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Acupuncture can be regarded as a complex somatosensory stimulation. Here, we
evaluate whether the point locations chosen for a somatosensory stimulation with
acupuncture needles differently change the brain activity in healthy volunteers. We used
EEG, event-related fMRI, and resting-state functional connectivity fMRI to assess neural
responses to standardized needle stimulation of the acupuncture point ST36 (lower
leg) and two control point locations (CP1 same dermatome, CP2 different dermatome).
Cerebral responses were expected to differ for stimulation in two different dermatomes
(CP2 different from ST36 and CP1), or stimulation at the acupuncture point vs. the control
points. For EEG, mu rhythm power increased for ST36 compared to CP1 or CP2, but not
when comparing the two control points. The fMRI analysis found more pronounced insula
and S2 (secondary somatosensory cortex) activation, as well as precuneus deactivation
during ST36 stimulation. The S2 seed-based functional connectivity analysis revealed
increased connectivity to right precuneus for both comparisons, ST36 vs. CP1 and
ST36 vs. CP2, however in different regions. Our results suggest that stimulation at
acupuncture points may modulate somatosensory and saliency processing regions more
readily than stimulation at non-acupuncture point locations. Also, our findings suggest
potential modulation of pain perception due to acupuncture stimulation.

Keywords: somatosensory stimulation, functional magnetic resonance imaging (fMRI), electroencephalography

(EEG), acupuncture, background rhythm, functional connectivity

INTRODUCTION
In a recent patient level data meta-analyses for chronic pain
that included 29 randomized controlled trials, acupuncture was
shown to be statistically significant superior to sham acupunc-
ture (Vickers et al., 2012). Nevertheless, as the difference in effect
size between real and sham acupuncture was small (standard
mean difference of 0.15–0.23), the acupuncture point-specific
effect is still controversial. One reason might be that various
forms of sham acupuncture have been used in previous clinical
trials. Often a penetrating sham acupuncture has been applied
where either the control point location is different (Ma et al.,
2012) (not a specific acupuncture point), the method of the
stimulation is changed (Kleinhenz et al., 1999) (e.g., only super-
ficial needling, no manually rotating and lift-thrusting), or both
(Diener et al., 2006). Sanchez-Araujo (1998) showed in his review
that studies where the control points were chosen to be near
the real acupuncture points failed more frequently to show sta-
tistically significant differences between real acupuncture and

sham acupuncture compared to using control acupuncture points
located in different dermatomes (Sanchez-Araujo, 1998). In the
past decade there has been growing interest in determining the
neurophysiologic correlates of acupuncture by means of func-
tional neuroimaging methods such as fMRI or EEG (Hui et al.,
2000; Dhond et al., 2007; Hori et al., 2010; Huang et al., 2012).
From a neurophysiological viewpoint, acupuncture is regarded as
a complex somatosensory stimulation (Bäcker et al., 2004) and
therefore is also interesting for experiments using conventional
somatosensory stimulation protocols.

The purpose of this study was to evaluate whether the point
locations chosen for a complex somatosensory stimulation with
acupuncture needles differentially impact brain activity in healthy
volunteers. We used electroencephalogram (EEG) and functional
magnetic resonance imaging (fMRI) to compare standardized
needle stimulation on three different point locations on the right
leg: one acupuncture point (Stomach 36, ST36) and two control
points that are widely accepted to not co-localize with points in
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any acupuncture system. One of these control points was chosen
to be near the real acupuncture point in the same dermatome L5
(CP1), while the other was chosen to be in a different dermatome
L2 (CP2). Imaging results are expected to differ either when com-
paring the two different dermatomes (CP2 different from ST36
and CP1), or when comparing the acupuncture point with the
two non-acupuncture control points.

Using fMRI, the blood oxygenation level dependent (BOLD)
signal can localize brain regions modulated by sensory stimula-
tion (Bandettini et al., 1992; Frahm et al., 1992; Kwong et al.,
1992; Ogawa et al., 1992; Kurth et al., 2000; Ruben et al., 2001).
Several studies have demonstrated acupuncture-related brain
activity changes in somatosensory and pain-related areas such
as primary somatosensory cortex (S1), secondary somatosen-
sory cortex (S2), and thalamus (Napadow et al., 2009; Huang
et al., 2012). Also, functional connectivity MRI (fcMRI) revealed
acupuncture-related changes in network connectivity between
areas related to sensorimotor and pain processing (Dhond et al.,
2008). Therefore, stimulation of the acupuncture point might
specifically activate brain regions associated with pain and mod-
ulate their connectivity. Using EEG, stimulation effects can be
shown by investigation of background rhythmic activity, in the
somatosensory system the “mu rhythm,” respectively (Gastaut,
1952; Kuhlman, 1978). While the precise function of the mu
rhythm is not clear, it is frequently referred to as an “idle rhythm”
reflecting a resting-state of the somatosensory system (Ritter
et al., 2009). Recent studies assume that EEG background activ-
ity is produced by inhibitory inter-neuronal activity and might
reflect inhibitory top-down control (Klimesch et al., 2007; Jensen
and Mazaheri, 2010). With respect to the clinical effectiveness
shown for pain conditions, the stimulation of the acupuncture
point might inhibit somatosensory areas and therefore increase
mu-rhythmic activity.

We designed a blinded study including two series of experi-
ments (one with EEG, one with fMRI) focusing on brain activity
changes associated with complex somatosensory stimulation at
one acupuncture point and two control points either close or
distant to the acupuncture point. Our study was not aimed
at evaluating clinical effects of acupuncture. We believe that
our data provide new insights regarding cerebral processing of
complex somatosensory stimulations and clarify the role of stim-
ulus location for brain responses to complex somatosensory
stimulation.

MATERIALS AND METHODS
SUBJECTS
Twenty-three healthy subjects (11 female, 12 male, mean age
26 years, range 19–31 years) participated in the EEG experi-
ment, and 22 healthy subjects (11 female, 11 male, mean age
26 years, range 21–32 years) participated in the fMRI experi-
ment. Participants had no medical knowledge about acupuncture
and all except one had never been treated with acupuncture
before the study. Participants were informed about the needle
stimulation in both experiments as follows: “. . . one acupunc-
ture needle will be inserted into the muscle at three different
points of the upper and lower leg. . . .” Among all the sub-
jects, eight participated in both EEG and fMRI experiments.

All participants were right-handed (laterally score: 88.2 ± 13.4
[S.D.] over a range of −100 [fully left-handed] to 100 [fully
right-handed]) according to the Edinburgh inventory (Oldfield,
1971) and gave written informed consent to participate in
the experiment according to the declaration of Helsinki. The
study was approved by the ethics committee of the University
of Leipzig. Prior to participation all subjects underwent a
comprehensive neurological examination and confirmed they
were not taking any acute or chronic medication. In the EEG
experiment three subjects were excluded from acupuncture
because of vegetative side effects (1 sweating/male, 2 dizzi-
ness/female); in the fMRI experiment one was excluded (sweat-
ing/female).

DETAILED DESCRIPTION OF POINT LOCATIONS
The points chosen for the intervention were developed after liter-
ature screening and a consensus process between the authors and
experts of the Chengdu University of TCM, Prof Liang and Prof
Li (Figure 1A).

1. Acupuncture point ST36 (Zusanli ):
To locate ST36, which is placed on the anterior lower leg,
the acupuncture points ST35 and ST41 are used as anatom-
ical landmarks. ST36 is located on the line connecting ST35
with ST41, 3 B-cun inferior to ST35 (ST35 is located on the
anterior aspect of the knee, in the depression lateral to the
patellar ligament. ST41 is located on the anterior aspect of the
ankle, in the depression at the center of the front surface of the
ankle joint, between the tendons of extensor hallucis longus
and extensor digitorum longus) (Who Regional Office for the
Western Pacific, 2008). According to Chinese medicine theory,
for healthy subjects, ST36 is a commonly used acupuncture
point to strengthen Qi and blood as a health preservation
application. ST36 is located on the stomach meridian within
the stomach meridian area. The skin area of ST36 belongs to
L5 dermatome (Yan, 2006).

2. Control point 1 (located in the same dermatome and not in
the same meridian skin area):
The point is located lateral to the ST36 horizontally, at the
middle line between Bladder meridian and Gallbladder merid-
ian. Control point 1 is selected according to the principle
of selecting non-acupuncture points from the middle line
between two meridians which is commonly used in Chinese
studies (Yang et al., 2009). Control point 1 is located in L5 der-
matome and between Gallbladder and Bladder meridian skin
area.

