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Abstract. This article presents a statistical theory for texture modeling. This theory combines filtering theory and
Markov random field modeling through the maximum entropy principle, and interprets and clarifies many previous
concepts and methods for texture analysis and synthesis from a unified point of view. Our theory characterizes the
ensemble of imagesI with the same texture appearance by a probability distributionf (I) on a random field, and
the objective of texture modeling is to make inference aboutf (I), given a set of observed texture examples. In our
theory, texture modeling consists of two steps. (1) A set of filters is selected from a general filter bank to capture
features of the texture, these filters are applied to observed texture images, and the histograms of the filtered images
are extracted. These histograms are estimates of the marginal distributions off (I). This step is called feature
extraction. (2) The maximum entropy principle is employed to derive a distributionp(I), which is restricted to
have the same marginal distributions as those in (1). Thisp(I) is considered as an estimate off (I). This step is
called feature fusion. A stepwise algorithm is proposed to choose filters from a general filter bank. The resulting
model, called FRAME (Filters, Random fields And Maximum Entropy), is a Markov random field (MRF) model,
but with a much enriched vocabulary and hence much stronger descriptive ability than the previous MRF models
used for texture modeling. Gibbs sampler is adopted to synthesize texture images by drawing typical samples from
p(I), thus the model is verified by seeing whether the synthesized texture images have similar visual appearances
to the texture images being modeled. Experiments on a variety of 1D and 2D textures are described to illustrate our
theory and to show the performance of our algorithms. These experiments demonstrate that many textures which
are previously considered as from different categories can be modeled and synthesized in a common framework.

Keywords: texture modeling, texture analysis and synthesis, minimax entropy, maximum entropy, Markov
random field, feature pursuit, visual learning

1. Introduction

Texture is an important characteristic of the appearance
of objects in natural scenes, and is a powerful cue in vi-
sual perception. It plays an important role in computer
vision, graphics, and image encoding. Understanding

texture is an essential part of understanding human
vision.

Texture analysis and synthesis has been an active re-
search area during the past three decades, and a large
number of methods have been proposed, with differ-
ent objectives or assumptions about the underlying
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texture formation processes. For example, in com-
puter graphics, reaction-diffusion equations (Witkin
and Kass, 1991) have been adopted to simulate some
chemical processes that may generate textures on skin
of animals. In computer vision and psychology, how-
ever, instead of modeling specific texture formation
process, the goal is to search for a general model which
should be able to describe a wide variety of textures
in a common framework, and which should also be
consistent with the psychophysical and physiological
understanding of human texture perception.

The first general texture model was proposed by
Julesz in the 1960’s. Julesz suggested that texture per-
ception might be explained by extracting the so-called
‘kth order’ statistics, i.e., the co-occurrence statistics
for intensities atk-tuples of pixels (Julesz, 1962). In-
deed, early works on texture modeling were mainly
driven by this conjecture (Haralick, 1979). A key draw-
back for this model is that the amount of data contained
in thekth order statistics is gigantic and thus very hard
to handle whenk > 2. On the other hand, psychophys-
ical experiments show that the human visual system
does extract at least some statistics of order higher than
two (Diaconis and Freeman, 1981).

More recent work on texture mainly focus on the
following two well-established areas.

One is filtering theory, which was inspired by the
multi-channel filtering mechanism discovered and gen-
erally accepted in neurophysiology (Silverman et al.,
1989). This mechanism suggests that visual system
decomposes the retinal image into a set of sub-bands,
which are computed by convolving the image with a
bank of linear filters followed by some nonlinear proce-
dures. The filtering theory developed along this direc-
tion includes the Gabor filters (Gabor, 1946; Daugman,
1985) and wavelet pyramids (Mallat, 1989; Simoncelli
et al., 1992; Coifman and Wickerhauser, 1992; Donoho
and Johnstone, 1994). The filtering methods show ex-
cellent performance in classification and segmentation
(Jain and Farrokhsia, 1991).

The second area is statistical modeling, which char-
acterizes texture images as arising from probabil-
ity distributions on random fields. These include
time series models (McCormick and Jayaramamurthy,
1974), Markov chain models (Qian and Terrington,
1991), and Markov random field (MRF) models (Cross
and Jain, 1983; Mao and Jain, 1992; Yuan and Rao,
1993). These modeling approaches involve only a
small number of parameters, thus provide concise rep-
resentation for textures. More importantly, they pose
texture analysis as a well-defined statistical inference

problem. The statistical theories enable us not only to
make inference about the parameters of the underlying
probability models based on observed texture images,
but also to synthesize texture images by sampling from
these probability models. Therefore, it provides a rig-
orous way to test the model by checking whether the
synthesized images have similar visual appearances to
the textures being modeled (Cross and Jain, 1983). But
usually these models are of very limited forms, hence
suffer from the lack of expressive power.

This paper proposes a modeling methodology which
is built on and directly combines the above two
important themes for texture modeling. Our theory
characterizes the ensemble of imagesI with the same
texture appearances by a probability distributionf (I)
on a random field. Then given a set of observed texture
examples, our goal is to inferf (I). The derivation of
our model consists of two steps.

(I) A set of filters is selected from a general filter
bank to capture features of the texture. The filters are
designed to capture whatever features might be thought
to be characteristic of the given texture. They can be
of any size, linear or nonlinear. These filters are ap-
plied to the observed texture images, and histograms
of the filtered images are extracted. These histograms
estimate the marginal distributions off (I). This step
is calledfeature extraction.

(II) Then a maximum entropy distributionp(I) is
constructed, which is restricted to match the marginal
distributions of f (I) estimated in step (I). This step is
calledfeature fusion.

A stepwise algorithm is proposed to select filters
from a general filter bank, and at each stepk it chooses a
filter F (k) so that the marginal distributions off (I) and
p(I) with respect toF (k) have the biggest distance in
terms ofL1 norm. The resulting model, calledFRAME
(Filters, Random fields And Maximum Entropy), is a
Markov random field (MRF) model,1 but with a much
more enriched vocabulary and hence much stronger de-
scriptive power compared with previous MRF models.
The Gibbs sampler is adopted to synthesize texture im-
ages by drawing samples fromp(I), thus the model
is tested by synthesizing textures in both 1D and 2D
experiments.

