmentation for some structures but poor outputs for others (e.g., 
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brainstem and Winterburn datasets). On average, it outperforms generalized majority voting 

by 2% Dice. Generalized semi-locally weighted voting takes advantage of the image 

intensities of the deformed atlases to yield an average Dice 1% higher than that of 

generalized STAPLE. MPFL clearly outperforms all the other methods by communicating 

information between the atlases: its average Dice is 3% higher than that of the second best 

method (generalized semi-locally weighted voting). Figure 8 shows the mean Dice score 

produced by MPFL in the FreeSurfer dataset as a function of the number of training scans. 

The plot shows that MPFL only requires 3 atlases to yield Dice scores similar to those of 

generalized semi-locally weighted voting with 38 atlases. The performance of MPFL 

saturates at approximately 30 scans.

Figure 9 shows box plots for the Dice scores between the manual and automated 

segmentations for each structure in the four datasets. In the FreeSurfer dataset, generalized 

majority voting performs satisfactorily for most structures except for the cortex, which is 

difficult to register. Semi-local weighting provides a boost in the performance for some of 

the structures, particularly the caudate and the cortex, thanks to the use of image intensity 

information in the fusion. Generalized STAPLE produces very variable results: for some 

structures it outperforms semi-locally weighted fusion (diencephalon, amygdala, pallidum, 

putamen), but for others it produces rather poor results (most notably the cortex). MPLF 

successfully combines all the training data to produce the highest Dice scores for every 

structure other than the cerebellum.

In absolute terms, the results from MPLF in subcortical structures are slightly worse than 

those reported in the literature by state-of-the-art fusion algorithms working in single-

protocol settings (e.g., [17]). This is not caused by shortcomings of our algorithm, but rather 

by the fact that it produces a segmentation that “averages” subtle differences in labeling 

protocols that are not explicitly modeled in our fusion framework. Therefore, the automatic 

segmentation does not necessarily agree perfectly with any of the individual protocols, and 

is penalized when computing Dice scores against the ground truth segmentations of the 

individual datasets. For example, this is the reason – in addition to differences in 

registrations – for the discrepancy between our results for generalized majority voting in the 

Hammers dataset and the results reported in [10] using the same brain scans.

In cortical structures, MPLF shares the limitation of other label fusion algorithms (and 

registration based segmentation methods in general), that volumetric registration of the 

cerebral cortex is extremely difficult. The cortical segmentation could possibly be improved 

by replacing ANTs with a registration algorithm specifically designed for the cortex, e.g., 

[37].

The same trends that were observed in the FreeSurfer dataset apply to the Brainstem, 

Winterburn and Hammers datasets. Semi-locally weighted voting provides a small 

improvement over majority voting, STAPLE yields very variable results (rather poor, in 

some cases) and MPLF outperforms the other three for all the structures of interest, other 

than CA1 in the hippocampus and the cerebellum (and some lobes/gyri) in the Hammers 

dataset. In absolute terms, the Dice scores are high in the Brainstem dataset – though 

difficult to place in a global context due to the lack of midbrain, pons and medulla 
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segmentation algorithms in the literature. On the other hand, they are low for the 

hippocampal subfields, due to their thin shapes (all but CA4) and the insufficient resolution 

to segment them accurately. In the Hammers dataset, Dice scores of the subcortical 

structures are one notch below the results from the FreeSurfer dataset; this is possibly due to 

the fact that the averaging in labeling protocols is skewed towards the FreeSurfer data due to 

the larger presence in the training datset – twice as many.

Figure 10 shows segmentations and 3D renderings of a sample test scan from the FreeSurfer 

dataset. The automated segmentations in Figure 10c-f are much richer than the manual 

labels in Figure 10b. For instance, the parcellated pial and white matter surfaces (Figure 

10g-h) could not have been generated using any of the training datasets independently). 

Since they do not consider image intensities in the fusion, the generalizations of majority 

voting and STAPLE do not correctly segment the cortex, which is difficult to register. They 

also oversegment structures such as the pallidum. Generalized semi-locally weighted fusion 

ameliorates these problems through the use of intensities – particularly the cortical 

segmentation. However, it is outperformed by MPLF, which produces more accurate 

segmentations for the thalamus, pallidum, putamen and choroid plexus – while providing 

meaningful estimates of the label posteriors.