3. Control point 2 (located in another dermatome and not in the
same meridian skin area):
The point is located 2 B-cun dorsally of GB31 (avoidance of
bladder meridian: GB31 is located on the lateral aspect of the
thigh, in the depression posterior to the iliotibial band where
the tip of the middle finger rests when standing up with the
arms hanging alongside the thigh). Control point 2 is already
a validated non-acupuncture point used in other acupuncture
studies (Brinkhaus et al., 2003; Melchart et al., 2005; Linde
et al., 2006) and it is located in L2 dermatome and Gallbladder
meridian skin area.
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FIGURE 1 | Experimental design. (A) Location of ST36 and Control points
on the right leg (view from the front and from the back, figure adapted Drake
et al., 2009). (B) Experiment design of EEG measurement. On each of the 3
randomized measurement days EEG was recorded for every subject in a
sitting position, with open eyes over a 25.5-min period. After the first 5-min
baseline, an acupuncture needle was inserted and was stimulated manually
at a time point 5 and 10 min after insertion. After a further 5 min the needle
was removed and the EEG was recorded for a further 5 min without the
needle. After the measurement, individual needle sensation was measured
with a questionnaire. (C) Experiment design of fMRI measurement. In the
fMRI scanner each subject was told to lie relaxed, in a supine position, with

open eyes and to concentrate on the sensation caused by the needle
stimulation. After the first resting-state was scanned for 6 min, an
acupuncture needle was inserted into one point according to the randomized
intervention order. The needle was then immediately stimulated manually
according to the event-related design. After 6 min intermittent manipulation,
the needle was withdrawn and a resting-state scan was continued for 6 min,
and then followed by a 4-min break for the subject without scanning. The
same scan procedure was then applied for the other two interventions on the
other two points. But for the third intervention, there was no 4-min break.
After each post-intervention resting-state scan individual needle sensation
was measured with questionnaires.

EEG
Experimental Procedure
All subjects received the needle stimulation of the three dif-
ferent points (Figure 1)—the acupuncture point ST36 in der-
matome L5, the control point in the same dermatome (CP1
in L5), the control point in a different dermatome (CP2
in L2)—on 3 separate days in consecutive order. The order
was randomized. Measurements were taken within 2 weeks
and with at least 24 h interval between each measurement.
Subjects were told to sit down in a chair in the EEG room
and relax with eyes open while concentrating on the point of
needling.

The penetrating needle stimulation was performed by a
Chinese acupuncture physician with sterile, single use, individ-
ually wrapped acupuncture needles (0.30 × 30 mm; asia-med
standard, asia-med GmbH & Co. KG, Germany). The needle
was vertically inserted 1–2 cm deep into the skin depending
on the size of the respective muscle on the right leg. After
5 min the needle was stimulated (manually rotating 60–90/rpm
and lift-thrusting 0.3–0.5 cm for 15 s). The 15 s stimulation was
repeated after 5 min without stimulation. Penetrating needle
stimulation was identical for each of the three point locations
(Figure 1).

Data acquisition
A 32-channel EEG was recorded in a noise protected and electri-
cally shielded room using BrainAmp (Brain Product, Germany)
with a sampling rate of 1000 Hz. An electrode cap (Electro-Cap
International, Eaton, OH) based on the international 10–20 sys-
tem was placed on the scalp. The electrode FCz was used as
reference and the ground electrode was located at the sternum.
Electrode impedances were less than 2 kOhm. Including the 5-
min baseline, the intervention, and the follow-up measurements
the EEG was recorded for 25.5 min.

After each measurement the subjects were asked to fill in the
MGH Acupuncture Sensation Scale (MASS questionnaire Kong
et al., 2007) to measure the subjective needle sensation.

Data preprocessing
For data analysis custom-built scripts in the software package
Matlab (Matlab, MathWorks, Inc.) were used. Since somatosen-
sory alpha activity (Rolandic activity) can be covered by strong
occipital alpha activity, an independent component analysis
(ICA) was performed to allow for a preselection of “central”
ICA components. For each subject the three sessions were
merged to perform one ICA calculation (FastICA algorithm in
Matlab). Rolandic rhythmic activity is characterized by a central
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localization and a peak in the frequency spectrum in the alpha
(8–15 Hz) and beta (16–30 Hz) range. Thus, ICA components
were investigated for each subject and selected only if both a cen-
tral topography and two peaks in the frequency spectrum were
identifiable. Using this procedure, 2–10 (mean 5 ± 2 S.D.) central
components were selected per subject. The selected central com-
ponents were back projected and the derived dataset (now cleared
from occipital alpha) was digitally filtered using a standard 3rd
order band-pass Butterworth filter (low cut-off 1 Hz, high cut-off
45 Hz) and segmented into 5 epochs each lasting 4 min, based on
the markers representing the interventions. Since we performed
needle stimulation on the leg further data analysis was focused
on electrode Cz which is located over the leg representation of
S1. Frequency analysis was performed using fast Fourier transfor-
mation. The power spectral density was computed for each 4-min
segment: (1) for baseline, (2) after the “needle-insertion,” (3) after
the first stimulation, (4) after the second stimulation, and (5) for
follow up. For the statistical analysis of the mu activity, power
spectral density was averaged for the frequencies from 10 Hz to
15 Hz.

Statistical analysis
For Cz electrode and each condition, the mu power change and
percentage change compared to baseline was analyzed using gen-
eralized linear models for our within subject design with global
F-tests and paired t-tests for pair-wise comparisons between stim-
ulation points. For our primary outcome parameter, the mean
of both post-stimulation periods, a Bonferroni correction was
applied to the pair-wise comparison between the three stimula-
tion points (pRcorr = 0.05/3).

To evaluate the correlation between alpha percentage change
from baseline and needle sensation (MASS Index), Spearman cor-
relation coefficients based on the ranks of the variables were used
for Cz electrode, each condition, and each needle stimulation.

The needle sensation expressed by the MASS Index was com-
pared descriptively for the three needle stimulations at different
points by presenting means and 95% confidence intervals. To test
a global stimulation point effect (within-subject effect) on the
MASS Index, generalized linear models (GLM) were fitted using
a multivariate approach (Wilks’ lambda) because sphericity was
often not met. To test pair-wise differences between the three
points, paired t-tests were used.

fMRI
Experimental Procedure
As shown in Figure 1C, each participant was scanned seven times
(each scan 6 min): One resting-state scan in the very beginning
(i.e., baseline, RS_B), then three scans with needle stimulation of
one point in an event-related design, each followed by another
resting-state scan (i.e., RS_ST36, RS_CP1 and RS_CP2). The
three event-related scans were in randomized order over subjects.
During scanning, subjects were told to remain in the supine posi-
tion with eyes open while concentrating on the sensation caused
by the needle stimulation. During the resting-state, participants
were simply asked to keep calm and stay still with eyes open.

The penetrating needle stimulation was performed by an
acupuncture physician with sterile, single use, individually
wrapped needles (0.20 × 30 mm; titanium, DongBang,

Acupuncture, Inc., Boryeong, Korea). The needle was first
inserted 1–2 cm deep into the skin depending on the size of
the muscle vertically on the right leg. The needle was manually
manipulated according to the event-related design starting
immediately after insertion. Auditory cues signaled the timing of
the stimulation events to the acupuncturist via headphones. Each
event consisted of a 3-s needle stimulation rotating 60–90/rpm
and lift-thrusting 0.3–0.5 cm. The length of the inter-stimulus
interval was randomized from 13 to 21 s (Figure 1B). After the
event-related scan the needle was removed. Identical penetrating
needle stimulation was performed on the three different point
locations (Figure 1).

Data acquisition
fMRI Data was acquired using a 3T Siemens Verio MRI System
(Siemens Medical, Erlangen, Germany) equipped for echo planer
imaging with a 12-channel head coil. fMRI images were acquired
using an EPI sequence (30 axial slices, in-plane resolution is
3 × 3 × 5 mm, slice thickness = 4 mm, flip angle = 90◦, gap =
5 mm, repetition time = 2000 ms, echo time = 30 ms). A struc-
tural image was also acquired for each participant, using a
T1-weighted MPRAGE sequence (repetition time = 12 ms, echo
time = 5.65 ms, and flip angle = 19◦, with elliptical sampling of k
space, giving a voxel size of 1 × 1 × 1 mm). Subjects’ heads were
immobilized by cushioned supports, and they wore earplugs to
attenuate MRI gradient noise throughout the experiment.