Our theory is motivated by two aspects. Firstly,
a theorem proven in Section 3.2 shows that a distri-
bution f (I) is uniquely determined by its marginals.
Therefore if a modelp(I)matches all the marginals of
f (I), then p(I)= f (I). Secondly, recent psychophys-
ical research on human texture perception suggests
that two ‘homogeneous’ textures are often difficult
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to discriminate when they have similar marginal
distributions from a bank of filters (Bergen and
Adelson, 1991; Chubb and Landy, 1991). Our method
is inspired by and bears some similarities to Heeger
and Bergen’s (1995) recent work on texture synthesis,
where many natural looking texture images were syn-
thesized by matching the histograms of filter responses
organized in the form of a pyramid.

This paper is arranged as follows. First we set
the scene by discussing filtering methods and Markov
random field models in Section 2, where both the ad-
vantages and disadvantages of these approaches are
addressed. Then in Section 3, we derive our FRAME
model and propose a feature matching algorithm
for probability inference and stochastic simulation.
Section 4 is dedicated to the design and selection of
filters. The texture modeling experiments are divided
into three parts. Firstly, Section 5 illustrates important
concepts of the FRAME model by designing three ex-
periments for one dimensional texture synthesis. Sec-
ondly a variety of 2D textures are studied in Section 6.
Then Section 7 discusses a special diffusion strategy
for modeling some typical texton images. Finally,
Section 8 concludes with a discussion and the future
work.

2. Filtering and MRF Modeling

2.1. Filtering Theory

In the various stages along the visual pathway, from
retina, to V1, to extra-striate cortex, cells with in-
creasing sophistication and abstraction have been dis-
covered: center-surround isotropic retinal ganglion
cells, frequency and orientation selective simple cells,
and complex cells that perform nonlinear operations.
Motivated by such physiological discoveries, the filter-
ing theory proposes that the visual system decomposes
a retinal image into a set of sub-band images by con-
volving it with a bank of frequency and orientation se-
lective linear filters. This linear filtering process is then
followed by some nonlinear operations. In the design
of various filters, Gaussian function plays an important
role due to its nice low-pass frequency property. To
fix notation, we define an elongated two-dimensional
Gaussian function as:

G(x, y | x0, y0, σx, σy)

= 1

2πσxσy
e−((x−x0)

2/2σ 2
x+(y−y0)

2/2σ 2
y )

with location parameters(x0, y0) and scale parameters
(σx, σy).

A simple model for the radially symmetric center-
surround ganglion cells is the Laplacian of Gaussian
with σx = σy = σ :

F(x, y | x0, y0, σ )

=
(
∂2

∂x2
+ ∂2

∂y2

)
G(x, y | x0, y0, σ, σ ). (1)

Similarly, a model for the simple cells is the Gabor
filter (Daugman, 1985), which is a pair of cosine and
sine waves with frequencyω and amplitude modulated
by the Gaussian function:

Fω(x, y) = G(x, y | 0, 0; σx, σy)e
−iωx. (2)

By carefully choosing the frequencyω and rotating
the filter in thex-y coordinate system, we obtain a
bank of filters which cover the entire frequency domain.
Such filters are used for image analysis and synthesis
successfully by Jain and Farrokhsia (1991) and Lee
(1992). Other filter banks have also been designed for
image processing (Simoncelli et al., 1992).

The filters mentioned above are linear. Some func-
tions are further applied to these linear filters to model
the nonlinear functions of the complex cell. One way to
model the complex cell is to use the power of each pair
of Gabor filter|(F ∗ I)(x, y)|2. In fact,|(Fω ∗ I)(x, y)|2
is the local spectrumS(ω) of I at (x, y) smoothed by
a Gaussian function. Thus it serves as a spectrum
analyzer.

Although these filters are very efficient in captur-
ing local spatial features, some problems are not well
understood. For example (i) given a bank of filters,
how to choose the best set of filters? Especially when
some of the filters are linear while others are nonlin-
ear, or the filters are highly correlated to each other,
(ii) after selecting the filters, how to fuse the fea-
tures captured by them into a single texture model?
These questions will be answered in the rest of the
paper.

2.2. MRF Modeling

MRF models were popularized by Besag (1973) for
modeling spatial interactions on lattice systems and
were used (Cross and Jain, 1983) for texture model-
ing. An important characteristic of MRF modeling
is that the global patterns are formed via stochastic
propagation of local interactions, which is particularly
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appropriate for modeling textures since they are char-
acterized by global but not predictable repetitions of
similar local structures.

In MRF models, a texture is considered as a real-
ization from a random fieldI defined over a spatial
configurationD, for example,D can be an array or
a lattice. We denoteI(Ev) as the random variable at a
locationEv ∈ D, and letN = {NEv, Ev ∈ D} be a neigh-
borhood system ofD, which is a collection of subsets of
D satisfying (1)Ev /∈ NEv, and (2)Ev ∈ NEu⇐⇒ Eu ∈ NEv.
The pixels inNEv are called neighbors ofEv. A subsetC
of D is a clique if every pair of distinct pixels inC are
neighbors of each other;C denotes the set of all cliques.

Definition. p(I) is anMRF distributionwith respect
toN if p(I(Ev) | I(−Ev))= p(I(Ev) | I(NEv)), whereI(−Ev)
denotes the values of all pixels other thanEv, and for
A ⊂ D, I(A) denotes the values of all pixels inA.

Definition. p(I) is aGibbs distributionwith respect
toN if

p(I) = 1

Z
exp

{
−
∑
C∈C

λC(I(C))

}
, (3)

whereZ is the normalizing constant (or partition func-
tion), andλC( ) is a function of intensities of pixels in
cliqueC (called potential ofC). Some constraints can
be imposed onλC for them to be uniquely determined.

The Hammersley-Clifford theorem establishes the
equivalence between MRF and the Gibbs distribution
(Besag, 1973):

Theorem 1. For a givenN , p(I) is an MRF distri-
bution⇐⇒ p(I) is a Gibbs distribution.

This equivalence provides a general method for spec-
ifying an MRF onD, i.e., first choose anN , and then
specifyλC. The MRF isstationaryif for everyC ∈ C,
λC depends only on the relative positions of its pixels.
This is often assumed in texture modeling.