3.4.2. Indirect validation: aging study—The association between morphometric 

measurements and age (Table 6) shows strong consistency with prior work using other 

procedures. For example, we found strong associations between age and cortical thickness in 

frontal lobe regions including the superior frontal and precentral gyrus, weaker association 

with medial temporal regions, and strong reductions in volume of the thalamus with more 

moderate reductions in volume of the hippocampus [3, 38]. Even though the resolution of 

the scans was not sufficient to clearly distinguish among hippocampal subfields, we 

observed a larger effect of aging on CA1 and CA4-DG, consistent with prior work [39]. The 

results on the brainstrem also showed strong agreement with prior studies: the volume of the 

midbrain steadily decreases with age, the pons is spared, and the medulla suffers from 

minimal atrophy [40].

4. Conclusion and discussion

In this paper, we have generalized three popular label fusion methods to scenarios where the 

atlases have been manually traced with different protocols. We have discussed the 

limitations of the generalized methods and proposed MPLF, an alternative algorithm that 

was shown to outperform them: the average Dice score on four datasets improved between 

3% and 6% with respect to the generalizations. The core of both the generalized methods 

and MPLF is the definition of protocol functions that group sets of fine labels (hidden) into 

coarser labels (observed). Adding the coarse labels to the corresponding graphical models, 

the generalization of the three existing methods to the multi-protocol scenario is 

straightforward.

The extensions of majority voting, semi-locally weighted fusion and STAPLE are easy to 

implement and require very few changes with respect to the original algorithms. On the 

other hand, MPLF is computationally more expensive, since it requires optimizing a 
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function with the EM algorithm at each voxel. In any case, the computational cost of the 

fusion (approximately one hour in our experiments) is small compared with the cost of 

nonlinearly registering the atlases (approximately one and a half hours per atlas, tens of 

hours in total), and the algorithm can be easily parallelized if necessary – since the voxels of 

the input scan are processed independently.

Future work will follow three directions. First, we will generalize newer, more sophisticated 

label fusion algorithms and compare them with MPLF. In particular, it will be interesting to 

consider extensions of STAPLE that support soft labels and spatially varying performance 

parameters. Second, we will consider the possibility of placing smoothness priors on the 

intensities and label probabilities of the statistical atlas in MPLF, as well as on the 

segmentation of the test scan. Even though the automated segmentations were accurate and 

smooth in our experiments, smoothness constraints might be important when the number of 

atlases is not as high as in this study. And third, we will generalize MPLF to cross-modality 

scenarios, which will introduce the capability to handle microscopic images (e.g., BigBrain3 

[41]) or optical coherence tomography [42], in order to model with very fine detail brain 

areas that are not visible with MRI.

As the amount of publicly available, heterogeneously labeled data continues to grow, we 

believe that segmentation methods that can cope with different protocols –such as the one 

we have described– will become increasingly important.
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Highlights

Label fusion methods only use a small subset of available manually labeled atlases.

This is due to differences in the definition/identity of the labels in each protocol.

We extend majority voting, STAPLE, and weighted fusion to the multi-protocol 

setting.

We demonstrate the issues with these generalized methods.

We propose a novel label fusion method that outperforms benchmarks.
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Figure 1. 
Graphical model for generalized majority voting. Shaded variables are observed.
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Figure 2. 
Graphical model for generalized semi-locally weighted voting. Shaded variables are 

observed.

Iglesias et al. Page 25

Neuroimage. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Graphical models for generalized STAPLE. (a) Expanded version. (b) Compact version. 

Shaded variables are observed.
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Figure 4. 
Example to illustrate the shortcomings of generalized majority voting. (a) Labels for a 

registered atlas with labels for the whole cortex and for a number of subcortical structures. 

(b) Labels for a registered atlas with labels for the hippocampal subfields. (c) Fusion of (a) 

and (b) with generalized majority voting. (d) Posterior probability map for the cortex; note 

that the values are close to 0.5 (rather than 1) in the cortex, and that a large amount of 

probability mass is distributed all across the image in non-cortical areas (other than the 

hippocampus). (e) Posterior probability map for the amygdala; similar observations as for 

(d) can be made.
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Figure 5. 
Graphical models for MPLF, the proposed fusion method. Shaded variables are observed.
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Figure 6. 
Sample sagittal slices of the four datasets used in this study, with manual annotations 

overlaid: (a) FreeSurfer, (b) Brainstem, (c) Winterburn, (d) Hammers dataset. We only show 

a region of interest around the labels in (b,c) – the scans cover the whole brain.
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Figure 7. 
Protocol functions: (a) sagittal slice of a segmentation at the fine label level; (b) effect of 

applying protocol function corresponding to FreeSurfer datast; (c) Brainstem dataset; (d) 