Within the break following resting-state scans, subjects were
asked to rate the items of the MGH Acupuncture Sensation Scale
(MASS questionnaire Kong et al., 2007) to measure the subjective
needle sensation.

Data pre-processing
FMRI data pre-processing included slice time correction, head
motion correction, spatial normalization to MNI152 space and
spatial smoothing with a 6 mm FWHM as implemented in the
SPM 8 software package (www.fil.ion.ucl.ac.uk/spm/). Individual
structure T1 images were also normalized to MNI152 space
and then segmented into gray matter, white matter and cere-
bral spinal fluid (CSF). A threshold of 0.99 was used to cut off
each segmented image. For each participant, 3 mm erosion was
implemented on the white matter image and 1 mm erosion on
the CSF image, and these two images were then combined into
one anatomical mask. We applied principal component analy-
sis (PCA) within this CSF/white matter mask to disentangle the
variance related to each fMRI dataset (3 task scans and 4 resting-
state scans) using the CompCor analysis (Behzadi et al., 2007)
by DPABI toolbox (toolbox for Data Processing & Analysis of
Brain Imaging, http://rfmri.org/dpabi). The first five principal
components together with the six head motion parameters were
later applied to each individual’s first level GLM as nuisance vari-
ables to regress out associated variance. A union gray matter
mask (Supplemental Figure 1) was created by merging all normal-
ized individual gray matter images. The following analyses were
conducted within this average gray matter mask.

GLM analysis
For each subject the first-level GLM contained the three differ-
ent needle stimulation conditions (i.e., ST36, CP1, CP2; 6 min
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stimulation for each point). For each condition, one stimulation
regressor, together with the first five principal components from
the CompCor analysis and six head motion parameters as nui-
sance regressors were included in the GLM. For the stimulation
regressor, each stimulation onset was modeled with the boxcar
function covering the following 3s stimulation duration. These
box-car functions were convolved with the standard hemody-
namic response function (HRF) as implemented in SPM 8. The
long inter-stimulus intervals of 13–21 s were not explicitly mod-
eled with the first level GLMs and hence represented an implicit
baseline measure. For each of the three stimulation points we
computed the individual ß-map.

On the second level (group) analyses, the main effect of each
of the three stimulation points (i.e., ST36, CP1, CP2) was visu-
alized by applying these individual ß-maps (together with age
and gender as covariates) to one-sample t-tests to compare them
against the null hypothesis. The results were corrected to the
alpha-level <0.05 using AlphaSim in AFNI (Cox, 1996) (i.e.,
39429 voxels within the gray matter mask, voxel-wise p < 0.0001,
resulting cluster size >108 mm3). We performed a within subjects
ANOVA (factorial design within SPM8) including the individual
ß-maps of all three conditions (ST36, CP1, CP2) as well as age
and gender as covariates to generate the inter-points comparisons
(i.e., ST36—CP1, ST36—CP2 and CP1—CP2) and conjunction
maps within one statistical model. Conjunction of “ST36-CP1
and ST36-CP2” was calculated to compare the activation between
acupuncture and control points, conjunction of “ST36-CP2 and
CP1-CP2” was calculated to compare activations of the different
dermatomes (L5 vs. L2). Using AlphaSim in AFNI, the results
for the interpoint-comparisons as well as for the conjunction-
maps were corrected to the alpha-level < 0.05 (i.e., 39429 voxels
within the gray matter mask, voxel-wise p < 0.01, resulting clus-
ter size >783 mm3). We used “3dclust” in AFNI to detect clusters
from the corrected statistical maps. All clusters that were reported
in the tables are spatially separated and bigger than the volume
criterion from the AlphaSim simulation analysis.

Functional connectivity analyses
For each of the four resting-state scans (RS_B, RS_ST36, RS_CP1,
and RS_CP2) the first 10 volumes were discarded to account for
the saturation of the BOLD response. Temporal band-pass filter-
ing (0.01–0.08 Hz) and removal of linear trend was performed
by the REST toolbox (www.restfmri.net). Seed-based voxel-wise
functional connectivity analysis was performed for each resting-
state scan using region of interest (ROI) spheres with 6 mm radius
as seeds. As a proof of concept, one seed was placed on posterior
cingulate cortex (PCC, Talairach space, x = −2, y = −36, z = 37
from a previous study Fox et al., 2005) that, as hypothesized,
revealed the default mode network (Supplemental Figure 1). The
other seed was derived from a group-level one-sample t-test
across all three stimulation points together, with the maximum
found at the parietal operculum as the anatomical site of S2
(Talairach space, x = −54, y = −21, z = 21).

Then, the average time course within the ROI was extracted
as the seed signal, and a voxel-wise temporal correlation analysis
was performed across all voxels within the averaged gray mat-
ter mask for each individual resting-state scan. The correlation

maps were transferred to Fisher’s z maps for further statisti-
cal analysis (Greicius et al., 2007). First, a one-sample t-test
against null hypothesis was performed on the spatial correlation
maps of each resting-state scan (together with age and gender as
covariates) for the PCC-seed and the S2-seed, respectively. The
results were corrected to the alpha-level <0.05 using AlphaSim
in AFNI (i.e., 39429 voxels within the gray matter mask, voxel-
wise p < 0.0001, resulting cluster size >108 mm3). Again, we
performed a within subjects ANOVA including the individual
spatial correlation maps of all four resting-state scans as well as
age and gender as covariates. Within this model, we generated
the comparisons to baseline (RS_ST36-RS_B, RS_CP1-RS_B,
and RS_CP2-RS_B), the inter-points comparisons (RS_ST36-
RS_CP1, RS_ST36-RS_CP2, and RS_CP1-RS_CP2), and the
conjunction maps. Conjunction of “RS_ST36-RS_CP1 and
RS_ST36-RS_CP2” was calculated to compare functional con-
nectivity between acupuncture and control points, conjunction
of “RS_ST36-RS_CP2 and RS_CP1-RS_CP2” was calculated to
compare connectivity between the different dermatomes (L5 vs.
L2). Using AlphaSim in AFNI, the results for the different com-
parisons as well as for the conjunction-maps were corrected to
the alpha-level <0.05 (i.e., 39429 voxels within the gray matter
mask, voxel-wise p < 0.01, resulting cluster size >783 mm3). As
described above, we used “3dclust” in AFNI to detect clusters
from the corrected statistical maps.

Needle sensation analyses
The needle sensation expressed by the MASS Index was com-
pared descriptively for the three needle stimulations at different
points by presenting means and 95% confidence intervals. To test
a global stimulation point effect (within-subject effect) on MASS
Index, generalized linear models (GLM) were fitted using a mul-
tivariate approach (Wilks’ lambda) because sphericity was often
not met. To test pair-wise differences between the three points,
paired t-tests were used.

For each region that was detected in the conjunction analyses
(Figures 3C,D), Pearson correlation coefficients were calculated
across participants between the mean beta value across vox-
els within the respective region and the MASS index of each
stimulation point.

RESULTS
EEG
Mu rhythm
The mu rhythm is one of the important human brain background
rhythms and is associated with the primary somatosensory area,
thus having a central topography (Salmelin and Hari, 1994).
In healthy volunteers we stimulated the three different points
mentioned above in the same manner and compared their respec-
tive influences on mu rhythm. Data is shown for electrode Cz
which is closest to the lower limb representation in S1. Mu
rhythm power was significantly enhanced after stimulation of
ST36 compared to the stimulation of the two control points
(mean of stimulation phase 1 and phase 2 vs. baseline: ST36
vs. CP1 21.02 µV2 95%CI [4.78;37.27], p = 0.012, ST36 vs. CP2
25.38 [9.12;41.65], p = 0.003, significance level Bonferroni cor-
rected 0.05/3). Comparison of mu rhythm for the two control
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points found no significant differences (CP2 vs. CP1 −4.36
[−20.53;11.81], p = 0.598, Figure 2).

Needle sensation
As our results for the mu rhythm may have been influenced by dif-
ferences in needle sensation, the evoked sensation was measured
using the MGH Acupuncture Sensation Scale (MASS Kong et al.,
2007).