Existing MRF models for texture modeling are
mostly auto-models (Besag, 1973) with pair potentials,
i.e.,λC ≡ 0 if |C| > 2, andp(I) has the following form

p(I) = 1

Z
exp

{∑
Ev

g(I(Ev))+
∑
Eu,Ev
βEu−EvI(Eu)I(Ev)

}
,

(4)

whereβ−Eu = βEu andβEu−Ev ≡ 0 unlessEu and Ev are
neighbors.

The above MRF model is usually specified through
conditional distributions,

p(I(Ev) | I(−Ev))∝ exp

{
g(I(Ev))+

∑
Eu
βEv−EuI(Eu)I(Ev)

}
,

where the neighborhood is usually of order less than or
equal to three pixels, and some further restrictions are
usually imposed ong for p(I(Ev) | I(−Ev)) to be a linear
regression or the generalized linear model.

Two commonly used auto-models are the auto-
binomial model and the auto-normal model. The auto-
binomial model is used for images with finite grey
levelsI(Ev) ∈ {0, 1, . . . ,G−1} (Cross and Jain, 1983),
the conditional distribution is a logistic regression,

I(Ev) | I(−Ev) ∼ binomial(G, pEv), (5)

where

log
pEv

1− pEv
= α +

∑
Eu
βEu−EvI(Eu).

It can be shown that the joint distribution is of the form

p(I) = 1

Z
exp

{∑
Ev

(
αI(Ev)+ log

(
G

I(Ev)
))

+
∑
Eu,Ev
βEu−EvI(Eu)I(Ev)

}
(6)

WhenG = 2, the auto-binomial model reduces to the
auto-logistic model (i.e., the Ising model), which is
used to model binary images.

The auto-normal model is used for images with con-
tinuous grey levels (Yuan and Rao, 1993). It is evident
that if an MRFp(I) is a multivariate normal distribu-
tion, thenp(I)must be auto-normal, so the auto-normal
model is also called a Gaussian MRF or GMRF. The
conditional distribution is a normal regression,

I(Ev) | I(−Ev) ∼ N

(
µ+

∑
Eu
βEv−Eu(I(Eu)− µ), σ 2

)
,

(7)

and p(I) is of the form

p(I) = 1

(2πσ 2)n/2
|B|1/2

× exp

{
− 1

2σ 2
(I − µ)T B(I − µ)

}
, (8)

i.e., the multivariate normal distributionN(µ, σ 2B−1)

where the diagonal elements ofB are unity and the
off-diagonal(Eu, Ev) element of it is−βEu−Ev.
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Another MRF model for texture is theφ-model
(Geman and Graffigne, 1986):

p(I) = 1

Z
exp

{
−
∑
〈Eu,Ev〉

λ|Eu−Ev|φ(I(Eu)− I(Ev))
}
, (9)

whereφ is a known even symmetric function, and the
φ-model can be viewed as extended from the Potts
model (Winkler, 1995).

The advantage of the auto-models is that the
parameters in the models can be easily inferred by auto-
regression, but they are severely limited in the follow-
ing two aspects: (i) the cliques are too small to capture
features of texture, (ii) the statistics on the cliques spec-
ifies only the first-order and second order moments
(e.g., means and covariances for GMRF). However,
many textures has local structures much larger than
three or four pixels, and the covariance information
or equivalently spectrum can not adequately charac-
terize textures, as suggested the existence of distin-
guishable texture pairs with identical second-order or
even third-order moments, as well as indistinguish-
able texture pairs with different second-order moments
(Diaconis and Freeman, 1981). Moreover, many tex-
tures are strongly non-Gaussian, regardless of neigh-
borhood size.

The underlying cause of these limitations is that
Eq. (3) involves too many parameters if we increase the
neighborhood size or the order of the statistics, even for
the simplest auto-models. This suggests that we need
carefully designed functional forms forλC( ) to ef-
ficiently characterize local interactions as well as the
statistics on the local interactions.

3. From Maximum Entropy to FRAME Model

3.1. The Basics of Maximum Entropy

Maximum entropy (ME) is an important principle in
statistics for constructing a probability distributions
p on a set of random variablesX (Jaynes, 1957).
Suppose the available information is the expectations
of some known functionsφn(x), i.e., Ep[φn(x)] =∫
φn(x)p(x)dx = µn for n = 1, . . . , N. LetÄ be the

set of all probability distributionp(x)which satisfy the
constraints, i.e.,

Ä = {p(x) | Ep[φn(x)] = µn, n = 1, . . . , N}. (10)

The ME principle suggests that a good choice of the
probability distribution is the one that has the maximum

entropy, i.e.,

p∗(x) = arg max

{
−
∫

p(x) log p(x)dx

}
, (11)

subject to

Ep[φn(x)] =
∫
φn(x)p(x)dx = µn,

n= 1, . . . , N,

and ∫
p(x)dx = 1.

By Lagrange multipliers, the solution forp(x) is:

p(x;3) = 1

Z(3)
exp

{
−

N∑
n=1

λnφn(x)

}
, (12)

where3 = (λ1, λ2, . . . , λn) is the Lagrange parameter,
and Z(3) = ∫

exp{−∑N
n=1 λnφn(x)}dx is the parti-

tion function that depends on3 and it has the following
properties:

(i)
∂ log Z

∂λi
= 1

Z

∂Z

∂λi
= −Ep(x;3)[φi (x)]

(ii)
∂2 log Z

∂λi ∂λ j
= Ep(x;3)[(φi (x)− Ep(x;3)[φi (x)])

× (φ j (x)− Ep(x;3)[φ j (x)])]

In Eq. (12),(λ1, . . . , λN) is determined by the con-
straints in Eq. (11). But a closed form solution for
(λ1, . . . , λN) is not available in general, especially
whenφn(·) gets complicated, so instead we seek nu-
merical solutions by solving the following equations
iteratively.

dλn

dt
= Ep(I ;3)[φn(x)]−µn, n= 1, 2, . . . , N. (13)

The second property of the partition functionZ(3)
tells us that the Hessian matrix of logZ(3) is the co-
variance matrix of vector(φ1(x), φ2(x), . . . , φN(x))
which is definitely positive,2 and logZ(3) is
strictly concave with respect to(λ1, . . . , λN), so is
log p(x;3). Therefore, given a set of consistent con-
straints, there is a unique solution for(λ1, . . . , λN) in
Eq. (13).