Winterburn dataset; (e) Hammers dataset. It is the goal of this study to produce 

segmentations such as (a) by merging segmentations like (b-e).
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Figure 8. 
Mean Dice score (in %) for the FreeSurfer dataset as a function of the number of training 

scans of the FreeSurfer dataset Nfs. The pool of training scans also includes atlases from the 

other three datasets, such that the ratio of scans from the different datasets is approximately 

constant (see Table 4). The Dice scores are averaged over all structures and ten random 

selections of scans (except for Nfs = 1, where we used all 38 left-out scans, and Nfs = 38, 

where there is only one possible combination of atlases).
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Figure 9. 
Box plots for the Dice scores corresponding to the four datasets. The central mark is the 

median, the box spans from the first to the third quartile, and the whiskers span the extreme 

data points not considered outliers (which are marked with red crosses).
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Figure 10. 
(a) Sagittal slice of a scan from the FreeSurfer dataset. (b) Corresponding manual 

segmentation. (c) Automated segmentation with generalized majority voting. (d) 

Generalized semi-locally weighted segmentation. (e) Generalized STAPLE. (f) MPLF. (g) 

3D rendering of the pial surface using MPLF. (h) Rendering of the white matter surface.
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Table 1
Equations for the probabilistic model of generalized majority voting

1 {ln} ∼ p({ln}) ∝ 1

2 m∼ p(m) ∝ 1

3 cnj = fn(lnj), ∀n,j

4 sj = lmjj, ∀j
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Table 2

Equations for the generative model of generalized semi-locally weighted voting. ℋj represents the 

neighborhood of voxel j.

1 {ln} ∼ p({ln}) ∝ 1

2

3 σ2 ∼ p(σ2) ∝ 1

4 cnj = fn(lnj), ∀n,j

5 sj = lmjj, ∀j

6 yj ∼p(yj|mj,σ2,i.j) = (yj;imjj,σ
2)
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Table 3

Equations for the generative model of Figure 5. Dir[·] represents the Dirichlet distribution, and 1 is the all one 

vector.

1

2

3 cnj = fn(lnj),∀ n,j

4

5

6

7
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Table 5

Mean Dice score (in %) across all structures within each dataset, as well as for all structures from all datasets 

combined. “Maj. vot.” represents generalized majority voting, “SL weight.” represents generalized semi-

locally weighted fusion, and “G-STAPLE” represents generalized STAPLE.

Dataset Maj.vot. SL weight. G-STAPLE MPLF

FreeSurfer 80.6 82.6 82.6 86.5

Brainstem 85.2 85.6 74.2 86.9

Winterburn 43.1 46.8 36.4 50.5

Hammers 75.1 78.6 78.2 81.6

Combined 77.0 79.8 79.1 83.1
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Table 6

Effect of age: p-values (given as — log10 p) for t-test on significance of slope in the generalized linear model. 

(a) Volume of subcortical structures (left-right averaged). (b) Cortical thickness. Significant p values (below 

0.05 after Bonferroni correction) are in bold. The threshold for significance at α = 0.05 is, after Bonferroni 

correction, − log10p ≈ 2.65.

(a)

Structure −log10p

Lat.Ventricle 7.51

Cerebellum WM 0.43

Cerebellum CT 2.37

Thalamus 13.70

Caudate 0.72

Putamen 6.8

Pallidum 6.56

Whole hippo. 3.72

Amygdala 3.98

Accumbens 3.99

Diencephalon 10.27

3rd ventricle 7.10

4th ventricle 0.59

Corp.Call. 0.29

Whole brainst. 0.70

Cerebral WM 1.13

CA1 2.84

CA23 2.42

CA4-DG 3.45

Subiculum 1.38

Molec. Layer 2.57

Midbrain 6.14

Pons 0.25

Medulla Obl. 2.68

(b)

Cortical region −log10p (left side) -log10p (right side)

Ant. temp. lobe medial 4.14 4.97

Ant. temp. lobe lateral 8.30 7.91

Parahip. & ambient gyri 0.60 1.66

Sup. temp. gyrus 9.26 11.21

Middle & inf. temp. gyri 4.15 4.86

Fusiform gyrus 1.85 2.94
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(b)

Cortical region −log10p (left side) -log10p (right side)

Insula 8.90 9.49

Lat. occipital lobe 4.41 4.92

Gyrus cinguli ant. part 7.04 8.10

Gyrus cinguli post. part 9.10 9.84

Middle front. gyrus 11.69 10.94

Post. temp. lobe 7.25 8.69

Inferolat. pariet. lobe 12.71 10.61

Precentral gyrus 11.30 10.37

Gyrus rectus 1.367 0.84

Orbitofrontal gyri 8.82 11.93

Inf. front. gyrus 11.73 12.73

Sup. front. gyrus 11.87 13.03

Postcentral gyrus 8.44 8.35

Sup. parietal gyrus 6.63 8.20

Lingual gyrus 6.10 6.34

Cuneus 5.33 7.54
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