The MASS Index was used as a measure of needle sensation for
ST36, CP1, and CP2 (3.15 [2.00;4.30], 3.37 [2.47;4.28], and 1.81
[1.13;2.50], respectively). Comparisons of ST36 vs. CP2 and CP1
vs. CP2 were statistically different (pairwise t-test, p = 0.034 and
p < 0.001, respectively). However, a significant difference was not
found between ST36 and CP1 (p = 0.674).

No correlations were found when exploring the relation-
ship between the MASS index and the percentage change of
mu rhythm power (all r-values between −0.16 and 0.40 with
p > 0.080).

FMRI
Stimulation scans
The results of the intra-point analysis summarizing the BOLD
response to needle stimulation of ST36 and the two control points
are shown in Figure 3A and Table 1. For all three point stimu-
lations we found significant activation in bilateral insula/S2 and
left inferior semi-lunar lobule and deactivation in bilateral pre-
cuneus, right middle temporal gyrus, left superior frontal gyrus,
right precentral gyrus, left medial frontal gyrus, right paracentral
lobule, and bilateral parahippocampal gyrus.

We compared BOLD responses of the different points (ST36
vs. CP1, ST36 vs. CP2, and CP1 vs. CP2, shown in Figure 3B
and Table 2) and with a conjunction analysis we evaluated shared
areas for the comparison of acupuncture point vs. control points

(conjunction of ST36-CP1 and ST36-CP2) and the comparison of
two different dermatomes L5 and L2 (conjunction of ST36-CP2
and CP1-CP2).

For the comparison between acupuncture point and con-
trol points (ST36-CP1 and ST36-CP2), the conjunction anal-
ysis (Figure 3C, Table 2) revealed that right insula and right
S2 presented higher activation during stimulation of ST36. The
right precuneus/posterior cingulate cortex (PCC) presented pro-
nounced deactivation during stimulation of the acupuncture
point.

For the comparison between the dermatomes (ST36-CP2 and
CP1-CP2), a common positive contrast was shown for right mid-
dle temporal gyrus (MTG) due to deactivation during stimulation
of CP2 compared to activation when stimulating the other two
points (Figure 3D, Table 2). Left superior temporal gyrus (STG)
presented pronounced deactivation when stimulating ST36 or
CP1 compared to stimulation of CP2.

Resting-state scans
At the first stage, the default mode network and somatosen-
sory network were detected via the seed-based correlation anal-
ysis within the resting-state scans. By visual inspection, PCC,
mPFC and bilateral angular gyrus (prominent marker of the
default mode network) were all found in the PCC-seed-based
correlation analysis (Supplemental Figure 1). For the S2-seed-
based correlation analysis, we found bilateral S2, supplementary
motor area (SMA), and bilateral S1/M1 as prominent areas corre-
sponding to the somatosensory network (Supplemental Figure 1,
Table 3). The results of the S2-seed-based correlation analy-
sis were further compared between the different resting-state
scans.

The different brain areas that showed changes in func-
tional connectivity after stimulation of the three different points

FIGURE 2 | Changes in background rhythm strength in the comparison of

the three point locations. Power spectral density was calculated for segments
of 4 min in the middle of each measurement block (baseline, needle-in,
stimulation 1, stimulation 2, follow-up) and power values for frequencies

10–15 Hz (µ-rhythm) were averaged. The primary outcome parameter, the mean
of both post-stimulation blocks, is highlighted on the left. Results are shown for
electrode Cz (located over the leg representation of the somatosensory cortex).
∗ Indicate significant differences after Bonferroni correction.
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FIGURE 3 | (A) Displayed are the activation and deactivation for the
different point stimulations (group-level t-maps, P < 0.05, corrected). (B)

The de/activation contrasts between the three different point locations
are presented (P < 0.05, corrected). (C) The conjunction map of the
1st and 2nd row of part (B) (acupuncture vs. control points). (D) The

conjunction map of the 2nd and 3rd row of part (B) (dermatome L5
vs. L2). The barplots show the beta values across participants
(average and standard error) within the respective region. R means
right hemisphere. Talairach z coordinates are displayed. positive values:
red, negative: blue.

compared to the baseline resting-state session are depicted in
Table 4 and Figure 4A.

ST36 as compared to CP1 revealed a significantly enhanced S2-
connectivity to right precuneus, right MTG, and right parahip-
pocampal gyrus (Figure 4B, Table 4).

ST36 as compared to CP2 showed a significantly enhanced
S2-connectivity to right precuneus/cuneus and right culmen,
whereas the left medial frontal gyrus, left inferior frontal gyrus,
and left superior temporal gyrus showed a significantly reduced
connectivity to S2 (Figure 4B, Table 4).

Comparing the two control points (CP1-CP2) revealed a
significantly reduced S2-connectivity to right parahippocam-
pal gyrus, left precuneus, and left superior temporal gyrus
(Figure 4B, Table 4).

The conjunction analyses of the seed-based resting state
connectivity for the comparison of acupuncture point
vs. control points (conjunction of RS_ST36-RS_CP1 and
RS_ST36-RS_CP2), as well as the comparison of two different
dermatomes L5 and L2 (conjunction of RS_ST36-RS_CP2 and
RS_CP1-RS_CP2) revealed no commonly change in connectivity.

Needle sensation
Similar to the EEG experiment the needle sensation was also
assessed with the MASS (Kong et al., 2007). The MASS Index for
ST36, CP1 and CP2 were 4.71 [3.53;5.89], 3.59 [2.51;4.68], and
3.32 [2.34;4.29], respectively. Differences between ST36 vs. CP1
and ST36 vs. CP2 were statistically significant (pairwise t-test,

p = 0.009 and p = 0.005, respectively). There was no significant
difference between CP1 and CP2 (p = 0.587).

No correlation was found when exploring the relationship
between the MASS index and the mean beta values within
the ROIs detected in the conjunction analysis (all r-values
between −0.48 and 0.51 with p > 0.05, corrected for multiple
comparison).

DISCUSSION
We compared the stimulation of the acupuncture point ST36 with
two control points that were non-acupuncture points: one near
the real acupuncture point in the same dermatome (CP1 in L5)
and one in a different dermatome (CP2 in L2). We expected the
EEG and fMRI imaging results to be different either when com-
paring the points in the two different dermatomes (CP2 different
from ST36 & CP1), or when comparing the acupuncture point
with the two non-acupuncture control points. Comparisons
between points in the two different dermatomes (ST36 vs. CP2
and CP1 vs. CP2) showed more pronounced activation at right
middle temporal gyrus and deactivation at left superior tempo-
ral gyrus when stimulating dermatome L5 (ST36 or CP1). When
comparing the acupuncture point with the control points (ST36
vs. CP1 and ST36 vs. CP2) we found (i) pronounced BOLD acti-
vation in right insula and right S2, pronounced deactivation in
precuneus/PCC, and (ii) a pronounced increase of mu rhythm
power in the EEG data following stimulation of ST36. Moreover,
increased connectivity of left S2 to the right precuneus was
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Table 1 | Foci with significant BOLD response from the three points (P < 0.05, corrected).

Task Area Left/Right Brodmann Talairach space, x,y,z T –value p–value Volume

hemisphere areas (mm3)