3.2. Deriving the FRAME Model

Let imageI be defined on a discrete domainD,D can
be aN × N lattice. For each pixelEv ∈ D, I(Ev) ∈ L,
andL is an interval ofR or L ⊂ Z. For each texture,
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we assume that there exists a “true” joint probability
density f (I)over the image spaceL|D|, and f (I)should
concentrate on a subspace ofL|D| which corresponds
to texture images that have perceptually similar texture
appearances. Before we derive the FRAME model, we
first fix the notation as below.

Given an imageI and a filter F (α) with α=
1, 2,. . . , K being an index of filter, we let
I (α)(Ev)= F (α) ∗ I(Ev) be the filter response at location
Ev, andI (α) the filtered image. The marginal empirical
distribution (histogram) ofI (α) is

H (α)(z) = 1

|D|
∑
Ev∈D

δ
(
z− I (α)(Ev)),

whereδ( ) is the Dirac delta function. The marginal
distribution of f (I) with respect toF (α) at locationEv
is denoted by

f (α)Ev (z) =
∫ ∫

I (α)(Ev)=z
f (I)dI = E f

[
δ
(
z− I (α)(Ev))].

At first thought, it seems an intractable problem to
estimatef (I) due to the overwhelming dimensionality
of imageI . To reduce dimensions, we first introduce
the following theorem.

Theorem 2. Let f(I) be the|D|-dimensional contin-
uous probability distribution of a texture, then f(I) is a
linear combination of f(ξ), the latter are the marginal
distributions on the linear filter response F(ξ) ∗ I .

Proof: By inverse Fourier transform, we have

f (I) = 1

(2π)|D|

∫
·
∫

e2π i 〈I ,ξ〉 f̂ (ξ)dξ

where f̂ (ξ) is the characteristic function off (I), and

f̂ (ξ) =
∫
·
∫

e−2π i 〈ξ,I 〉 f (I)dI

=
∫

e−2π i zdz
∫
·
∫
〈ξ,I 〉=z

f (I)dI

=
∫

e−2π i zdz
∫
·
∫
δ(z− 〈ξ, I 〉) f (I)dI

=
∫

e−2π i z f (ξ)(z)dz

where 〈·, ·〉 is the inner product, and by definition
f (ξ)(z) = ∫ · ∫ δ(z − 〈ξ, I 〉) f (I)dI is the marginal

distribution ofF (ξ) ∗ I , and we defineF (ξ)(Ev) = ξ(Ev)
as a linear filter. 2

Theorem 2 transformsf (I) into a linear combination
of its one dimensional marginal distributions.3 Thus it
motivates a new method for inferringf (I): construct
a distributionp(I) so thatp(I) has the same marginal
distributions f (ξ). If p(I) matches all marginal distri-
butions of f (I), then p(I) = f (I). But this method
will involve uncountable number of filters and each
filter F (ξ) is as big as imageI .

Our second motivation comes from recent psy-
chophysical research on human texture perception, and
the latter suggests that two homogeneous textures are
often difficult to discriminate when they produce simi-
lar marginal distributionsfor responses froma bank of
filters (Bergen and Adelson, 1991; Chubb and Landy,
1991). This means that it is plausible to ignore some
statistical properties off (I) which are not important
for human texture discrimination.

To make texture modeling a tractable problem, in the
rest of this paper we make the following assumptions
to limit the number of filters and the window size of
each filter for computational reason, though these as-
sumptions are not necessary conditions for our theory
to hold true. (1) We limit our model to homogeneous
textures, thusf (I) is stationary with respect to location
Ev.4 (2) For a given texture, all features which concern
texture perception can be captured by “locally” sup-
ported filters. In other words, the sizes of filters should
be smaller than the size of the image. For example,
the size of image is 256× 256 pixels, and the sizes
of filters we used are limited to be less than 33× 33
pixels. These filters can be linear or non-linear as we
discussed in Section 2.1. (3) Only a finite set of filters
are used to estimatef (I).

Assumptions 1 and 2 are made because we often
have access to only one observed (training) texture im-
age. For a given observed imageIobs and a filterF (α),
we let Iobs(α) denote the filtered image, andHobs(α)(z)
the histogram ofIobs(α). According to assumption 1,
f (α)Ev (z) = f (α)(z) is independent ofEv. By ergodicity,
Hobs(α)(z)makes a consistent estimator tof (α)(z). As-
sumption 2 ensures that the image size is lager relative
to the support of filters, so that ergodicity takes effect
for Hobs(α)(z) to be an accurate estimate off (α)(z).

Now for a specific texture, letSK ={F (α), α =
1, . . . , K } be a finite set of well selected filters, and
f (α)(z), α = 1, . . . , K are the corresponding marginal
distributions of f (I). We denote the probability
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distribution p(I) which matches these marginal dis-
tributions as a set,

ÄK=
{

p(I) | Ep
[
δ
(
z− I (α)(Ev))] = f (α)(z)

∀z ∈ R, ∀α = 1, . . . , K , ∀Ev ∈ D}, (14)

whereEp[δ(z− I (α)(Ev))] is the marginal distribution
of p(I) with respect to filterF (α) at locationEv. Thus
according to assumption 3, anyp(I) ∈ Ä is perceptu-
ally a good enough model for the texture, provided that
we have enough well selected filters. Then we choose
from Ä a distribution p(I) which has the maximum
entropy,

p(I) = arg max

{
−
∫

p(I) log p(I)dI
}
, (15)

subject to

Ep
[
δ
(
z− I (α)(Ev))]= f (α)(z)

∀z ∈ R, ∀α = 1, . . . , K , ∀Ev ∈ D
and ∫

p(I)dI = 1.

The reason for us to choose the maximum entropy
(ME) distribution is that whilep(I) satisfies the con-
straints along some dimensions, it is made as random
as possible in other unconstrained dimensions, since
entropy is a measure of randomness. In other words,
p(I) should represent information no more than that is
available. Therefore an ME distribution gives the sim-
plest explanation for the constraints and thus the purest
fusion of the extracted features.

The constraints on Eq. (15) differ from the ones
given in Section 3.1 in thatz takes continuous real
values, hence there are uncountable number of con-
straints, therefore, the Lagrange parameterλ takes the
form as a function ofz. Also since the constraints are
the same for all locationsEv ∈ D, λ should be indepen-
dent of Ev. Solving this maximization problem gives
the ME distribution:

p(I ;3K , SK )

= 1

Z(3K )
exp

{
−
∑
Ev

K∑
α= 1

∫
λ(α)(z)δ(z− Iα(Ev))dz

}
,

(16)

= 1

Z(3K )
exp

{
−
∑
Ev

K∑
α= 1

λ(α)
(
I (α)(Ev))}, (17)

whereSK = {F (1), F (2), . . . , F (K )} is a set of selected
filters, and3K = (λ(1)( ), λ(2)( ), . . . , λ(K )( )) is the
Lagrange parameter. Note that in Eq. (17), for each fil-
ter F (α), λ(α)( ) takes the form as a continuous function
of the filter responseI (α)(Ev).

To proceed further, let’s derive a discrete form of
Eq. (17). Assume that the filter responseI (α)(Ev) is
quantitized intoL discrete grey levels, thereforez takes
values from set{z(α)1 , z(α)2 , . . . , z(α)L }. In general, the
width of these bins do not have to be equal, and the num-
ber of grey levelsL for each filter response may vary.
As a result, the marginal distributions and histograms
are approximated by piecewisely constant functions of
L bins, and we denote these piecewise functions as vec-
tors. H (α)= (H (α)

1 , H (α)
2 , . . . , H (α)

L ) is the histogram
of I (α), Hobs(α) denotes the histogram ofIobs(α), and
the potential functionλ(α)( ) is approximated by vector
λ(α) = (λ(α)1 , λ

(α)
2 , . . . , λ

(α)
L ).

So Eq. (16) is rewritten as:

p(I ;3K , SK )

= 1

Z(3K )
exp

{
−
∑
Ev

K∑
α= 1

L∑
i = 1

λ
(α)
i δ

(
z(α)i − I (α)(Ev))},

by changing the order of summations:

p(I ;3K , SK )

= 1

Z(3K )
exp

{
−

K∑
α=1

L∑
i=1

λ
(α)
i H (α)

i

}
,

= 1

Z(3K )
exp

{
−

K∑
α=1

〈
λ(α), H (α)

〉}
. (18)

The virtue of Eq. (18) is that it provides us with
a simple parametric model for the probability dis-
tribution on I , and this model has the following
properties:

• p(I ;3K , SK ) is specified by3K = (λ(1), λ(2), . . . ,
λ(K )) andSK .
• Given an imageI , its histogramsH (1), H (2), . . . ,

H (K ) are sufficient statistics, i.e.,p(I ;3K , SK ) is
a function of(H (1), H (2), . . . , H (K )).

We plug Eq. (18) into the constraints of the ME distri-
bution, and solve forλ(α), α = 1, 2, . . . , K iteratively
by the following equations,

dλ(α)

dt
= Ep(I ;3K ,SK )

[
H (α)

]− Hobs(α). (19)
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In Eq. (19), we have substitutedHobs(α) for f (α), and
Ep(I ;3K ,SK )(H

(α)) is the expected histogram of the fil-
tered imageI (α) whereI follows p(I ;3K , SK )with the
current3K . Equation (19) converges to the unique so-
lution at3K = 3̂K as we discussed in Section 3.1, and
3̂K is called the ME-estimator.

It is worth mentioning that this ME-estimator
is equivalent to the maximum likelihood estimator
(MLE),

3̂K = arg max
3K

log p(Iobs;3K , SK )

= arg max
3K

− log Z(3K )−
K∑

α= 1

〈
λ(α), Hobs(α)

〉
.

(20)

By gradient accent, maximizing the log-likelihood
gives Eq. (19), following property (i) of the partition
function Z(3K ).

In Eq. (19), at each step, given3K and hence
p(I ;3K , SK ), the analytic form ofEp(I ;3K ,SK )(H

(α)) is
not available, instead we propose the following method
to estimate it as we did forf (α) before. We draw a typ-
ical sample fromp(I ;3K , SK ), and thus synthesize a
texture imageI syn. Then we use the histogramH syn(α)

of I syn(α) to approximateEp(I ;3K ,SK )(H
(α)). This re-

quires that the size ofI syn that we are synthesizing
should be large enough.5

To draw a typical sample image fromp(I ;3K , SK ),
we use the Gibbs sampler (Geman and Geman, 1984)
which simulates a Markov chain in the image space
L|D|. The Markov chain starts from any random image,
for example, a white noise image, and it converges
to a stationary process with distributionp(I ;3K , SK ).
Thus when the Gibbs sampler converges, the images
synthesized follow distributionp(I ;3K , SK ).

In summary, we propose the following algo-
rithm for inferring the underlying probability model
p(I ;3K , SK ) and for synthesizing the texture accord-
ing to p(I ;3K , SK ). The algorithm stops when the
subband histograms of the synthesized texture closely
match the corresponding histograms of the observed
images.6

Algorithm 1. The FRAME Algorithm

Input a texture imageIobs.
Select a group ofK filters SK ={F (1), F (2), . . . ,

F (K )}.
Compute{Hobs(α), α = 1, . . . , K }.
Initialize λ(α)i ← 0, i = 1, 2, . . . , L , α = 1,

2, . . . , K .

Initialize I syn as a uniform white noise texture.

Repeat
CalculateH syn(α) α = 1, 2, . . . , K from I syn, use

it for Ep(I ;3K ,SK )(H
(α)) .

Updateλ(α) α = 1, 2, . . . , K by Eq. (19),
p(I ;3K , SK ) is updated.

Apply Gibbs sampler to flipI syn for w sweeps
underp(I ;3K , SK )

Until 1
2

∑L
i |Hobs(α)

i − H syn(α)
i | ≤ ε for α = 1,

2, . . . , K .

Algorithm 2. The Gibbs Sampler for w Sweeps

Given imageI(Ev), flip counter← 0

Repeat

Randomly pick a locationEv under the uniform
distribution.

For val= 0, . . . ,G− 1 with G being the number
of grey levels ofI
Calculatep(I(Ev) = val | I(−Ev)) by

p(I ;3K , SK ).

Randomly flipI(Ev)← val underp(val | I(−Ev)).
flip counter← flip counter+ 1

Until flip counter=w × M × N.

In Algorithm 2, to computep(I(Ev) = val | I(−Ev)),
we setI(Ev) to val, due to Markov property, we only
need to compute the changes ofI (α) at the neighbor-
hood ofEv. The size of the neighborhood is determined
by the size of filterF (α). With the updatedI (α), we
calculateH (α), and the probability is normalized such
that

∑G−1
val=0 p(I(Ev) = val | I(−Ev)) = 1.