ST36 Insula/SII L 13 −36, −3, 17 30.51 1.72E-17 28431

Insula R 13 36, −5, −2 28.78 5.12E-17 21708

Precuneus L 31 −20, −73, 25 −21.57 1.05E-14 12555

Middle temporal gyrus R 19 30, −76, 22 −20.61 2.41E-14 11016

SII R 40 55, −24, 22 26.74 2.00E-16 10908

Precuneus R 7 11, −56, 46 −17.50 4.63E-13 9045

Precuneus R 7 −3, −62, 52 −20.18 3.54E-14 7668

Superior frontal gyrus L 9 −8, 56, 25 −15.54 3.87E-12 5211

Parahippocampal gyrus L 37 −28, −47, −7 −13.85 2.89E-11 2835

SMA L 24 −8, −3, 38 17.73 3.67E-13 2835

SMA R 24 6, 6, 30 18.36 1.96E-13 2673

Precentral gyrus L 4 −36, −16, 49 −12.48 1.74E-10 1971

Inferior temporal gyrus R 19 39, −70, 1 −12.92 9.60E-11 1917

Parahippocampal gyrus R 36 30, −36, −7 −13.34 5.59E-11 1485

Medial frontal gyrus L 11 −6, 25, −15 −12.88 1.02E-10 1242

Inferior semi-lunar lobule L / −17, −67, −36 14.25 1.78E-11 1215

Middle temporal gyrus L 37 −53, −62, 6 14.47 1.36E-11 1188

Inferior semi-lunar lobule R / 11, −67, −41 16.03 2.22E-12 1134

Middle frontal gyrus R 9 25, 22, 41 −12.63 1.42E-10 1107

Paracentral Lobule R 6 6, −30, 68 −18.25 2.19E-13 1026

Superior temporal gyrus R 21 61, −21, 1 −14.97 7.46E-12 864

Precentral gyrus R 4 25, −21, 60 −15.75 3.03E-12 837

Medial frontal gyrus R 25 11, 31, −15 −12.41 1.92E-10 567

Medial frontal gyrus R 10 6, 53, 6 −12.86 1.05E-10 513

Middle temporal gyrus L 21 −53, 3, -18 −13.52 4.39E-11 486

Lingual gyrus L 19 −22, −67, 1 −11.45 7.47E-10 486

Thalamus L / −11, −36, 9 −12.22 2.48E-10 486

Supramarginal gyrus R 39 50, −53, 25 −11.33 8.85E-10 432

Middle frontal gyrus R 6 39, 0, 46 11.88 4.00E-10 432

Superior frontal gyrus L 8 −25, 28, 49 −12.64 1.39E-10 405

Precentral gyrus R 6 17, −19, 68 −13.95 2.58E-11 405

Postcentral gyrus L 5 −17, −44, 68 12.27 2.31E-10 378

Inferior frontal gyrus R 46 41, 42, 4 12.34 2.10E-10 351

Cerebellar Tonsil L / −31, −59, −41 13.77 3.21E-11 324

Cerebellar Tonsil R / 3, −53, −38 −11.22 1.05E-09 297

Pyramis R / 44, −64, −31 −10.85 1.81E-09 297

Middle temporal gyrus R 37 44, −56, 4 10.72 2.21E-09 297

Precuneus R 7 25, −53, 54 −14.91 7.95E-12 270

Middle temporal gyrus R 21 58, −5, −12 −11.66 5.48E-10 243

Superior temporal gyrus L 21 −59, −24, 1 −11.00 1.46E-09 243

Lingual gyrus R 18 14, −88, −10 −10.40 3.62E-09 216

Middle temporal gyrus R 21 61, −11, −12 −10.39 3.72E-09 189

Thalamus R / 6, −16, 9 11.49 6.99E-10 189

Superior temporal gyrus R 38 44, 8, −10 11.23 1.03E-09 162

Middle occipital gyrus L 19 −34, −70, 1 −10.70 2.30E-09 162

Superior frontal gyrus R 8 17, 48, 38 −12.31 2.19E-10 162

Superior frontal gyrus R 6 8, 3, 65 10.72 2.22E-09 162

Caudate R / 0, 14, 1 −12.13 2.81E-10 108

Postcentral gyrus R 40 61, −19, 20 14.42 1.43E-11 108

Anterior cingulate R 24 6, 25, 22 10.15 5.43E-09 108

Precuneus L 7 −17, −70, 46 −10.86 1.79E-09 108

Precuneus L 7 −22, −56, 49 −10.01 6.72E-09 108

(Continued)
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Table 1 | Continued

Task Area Left/Right Brodmann Talairach space, x,y,z T –value p–value Volume

hemisphere areas (mm3)

CP1 Insula R 38 36, 0, −7 22.48 4.91E-15 8613

Insula L 38 −34, −8, 4 16.14 1.96E-12 7020

SII R 2 55, −19, 25 17.84 3.28E-13 6264

SII L 13 −48, −19, 20 15.99 2.33E-12 4428

Parahippocampal gyrus L 30 −25, −38, −2 −15.45 4.28E-12 2160

Postcentral gyrus R 30 33, −21, 46 −13.00 8.65E-11 1323

Inferior semi-lunar lobule L / −11, −67, −41 14.62 1.12E-11 1134

Precuneus L 7 −22, −76, 38 −11.76 4.74E-10 729

Precentral gyrus R 6 19, −16, 68 −12.98 8.93E-11 540

Parahippocampal gyrus L 35 −28, −19, −15 −10.91 1.67E-09 432

Middle temporal gyrus L 21 −56, −21, −4 −11.23 1.03E-09 432

Angular gyrus L 40 −39, −56, 36 −11.06 1.33E-09 405

Paracentral Lobule R 6 6, −33, 62 −11.85 4.21E-10 405

Parahippocampal gyrus R 19 33, −38, −2 −16.07 2.13E-12 378

Superior frontal gyrus L 10 −20, 53, 20 −10.36 3.86E-09 324

Posterior cingulate L 31 −8, −56, 20 −10.44 3.43E-09 270

Superior frontal gyrus L 8 −14, 31, 49 −10.93 1.61E-09 243

Medial frontal gyrus L 8 −6, 48, 41 −10.97 1.52E-09 216

Precuneus L 7 −25, −53, 49 −10.66 2.44E-09 216

Superior Parietal Lobule R 7 28, −62, 52 −11.23 1.02E-09 189

Posterior Cingulate R 30 8, −53, 14 −9.83 9.08E-09 162

Cingulate gyrus R 24 3, 3, 30 10.79 2.00E-09 162

Parahippocampal gyrus R 36 25, −36, −12 −10.19 5.05E-09 135

Middle occipital gyrus R 19 36, −70, 9 −9.99 6.93E-09 135

Precuneus R 19 30, −73, 33 −10.66 2.44E-09 135

Culmen L / −6, −47, −10 −10.97 1.52E-09 108

Middle temporal gyrus R 7 30, −64, 28 −10.02 6.69E-09 108

Precentral gyrus R 4 44, −11, 49 −11.41 7.95E-10 108

CP2 SII/Insula L 13 −50, −19, 22 20.91 1.84E-14 22491

Insula/SII R 13 33, 20, −2 21.03 1.66E-14 8559

Middle occipital gyrus R 37 36, −67, 1 −14.44 1.40E-11 8019

Postcentral gyrus R 3 58, −21, 38 17.67 3.89E-13 7182

Precuneus L 19 −28, −79, 36 −11.90 3.92E-10 1998

Inferior semi-lunar lobule L / −14, −67, −38 16.18 1.88E-12 972

Superior frontal gyrus L 9 −8, 50, 33 −12.76 1.19E-10 810

Middle temporal gyrus R 39 41, −56, 25 −12.81 1.12E-10 756

Superior frontal gyrus L 8 −25, 28, 49 −11.26 9.88E-10 729

Parahippocampal gyrus L 27 −25, -30, -7 −12.50 1.69E-10 594

Cingulate gyrus L 23 −6, −16, 30 12.30 2.23E-10 567

Medial frontal gyrus R 6 6, 14, 44 11.15 1.15E-09 567

Middle temporal gyrus R 21 52, −8, -12 −11.80 4.49E-10 513

Medial frontal gyrus L 10 −6, 56, 6 −11.43 7.64E-10 405

Anterior cingulate R 24 6, 25, 22 11.90 3.92E-10 378

Cuneus R 19 30, −73, 28 −10.74 2.15E-09 378

Paracentral lobule R 6 6, −33, 60 −13.62 3.86E-11 324

Precuneus R 31 25, −67, 20 −12.91 9.72E-11 243

Middle frontal gyrus R 8 25, 17, 46 −11.13 1.19E-09 243

Cingulate gyrus R 23 6, −16, 30 11.10 1.25E-09 216

Cingulate gyrus R 24 6, 11, 28 9.89 8.15E-09 216

Cingulate gyrus L 24 −3, 0, 38 10.35 3.94E-09 216

(Continued)
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Table 1 | Continued

Task Area Left/Right Brodmann Talairach space, x,y,z T –value p–value Volume

hemisphere areas (mm3)

Parahippocampal gyrus R 34 28, −11, −15 −11.96 3.60E-10 189

Middle frontal gyrus L 8 −31, 20, 38 −11.38 8.30E-10 189

Postcentral gyrus R 3 22, −24, 49 −10.99 1.47E-09 162

Declive R / 17, −67, −15 10.20 4.97E-09 135

Precentral gyrus R 4 14, −24, 68 −11.34 8.71E-10 135

Putamen L / −25, 8, −7 16.29 1.68E-12 108

Caudate R / 8, 6, 12 10.29 4.32E-09 108

Displayed are voxels of maximal significance. If the activated area crosses the midline, only the side of the highest value is displayed. The coordinates are in the

Talairach space. T and p value is on the voxel-level.

observed in the follow-up resting-state scan for the comparisons
of ST36 with the two control points, but in different regions of
right precuneus. These results suggest differential processing of
acupuncture point stimulation compared to stimulation of non-
acupuncture control points, including a potential mechanism of
pain modulation due to a complex somatosensory stimulation.