In the Gibbs sampler, flipping a pixel is a step of
the Markov chain, and we define flipping|D| pixels
as a sweep, where|D| is the size of the synthesized
image. Then the overall iterative process becomes an
inhomogeneous Markov chain. At the beginning of
the process,p(I ;3K , SK ) is a “hot” uniform distri-
bution. By updating the parameters, the process get
closer and closer to the target distribution, which is
much colder. So the algorithm is very much like a
simulated annealing algorithm (Geyer and Thompson,
1995), which is helpful for getting around local modes
of the target distribution. We refer to (Winkler, 1995)
for discussion of alternative sampling methods.

The computational complexity of the above algo-
rithm is notoriously large:O(U × w × |D| × G ×
K × F H × FW) with U the number of updating steps
for 3K , w the number of sweeps each time we update
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3K , D the size of imageI syn, G the number of grey
levels ofI , K the number of filters, andF H, FW are
the average window sizes of the filters. To synthesize
a 128× 128 texture, the typical complexity is about
50× 4× 128× 128× 8× 4× 16× 16' 27 billion
arithmetic operators, and takes about one day to run on
a Sun-20. Therefore, it is very important to choose a
small set of filter which can best capture the features
of the texture. We discuss how to choose filters in
Section 4.

3.3. A General Framework

The probability distribution we derived in the last sec-
tion is of the form

p(I ;3K , SK )

= 1

Z(3K )
exp

{
−
∑
Ev

K∑
α= 1

λ(α)
(
I (α)(Ev))}. (21)

This model is significant in the following aspects.
First, the model is directly built on the features

I (α)(Ev) extracted by a set of filtersF (α). By choos-
ing the filters, it can easily capture the properties of the
texture at multiple scales and orientations, either linear
or nonlinear. Hence, it is much more expressive than
the cliques used in the traditional MRF models.

Second, instead of characterizing only the first and
second order moments of the marginal distributions
as the auto-regression MRF models did, the FRAME
model includes the whole marginal distribution. In-
deed, in a simplified case, if the constraints on the
probability distribution are given in the form ofkth-
order moments instead of marginal distributions, then
the functionsλ(α)(·) in Eq. (21) become polynomi-
als of orderm. In such case, the complexity of the
FRAME model is measured by the following two as-
pects: (1) the number of filters and the size of the filter,
(2) the order of the moments,m. As we will see in
later experiments, Eq. (21) enable us to model strongly
non-Gaussian textures.

It is also clear to us that all existing MRF texture
models can be shown as special cases of FRAME
models.

Finally, if we relax the homogeneous assumption,
i.e., let the marginal distribution ofI (α)(Ev) depend
on Ev, then by specifying these marginal distributions,
denoted byf (α)Ev , p(I) will have the form

p(I) = 1

Z
exp

{
−
∑
Ev

K∑
α=1

λ
(α)

Ev
(
I (α)

)
(Ev)
}
. (22)

This distribution is relevant in texture segmentation
whereλ(α)Ev are assumed piecewise consistent with re-
spect toEv, and in shape inference whenλ(α)Ev changes
systematically with respect toEv, resulting in a slowly
varying texture. We shall not study non-stationary tex-
tures in this paper.

In summary, the FRAME model incorporates and
generalizes the attractive properties of the filtering the-
ory and the random fields models, and it interprets
many previous methods for texture modeling in a uni-
fied view of point.

4. Filter Selection

In the last section, we build a probability model for a
given texture based on a set of filtersSK . For computa-
tional reasonsSK should be chosen as small as possible,
and a key factor for successful texture modeling is to
choose the right set of filters that best characterizes the
features of the texture being modeled. In this section,
we propose a novel method for filter selection.

4.1. Design of the Filter Bank

To describe a wide variety of textures, we first need
to design a filter bankB. B can include all previously
designed multi-scale filters (Daugman, 1985; Simon-
celli et al., 1992) or wavelets (Mallat, 1989; Donoho
and Johnstone, 1994; Coifman and Wickerhauser,
1992). In this paper, we should not discuss the optimal
criterion for constructing a filter bank. Throughout the
experiments in this paper, we use five kinds of filters.

1. The intensity filterδ( ), and it captures the DC com-
ponent.

2. The isotropic center-surround filters, i.e., the
Laplacian of Gaussian filters. Here we rewrite
Eq. (1) as:

F(x, y | 0, 0, T)
= const· (x2+ y2− T2)e−

x2+y2

T2 (23)

whereT = √2σ stands for the scale of the filter. We
choose eight scales withT = √2/2, 1, 2, 3, 4, 5, 6,
and denote these filters byLG(T).

3. The Gabor filters with both sine and cosine compo-
nents. We choose a simple case from Eq. (2):

Gabor(x, y | 0, 0, T, θ)
= const· e 1

2T2 (4(x cosθ+y sinθ)2+(−x sinθ+y cosθ)2)

× e−i 2π
T (x cosθ+y sinθ), (24)
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We choose six scalesT = 2, 4, 6, 8, 10, 12 and 6
orientationsθ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦. We
can see that these filters are not even approximately
orthogonal to each other. We denote byG cos(T, θ)
andG sin(T, θ) the cosine and sine components of
the Gabor filters.

4. The spectrum analyzers denoted bySP(T, θ),
whose responses are the power of the Gabor pairs:
|(Gabor∗ I)(x, y)|2.

5. Some specially designed filters for one dimensional
textures and the textons, see Sections 5 and 7.

4.2. A Stepwise Algorithm for Filter Selection

For a fixed model complexityK , one way to choose
SK from B is to search for all possible combina-
tions of K filters in B and compute the corresponding
p(I ;3K , SK ). Then by comparing the synthesized tex-
ture images following eachp(I ;3K , SK ), we can see
which set of filters is the best. Such a brute force search
is computationally infeasible, and for a specific texture
we often do not know whatK is. Instead, we propose
a stepwise greedy strategy. We start fromS0 = ∅ and
hencep(I ;30, S0) an uniform distribution, and then
sequentially introduce one filter at a time.

Suppose that at thekth step we have chosenSk =
{F (1), F (2), . . . , F (k)}, and obtained a maximum en-
tropy distribution

p(I ;3k, Sk)= 1

Z(3k)
exp

{
−

k∑
α=1

〈
λ(α), H (α)

〉}
, (25)

so thatEp(I ;3k,Sk)[H
(α)] = f (α) for α = 1, 2, . . . , k.

Then at the(k+ 1)th step, for each filterF (β) ∈ B/Sk,
we denote byd(β) = D(Ep(I ;3k,Sk)[H

(β)], f (β)) the
distance betweenEp(I ;3k,Sk)[H

(β)] and f (β), which are
respectively the marginal distributions ofp(I ;3k, Sk)

and f (I) with respect to filterF (β). Intuitively, the
biggerd(β) is, the more informationF (β) carries, since
it reports a big difference betweenp(I ;3k, Sk) and
f (I). Therefore, we should choose the filter which has
the maximal distance, i.e.,

F (k+1)= arg max
F (β)∈B/Sk

D
(
Ep(I ;3k,Sk)

[
H (β)

]
, f (β)

)
. (26)

Empirically we choose to measure the distanced(β)
in terms ofL p-norm, i.e.,

F (k+1)= arg max
F (β)∈B/Sk

1

2

∣∣ f (β)− Ep(I ;3k,Sk)

[
H (β)

]∣∣
p
.

(27)

In the experiments of this paper, we choosep = 1.
To estimatef (β) and Ep(I ;3k,Sk)[H

(β)], we applied
F (β) to the observed imageIobs and the synthesized
imageI syn sampled from thep(I ;3k, Sk), and substi-
tute the histograms of the filtered images forf (β) and
Ep(I ;3k,Sk)[H

(β)], i.e.,

F (k+1)= arg max
F (β)∈B/Sk

1

2

∣∣Hobs(β)− H syn(β)
∣∣. (28)

The filter selection procedure stops when thed(β)
for all filters F (β) in the filter bank are smaller than
a constantε. Due to fluctuation, various patches of
the same observed texture image often have a certain
amount of histogram variance, and we use such a vari-
ance forε.

In summary, we propose the following algorithm for
filter selection.

Algorithm 3. Filter Selection

LetB be a bank of filters,S the set of selected filters,
Iobs the observed texture image,

andI syn the synthesized texture image.

Initialize k = 0, S← ∅, p(I)← uniform dist.
I syn← uniform noise.

Forα = 1, . . . , |B| do

ComputeIobs(α) by applyingF (α) to Iobs.

Compute histogramHobs(α) of Iobs(α) .

Repeat

For eachF (β) ∈ B/Sdo

ComputeI syn(β) by applyingF (β) to I syn

Compute histogramH syn(β) of I syn(β)

d(β) = 1
2|Hobs(β) − H syn(β)|,8

ChooseF (k+1) so thatd(k+ 1) = max{d(β) :
∀F (β) ∈ B/S}

S← S∪ {F (k+1)}, k← k+ 1.

Starting fromp(I) andI syn, run algorithm 1 to
compute newp∗(I) andI syn∗.

p(I)← p∗(I) andI syn← I syn∗.
Until d(β) < ε

Before we conclude this section, we would like to
mention that the above criterion for filter selection is
related to the minimax entropy principle studied in
(Zhu et al., 1996). The minimax entropy principle sug-
gests that the optimal set of filtersSK should be cho-
sen to minimize the Kullback-Leibler distance between
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p(I ;3K , SK ) and f (I), and the latter is measured by
the entropy of the modelp(I ;3K , SK ) up to a con-
stant. Thus at each stepk+1 a filter is selected so that
it minimizes the entropy ofp(I ;3k, Sk) by gradient
descent, i.e.,

F (k+1) = arg max
F (β)∈B/Bk

entropy(p(I ;3k, Sk))

− entropy(p(I ;3+, S+))

where S+ = Sk ∪ {F (β)} and 3+ is the new La-
grange parameter. A brief derivation is given in the
Appendix.

5. Experiments in One Dimension

In this section we illustrate some important concepts of
the FRAME model by studying a few typical examples
for 1D texture modeling. In these experiments, the
filters are chosen by hand.

For one-dimensional texture the domain is a discrete
arrayD = [0, 255], and a pixel is indexed byx instead
of Ev. For anyx ∈ [0, 255], I(x) is discretized intoG
grey levels, withG = 16 in Experiments 1 and 3, and
G = 64 in Experiment 2.

Experiment 1. This experiment is designed to show
the analogy between filters in texture modeling and vo-
cabulary in language description, and to demonstrate
how a texture can be specified by the marginal distri-
butions of a few well selected filters.

The observed texture, as shown in Fig. 1(a), is a
periodic pulse signal with periodT = 8, i.e.,I(x) = 15
once every 8 pixels andI(x) = 0 for all the other pixels.
First we choose an intensity filter, and the filter response
is the signal itself. The synthesized texture by FRAME
is displayed in Fig. 1(b). Obviously it has almost the
same number of pulses as the observed one, and so
has approximately the same marginal distribution for
intensity. Unlike the observed texture, however, these
pulses are not arranged periodically.

To capture the period of the signal, we add one
more special filter, an 8× 1 rectangular filter: [1, 1,
1, 1, 1, 1, 1, 1], and the synthesized signal is shown in
Fig. 1(c), which has almost the same appearance as in
Fig. 1(a). We can say that the probabilityp(I) specified
by these two filters models the properties of the input
signal very well.

Figure 1(d) is the synthesized texture using a non-
linear filter which is an 1D spectrum analyzerSP(T)

Figure 1. The observed and synthesized pulse textures: (a) the
observed, (b) synthesized using only the intensity filter, (c) intensity
filter plus rectangular filter withT = 8, (d) Gabor filter withT = 8,
and (e) Gabor filter plus intensity filter.

with T = 8. Since the original periodic signal has
flat power spectrum, and the Gabor filters only extract
information in one frequency band, therefore the tex-
ture synthesized underp(I) has power spectrum near
frequency2π

8 but are totally free at other bands. Due
to the maximum entropy principle, the FRAME model
allows for the unconstrained frequency bands to be as
noisy as possible. This explains why Fig. 1(d) is noise
like while having roughly a period ofT = 8. If we
add the intensity filter, then probabilityp(I) captures
the observed signal again, and a synthesized texture is
shown in Fig. 1(e).