To answer our focused research question we applied a rigorous
study design. The subjects were blinded regarding the character
of the different point locations and the researchers were blinded
during the pre-processing of the data and during the first steps
of data interpretation. To prevent systematic errors, different ran-
domization procedures were used. The order of point locations
was randomized for both experiments, and the interstimulus
intervals were randomized during the fMRI experiment. The
washout period of acupuncture stimulation is still unknown. By
randomizing the order of point locations all three interventions
should be comparably affected by possible carry-over effects. A
broad range of somatosensory effects were assessed using EEG,
BOLD, and resting-state fcMRI data analysis. Thus, we evalu-
ated event-related changes as well as longer lasting brain activity
changes (connectivity and EEG rhythm). Event-related designs
can robustly image brain response to discrete, short duration
acupuncture stimuli (Napadow et al., 2012) which correspond
well with the clinical application of acupuncture stimulation.

Manual acupuncture was chosen because it is more relevant
for the clinical setting. But this might also be a cause of system-
atic error, because acupuncturists obviously could not be blinded
in our study. Therefore, we evaluated the needle sensations as
reported by the subjects. In part, needle sensations were different
between the stimulated points, but we found that sensation was
not correlated with brain activity changes. All subjects received
the stimulation on all three point locations, therefore the groups
we compared were based only on different point locations not on
different subjects. We used intra-individual comparisons because
the variance of physiological parameters between subjects is typ-
ically more pronounced than intra-subject differences caused by
an intervention like a somatosensory stimulation on three differ-
ent points. Because of intra-individual comparisons our data was
not independent, though this was taken into account during our
statistical analysis. Moreover, age and gender were included into
the statistical models as covariates, since these factors might influ-
ence the outcome when evaluating the effects of acupuncture. In

general, with the subtractive design used in our study, possible
interferences between acupuncture effects and the somatotopic
organization of evoked brain responses cannot be fully disen-
tangled. This question could be addressed with a 2 × 2 factorial
design with two pairs of acupuncture point and control point in
different dermatomes, though involving additional experimental
effort.

The results of the needle sensation for the two experiments
were not comparable. In the EEG experiment the MASS index
for ST36 stimulation was similar to CP1 and different from CP2.
However, in the fMRI experiment the MASS index for ST36 stim-
ulation was significantly different from the two control points.
Several conditions might explain the differences. The position of
participants in the two experiments were different. In the EEG
experiment, participants were in a sitting position while in a
supine position in the fMRI experiment, where the subjects might
feel more relaxed than in a sitting position. Moreover, muscle ten-
sion on the leg where the needling stimulation was applied can be
different in these two positions, and thus influence the sensation
processing. In addition, a finer needle (different material and size)
had to be used in the fMRI experiment because of the magnetic
field of the scanner. Due to the repeated intermittent stimulation
in the event-related design of the fMRI experiment, the stimu-
lation protocol might have been more intense than in the EEG
experiment.

Many studies show that various forms of somatosensory
stimulation (from light touch to painful stimuli) cause tran-
sient desynchronization (suppression) of the somatosensory
(mu) background rhythm (Neuper et al., 2006; Ploner et al.,
2006b; Stancak, 2006). In our study, we observed increased
mu rhythm following needle stimulation. Until now, to our
best knowledge, such an after-effect of a peripheral somatosen-
sory stimulation has not been described in the literature. A
recent EEG study indicated that acupuncture stimulation on
acupuncture point LI4 seemed to lead to specific changes in
alpha EEG-frequency (Streitberger et al., 2008). However, the
authors compared manual penetrating acupuncture with non-
penetrating needle stimulation on the same point, i.e., they
compared different kinds of stimulation rather than different
points. Similar effects of long lasting increased background
rhythm have been described for non-invasive brain stimulation
protocols such as TDCS/TACS (transcranial direct/alternating
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Table 2 | BOLD changes: a comparison of the three points showing all significant contrasts (P < 0.05, corrected).

Area Left/Right Brodmann Talairach space, T -value p–value Volume

hemisphere areas x,y,z (mm3)

ST36-CP1 Insula R 44 47, 8, 14 9.42 1.79E-08 7020
SII L 43 −53, −16, 20 8.68 6.33E-08 6777
SII R 40 58, −21, 25 7.64 4.26E-07 3294
Angular gyrus L 19 −36, −73, 33 −7.59 4.76E-07 2322
Insula L 13 −34, 0, −2 8.70 6.12E-08 2214
Medial frontal gyrus R 10 6, 50, 9 −7.67 4.02E-07 1755
Medial frontal gyrus L 9 −6, 50, 20 −7.10 1.23E-06 1701
Precuneus R 7 8, −53, 44 −8.26 1.34E-07 1404
Angular gyrus R 39 47, −64, 33 −6.42 4.77E-06 1350
Insula L 13 −34, −3, 12 7.12 1.18E-06 1323
Posterior cingulate R 23 11, −50, 25 −6.44 4.57E-06 1269
Middle temporal gyrus L 19 −39, −59, 12 7.06 1.32E-06 1026

ST36-CP2 Insula R 13 36, 0, 1 11.15 1.16E-09 11232
Middle temporal gyrus R 37 47, −53, −4 9.78 9.84E-09 7641
Cuneus L 18 −3, −93, 12 −9.68 1.16E-08 5616
SII R 40 61, −30, 25 9.27 2.31E-08 5022
Superior frontal gyrus L 10 −22, 50, 25 −7.96 2.35E-07 4536
Superior temporal gyrus L 22 −48, -13, 1 −9.01 3.60E-08 3699
Precuneus R 7 8, −56, 44 −8.23 1.42E-07 2646
Middle temporal gyrus L 37 −42, −56, 1 9.08 3.16E-08 2565
Middle temporal gyrus L 21 −39, 3, -28 −7.42 6.49E-07 2025
Inferior Parietal Lobule L 40 −56, −30, 38 7.72 3.70E-07 1998
Cerebellar Tonsil L / −42, −64, −28 −6.85 2.00E-06 1944
Inferior semi-lunar lobule R / 11, −64, −38 8.77 5.46E-08 1431
Precentral gyrus L 6 −48, −11, 30 −6.62 3.20E-06 1404
Middle temporal gyrus R 21 61, −27, -10 −6.95 1.63E-06 1377
Precuneus L 7 −3, −59, 46 −6.47 4.36E-06 1296
Inferior frontal gyrus L 9 −50, 8, 33 9.70 1.11E-08 1269
Superior frontal gyrus R 10 11, 62, 22 −6.85 2.02E-06 1242
Culmen R / 17, −30, −18 8.92 4.20E-08 1188
Posterior cingulate L 29 −8, −41, 12 −8.67 6.54E-08 1134
Medial frontal gyrus L 32 −11, 39, 14 −7.25 9.17E-07 972
Cerebellar Tonsil L / −6, −50, -44 −6.59 3.41E-06 837
Declive R / 28, −76, −20 −5.81 1.71E-05 837
Insula L 13 −39, 3, 1 6.89 1.85E-06 837
Precentral gyrus L 9 −39, 20, 36 −6.48 4.28E-06 810

CP1-CP2 Middle temporal gyrus R 37 44, −47, −2 8.74 5.70E-08 3861
Superior temporal gyrus L 22 −48, −21, 1 −6.88 1.90E-06 1917
Inferior frontal gyrus L 47 −31, 20, −2 −7.41 6.60E-07 1890
Superior frontal gyrus L 6 −14, 17, 52 −7.29 8.41E-07 1539
Middle temporal gyrus L 37 −48, −53, −2 9.16 2.76E-08 1485
Parahippocampal gyrus R 36 39, −21, −15 8.37 1.11E-07 1323
Tuber L / −42, −67, −25 −7.66 4.12E-07 1134
Parahippocampal gyrus R 36 36, −33, −10 6.79 2.27E-06 918

ST36-CP1 and ST36-CP2 Insula R 13 / positive / 5346
SII R 42 / positive / 2214
Precuneus / PCC R 7 / negative / 1134

ST36-CP2 and CP1-CP2 Middle temporal gyrus R 37 / positive / 2916
Superior temporal gyrus L 21 / negative / 810

Displayed are voxels of maximal significance. If the activated area crosses the midline, only the side of the highest value is displayed. The coordinates are in the

Talairach space. T and p value is on the voxel-level. The results of the conjunction analysis are also listed. “Positive” means ST36 presented higher activity than two

control points, and vice versa.
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Table 3 | Brain regions which were detected on the group level in the somatosensory network analysis from all resting-state sessions

(P < 0.05, corrected).

Resting-state Area Left/Right Brodmann Talairach space, T -value p-value Volume

hemisphere areas x,y,z (mm3)

RS_ST36 SII L 40 −50, −19, 22 66.37 7.68E-24 66285
SII R 40 58, −19, 25 28.07 8.12E-17 43983
Inferior semi-lunar lobule L / −17, −62, −41 24.14 1.33E-15 10854
Medial frontal gyrus/SMA R 6 11, −5, 62 17.59 4.23E-13 7425
Culmen R / 14, −47, −12 16.94 8.31E-13 5211
Middle temporal gyrus L 37 −48, −64, 9 15.56 3.75E-12 4158
Middle temporal gyrus R 37 52, −59, 6 17.26 5.93E-13 2538
Precuneus L 39 −39, −67, 36 −14.47 1.35E-11 1998
Precuneus L 31 −14, −44, 33 −12.90 9.94E-11 1107
Cingulate gyrus R 31 11, −21, 41 12.54 1.61E-10 1107
Precuneus R 7 14, −47, 57 13.11 7.47E-11 1080
Inferior Parietal Lobule R 40 44, −59, 38 −14.94 7.69E-12 1026
Culmen L / −17, −50, −18 11.93 3.72E-10 648
Superior frontal gyrus L 9 −14, 45, 36 −11.76 4.79E-10 432
Fusiform gyrus L 37 −42, −44, -12 11.39 8.19E-10 297
Parahippocampal gyrus L 19 −34, −59, −4 10.10 5.87E-09 243
Middle frontal gyrus L 6 −20, 22, 54 −11.11 1.23E-09 243
Middle frontal gyrus R 6 19, −16, 60 14.61 1.14E-11 243
Anterior cingulate R 32 6, 36, 25 −10.89 1.71E-09 216
Fusiform gyrus L 20 −39, −21, −23 11.49 6.99E-10 162
Middle temporal gyrus R 39 41, −62, 17 9.90 8.10E-09 162
Postcentral gyrus R 2 28, −36, 60 10.55 2.86E-09 162
Declive L / −22, −59, −15 9.99 6.97E-09 135
Precentral gyrus L 6 −14, −21, 68 13.06 8.02E-11 135
Fusiform gyrus R 37 41, −41, −12 10.22 4.82E-09 108
Postcentral gyrus R 3 44, −24, 54 11.69 5.24E-10 108
Postcentral gyrus L 3 −42, −27, 54 11.42 7.74E-10 108

RS_CP1 SII L 43 −50, −19, 20 83.81 9.26E-26 71010
SII R 43 50, −16, 14 28.31 6.94E-17 47142
Medial frontal gyrus / SMA R 32 6, 6, 44 29.27 3.74E-17 9153
Inferior semi-lunar lobule L / −14, -62, −44 18.80 1.28E-13 3672
Inferior semi-lunar lobule R / 11, −64, −44 14.60 1.15E-11 2970
Precuneus L 19 −31, −73, 38 −16.54 1.28E-12 2484
Inferior Parietal Lobule R 40 41, −59, 41 −11.78 4.66E-10 2376
Culmen R / 19, −53, −18 14.49 1.32E-11 1944
Middle temporal gyrus L 39 −45, −53, 6 13.05 8.06E-11 1944
Culmen L / −17, −56, −18 14.46 1.37E-11 1836
Middle temporal gyrus R 19 50, −53, 4 12.99 8.80E-11 1782
Postcentral gyrus R 3 19, −36, 60 18.09 2.57E-13 1674
Cingulate gyrus R 31 14, −24, 41 12.75 1.21E-10 999
Middle frontal gyrus R 8 39, 25, 38 −13.82 3.02E-11 972
Culmen L / −22, −44, −23 12.08 3.04E-10 324
Parahippocampal gyrus R 27 30, −30, −7 −13.15 7.13E-11 270
Middle frontal gyrus R 46 47, 31, 17 −10.71 2.25E-09 216
Middle frontal gyrus L 6 −31, 17, 54 −14.02 2.34E-11 189
Precuneus R 19 33, −73, 33 −10.46 3.32E-09 162
Postcentral gyrus L 3 −42, −27, 54 15.10 6.37E-12 162
Inferior frontal gyrus R 47 28, 28, −2 11.21 1.06E-09 135
Middle frontal gyrus R 11 25, 48, −10 13.20 6.65E-11 108
Middle temporal gyrus L 39 −56, −56, 9 10.50 3.14E-09 108
Precuneus L 31 −6, −59, 30 −9.79 9.73E-09 108
Superior frontal gyrus R 8 17, 22, 46 −9.76 1.01E-08 108

Postcentral gyrus R 3 28, −33, 57 11.33 8.85E-10 108

(Continued)
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Table 3 | Continued

Resting-state Area Left/Right Brodmann Talairach space, T -value p-value Volume

hemisphere areas x,y,z (mm3)

RS_CP2 SII L 43 −50, −19, 20 79.22 2.69E-25 56430
SII R 43 58, −19, 22 35.20 1.19E-18 47061
SMA L 24 −3, 3, 41 24.16 1.31E-15 11718
SMA R 24 6, 6, 44 22.23 6.05E-15 5940
Inferior semi-lunar lobule R / 14, −64, −44 17.17 6.54E-13 3078
Middle temporal gyrus L 39 −45, −53, 9 14.47 1.35E-11 2079
Fusiform gyrus L 37 −39, −47, −15 22.08 6.84E-15 1971
Fusiform gyrus R 20 41, −38, −12 16.87 8.99E-13 1593
Cerebellar Tonsil L / −25, −53, −46 14.16 1.97E-11 1431
Parahippocampal gyrus R 34 19, 0, −12 20.29 3.20E-14 756
Postcentral gyrus R 40 22, −38, 57 11.41 7.88E-10 756
Cingulate gyrus R 31 11, −21, 41 14.04 2.29E-11 540
Inferior semi-lunar lobule L / −11, −64, −44 15.10 6.37E-12 432
Paracentral Lobule L 31 −8, −27, 44 14.41 1.46E-11 405
Middle occipital gyrus R 37 47, −64, −7 11.02 1.40E-09 324
Middle temporal gyrus L 20 −31, 0, −33 10.74 2.14E-09 243
Parahippocampal gyrus L 36 −39, −24, −15 12.39 1.98E-10 189
Culmen R / 33, −38, −25 10.67 2.40E-09 162
Middle frontal gyrus L 10 −31, 39, 14 10.72 2.21E-09 135
Caudate R / 14, 11, 17 −11.89 3.97E-10 135
Superior frontal gyrus L 6 −17, −3, 68 10.80 1.98E-09 135
Fusiform gyrus L 37 −36, −59, −12 10.10 5.83E-09 108

RS_B SII L 40 −50, −19, 22 52.90 5.59E-22 61398
SII R 40 44, −19, 22 22.59 4.49E-15 59967
Cerebellar Tonsil R / 14, −59, −41 19.38 7.38E-14 4752
Inferior semi-lunar lobule L / −17, −62, −38 13.82 3.01E-11 2673
Culmen L / −28, −47, −23 13.74 3.34E-11 2079
Declive R / 19, −62, −12 13.86 2.87E-11 1485
Middle temporal gyrus L 39 −50, −67, 9 10.89 1.72E-09 1323
Middle temporal gyrus R 37 52, −59, 1 12.30 2.22E-10 1242
Paracentral Lobule L 5 −6, −33, 57 14.58 1.18E-11 702
Angular gyrus L 39 −39, −62, 33 −10.96 1.55E-09 594
Cerebellar Tonsil L / −28, −44, −41 11.29 9.41E-10 432
Cingulate gyrus R 31 17, −41, 33 −11.05 1.34E-09 432
Middle frontal gyrus R 8 36, 17, 44 −10.61 2.62E-09 324
Inferior frontal gyrus L 10 −31, 36, 14 10.16 5.32E-09 297
Precuneus L 31 −11, −53, 30 −10.27 4.50E-09 297
Precentral gyrus R 4 33, −16, 52 11.75 4.86E-10 297
Subcallosal gyrus R 34 14, 6, −12 11.44 7.60E-10 270
Putamen R / 25, 11, 6 11.95 3.63E-10 216
Postcentral gyrus L 4 −17, −33, 62 11.91 3.83E-10 216
Postcentral gyrus L 2 −22, −36, 65 15.53 3.91E-12 216
Cingulate gyrus L 31 −3, −30, 36 −11.65 5.54E-10 189
Culmen R / 14, −44, −15 11.08 1.28E-09 162
Putamen L / −22, 11, 4 10.41 3.58E-09 162
Supramarginal gyrus R 39 39, −53, 28 −9.84 8.93E-09 162
Cingulate gyrus R 31 3, −33, 36 −10.63 2.55E-09 135
Postcentral gyrus L 4 −36, −27, 57 10.11 5.75E-09 135
Middle temporal gyrus L 22 −36, -53, 9 10.59 2.69E-09 108
Claustrum L 13 −25, 22, 9 11.09 1.27E-09 108
Superior frontal gyrus R 9 30, 34, 30 9.81 9.36E-09 108
Postcentral gyrus R 4 14, −41, 65 11.04 1.37E-09 108
Precentral gyrus L 4 −22, −24, 65 10.82 1.90E-09 108

Displayed are voxels of maximal significance. If the activated area crosses the midline, only the side of the highest value is displayed. The coordinates are in the

Talairach space. T and p value is on the voxel-level.
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Table 4 | Brain regions which were detected on the group level in the somatosensory network analysis for the comparison of the

post-stimulation resting-state sessions vs. the first resting-state session (baseline), and for the comparison of the three post-stimulation

sessions with each other (P < 0.05, corrected).

Resting-state Area Left/Right Brodmann Talairach space, T -value p-value Volume

hemisphere areas x,y,z (mm3)

RS_ST36- RS_B Anterior cingulate R 32 6, 34, 22 −7.73 3.59E-07 1728

Precuneus R 31 22, −56, 28 7.12 1.17E-06 1377

Superior frontal gyrus R 6 8, −16, 65 −7.35 7.48E-07 1215

Culmen R / 28, −47, −18 5.82 1.70E-05 1053

Parahippocampal gyrus L 19 −31, −47, −4 6.84 2.06E-06 864

Fusiform gyrus L 19 −28, −59, −7 6.72 2.59E-06 783

RS_CP1- RS_B Medial frontal gyrus R 6 3, −24, 65 −7.12 1.16E-06 2025

Culmen L / 0, −38, −10 −8.11 1.79E-07 999

Parahippocampal gyrus L 19 −31, −62, -7 6.59 3.40E-06 837

Paracentral Lobule L 6 −6, −30, 54 −8.11 1.77E-07 783

RS_CP2- RS_B Parahippocampal gyrus L 36 −31, −33, −15 6.85 2.01E-06 1053

RS_ST36- RS_CP1 Precuneus/Cuneus R 7 28, −67, 33 6.51 4.03E-06 2835

Middle temporal gyrus R 21 58, −47, 9 7.93 2.50E-07 1674

Parahippocampal gyrus R 36 36, −33, −10 7.61 4.54E-07 1242

RS_ST36- RS_CP2 Medial frontal gyrus L 9 −11, 39, 22 −8.90 4.30E-08 1890

Inferior frontal gyrus L 47 −25, 17, −12 −7.58 4.81E-07 1566

Culmen R / 11, −59, −10 6.42 4.82E-06 1053

Superior temporal gyrus L 38 −36, 14, −25 −7.01 1.46E-06 891

Precuneus/Cuneus R 18 14, −79, 20 6.27 6.51E-06 837

RS_CP1- RS_CP2 Parahippocampal gyrus R 27 30, −30, −7 −7.79 3.21E-07 2295

Precuneus L 19 −34, −73, 38 −8.45 9.57E-08 1161

Superior temporal gyrus L 39 −53, −56, 20 −6.03 1.07E-05 918

Displayed are voxels of maximal significance. If the activated area crosses the midline, only the side of the highest value is displayed. The coordinates are in the

Talairach space. T and p value is on the voxel-level.

current stimulation) or TMS (transcranial magnetic stimulation)
(Wagner et al., 2007).

The BOLD activation pattern and connectivity changes we
found in our fMRI analysis correspond well with previous find-
ings showing that acupuncture stimulation modulates activity
and connectivity of somatosensory as well as pain-related areas
(especially insula cortex and S2). Recent neuroimaging studies
that compared the stimulation of acupuncture points to control
points revealed strengthened BOLD activation in somatosensory
areas, the cingulum, the basal ganglia, the brainstem, the cere-
bellum, as well as the insula cortex. Besides these increases in
BOLD activation, these studies also found pronounced acupunc-
ture related deactivation of BOLD signaling in the amygdala,
the hippocampus, and brain areas well described as hubs of
the brain’s default mode network (Dhond et al., 2007; Huang
et al., 2012). These observations are in good agreement with the
present findings since we also found acupuncture related deac-
tivation in default mode network associated areas and higher
BOLD activation in S2 and insula, which are well described as
dominant hubs of the central nervous pain network (also known
as pain matrix Apkarian et al., 2005; May, 2007). Furthermore,

for ST36 as compared to the control points, we found a signifi-
cantly deactivated right precuneus during stimulation. Although
no voxels survived the conjunction analysis for the connectiv-
ity comparison of acupuncture point vs. control points, both
comparisons (RS_ST36-RS_CP1 and RS_ST36-RS_CP2) showed
increased connectivity between right precuneus and S2 in the
follow-up resting-state scan. Whereas S2 and insula are assumed
to contribute to the experience of pain (Craig, 2009), the pre-
cuneus seems to be involved in the assessment and integration
of pain (Goffaux et al., 2014). Acupuncture related strength-
ened functional connectivity between S2 and precuneus might
represent a possible mechanism that explains the pain relieving
effectiveness of acupuncture, especially in chronic pain (Berman
et al., 2010; Vickers et al., 2012). Additionally, our finding of an
increased mu rhythm following stimulation of ST36 may repre-
sent another potential mechanisms of pain modulation, since an
increased mu rhythm was previously shown to be associated with
a pronounced cortical inhibition (Klimesch et al., 2007; Jensen
and Mazaheri, 2010) and a reduced cortical excitability to painful
stimulation (Ploner et al., 2006a). Further studies combining
acupuncture with multimodal brain imaging are necessary
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FIGURE 4 | Comparison of the seed-based somatosensory resting-state

connectivity between all resting-state sessions (P < 0.05, corrected). (A)

The comparison of post-stimulation resting-state scans with the baseline
scan. (B) The comparison of the post-stimulation resting-state scans with

each other. There is no cluster surviving the conjunction analyses across the
first and second row (acupuncture vs. control points) as well as across the
second and the third row (dermatome L5 vs. L2). R means right hemisphere.
Talairach z coordinates are displayed. positive values: red, negative: blue.

to test these hypotheses in patients suffering from chronic
pain.

Furthermore, we found a pronounced activation at right mid-
dle temporal gyrus and deactivation at left superior temporal
gyrus during needle stimulation, which was also found by other
studies that investigate acupuncture (Zhang et al., 2012; Kim
et al., 2013). However, we found these effects only for the com-
parison between the different dermatomes (L2 and L5) when
stimulating dermatome L5 (ST36 or CP1). These effects might
hint toward a different sensitivity of the two different regions used
for the needle stimulation, but still remain elusive.

In conclusion, our findings suggest that stimulation at
acupuncture points may modulate somatosensory and saliency
processing regions more readily than stimulation at non-
acupuncture point locations. In addition, our results hint toward
potential mechanisms of pain modulation due to acupuncture
stimulation. Furthermore, our results might have an impact on
experiments using conventional somatosensory stimulation pro-
tocols. For example, electrical stimulation applied to the median
nerve or the finger might produce different imaging results when
the stimulation electrodes are located near an acupuncture point.
Further experiments using electrical acupuncture and EEG will
assess if direct stimulation of acupuncture points also affects
established EEG markers, such as evoked potentials or evoked and
induced rhythmic activity.
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