This experiment shows that the more filters we use,
the closer we can match the synthesized images to the
observed. But there are some disadvantages for using
too many filters. Firstly, it is computationally expen-
sive, and secondly, since we have few observed exam-
ples, it may overly constrain the probabilityp(I), i.e.,
it may makep(I) ‘colder’ than it should be.

Experiment 2. In this second experiment we compare
FRAME against Gaussian MRF models by showing the
inadequacy of the GMRF model to express high order
statistics.

To begin with, we choose a gradient filter∇ with im-
pulse response [−1, 1] for comparison, and the filtered
image is denoted by∇I .

The GMRF models are concerned with only the
mean and variance of the filter responses. As an
example, we put the following two constraints on
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Figure 2. (a) The designed marginal distribution of∇I , and (b) the
designed marginal distribution of1I .

distribution p(I),

Ep[∇I(x)]= 0 and Ep[∇I(x)2]= 12.0 ∀x ∈D.
Since we use a circulant boundary, the first constraint
always holds, and the resulting maximum entropy
probability is

P(I) = 1

Z
exp

{
−λ

∑
x

(I(x + 1)− I(x))2
}
.

The numeric solution given by the FRAME algorithm
is λ = 0.40, and two synthesized texture images are
shown in Figs. 3(b) and (c). Figure 3(a) is a white noise
texture for comparison.

As a comparison, we now ask∇I(x) to follow
the distribution shown in Fig. 2(a). Clearly in this
caseEp[∇I(x)] is a non-Gaussian distribution with
first and second moments as before, i.e., mean= 0
and variance= 12.0. Two synthesized textures are
displayed in Figs. 3(d) and (e). The textures in

Figure 3. (a) The uniform white noise texture, (b, c) the texture
of GMRF, (d, e) the texture with higher order statistics, and (f) the
texture specified with one more filter.

Figs. 3(d) and (e) possess the same first and second
order moments as in Figs. 3(b) and (c), but Figs. 3(d)
and (e) have specific higher order statistics and looks
more specific than in Figs. 3(b) and (c). It demonstrates
that the FRAME model has more expressive power than
the GMRF model.

Now we add a Laplacian filter1 with impulse re-
sponse [0.5,−1.0, 0.5], and we ask1I(x) to follow the
distribution shown in Fig. 2(b). Clearly the number of
peaks and valleys inI(x) are specified by the two short
peaks in Fig. 2(b), the synthesized texture is displayed
in Fig. 3(f). This experiment also shows the analogy
between filters and vocabulary.

Experiment 3. This experiment is designed to
demonstrate how a single nonlinear Gabor filter is capa-
ble of forming global periodic textures. The observed
texture is a perfect sine wave with periodT1= 16, hence
it has a single Fourier component. We choose the spec-
trum analyzerSP(T)with periodT = 16. The synthe-
sized texture is in Fig. 4(a). The same is done for
another sine wave that has periodT2 = 32, and corre-
spondingly the result is shown in Fig. 4(b). Figure 4
show clear globally periodic signals formed by single
local filters. The noise is due to the frequency resolu-
tion of the filters. Since the input textures are exactly
periodic, the optimal resolution will requires the Gabor
filters to be as long as the input signal, which is com-
putationally more expensive.

6. Experiments in Two Dimensions

In this section, we discuss texture modeling experi-
ments in two dimensions. We first take one texture
as an example to show in detail the procedure of Al-
gorithm 3, then we will apply Algorithm 3 to other
textures.

Figure 5(a) is the observed image of animal fur. We
start from the uniform noise image in Fig. 5(b). The
first filter picked by the algorithm is a Laplacian of
Gaussian filterLG(1.0) and its window size is 5× 5.
It has the largest error(d(β) = 0.611) among all the
filters in the filters bank. Then we synthesize tex-
ture as shown in Fig. 5(c), which has almost the same
histogram at the subband of this filter (the errord(β)
drops to 0.035).

Comparing Fig. 5(c) with Fig. 5(b), we notice
that this filter captures local smoothness feature of
the observed texture. Then the algorithm sequen-
tially picks five more filters. They are(1) G cos(6.0,
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Figure 4. The observed textures are the pure sine waves with periodT = 16, and 32, respectively. Periodic texture synthesized by a pair of
Gabor filters: (a)T = 16, and (b)T = 32.

Figure 5. Synthesis of the fur texture: (a) is the observed texture,
and (b, c, d, e, f) are the synthesized textures usingK = 0, 1, 2, 3, 6
filters respectively. See text for interpretation.

120◦), (2) G cos(2.0, 30◦), (3) G cos(12.0, 60◦),
(4) G cos(10.0, 120◦), (5) intensity filterδ( ), each
of which captures features at various scales and
orientations. The sequential conditional errors for these
filters are respectively 0.424, 0.207, 0.132, 0.157,
0.059 and the texture images synthesized usingk =

2, 3, 6 filters are shown in Figs. 5(d–f). Obviously,
with more filters added, the synthesized texture gets
closer to the observed one.

To show more details, we display the subband im-
ages of the 6 filters in Fig. 6, the histograms of these
subbandsH (α) and the corresponding estimated param-
etersλ(α) are plotted in Figs. 7 and 8, respectively.

In Fig. 7, the histograms are approximately Gaus-
sian functions, and correspondently, the estimatedλ(α)

in Fig. 8 are close to quadratic functions. Hence in this
example, the high order moments seemly do not play a
major role, and the probability model can be made sim-
pler. But this will not be always true for other textures.
In Fig. 8, we also notice that the computedλ(α) be-
comes smaller and smaller whenα gets bigger, which
suggests that the filters chosen in later steps make less
and less contribution top(I), and thus confirms our
early assumption that the marginal distributions of a
small number of filtered images are good enough to
capture the underlying probability distributionf (I).

Figure 9(a) is the scene of the mud ground with
footprints of animals, these footprints are filled with

Figure 6. The subband images by applying the 6 filters to the fur
image: (a) Laplacian of Gaussian (T = 1.0), (b) Gabor cosine (T =
6.0, θ = 120◦), (c) Gabor cosine (T = 2.0, θ = 30◦), (d) Gabor
cosine (T = 12, θ = 60), (e) Gabor cosine(T = 10.0, θ = 120◦),
and (f) intensity filter.
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Figure 7. a, b, c, d, e, f are respectively the histogramsH (α) for α = 1, 2, 3, 4, 5, 6.

Figure 8. a, b, c, d, e, f are respectively theλ(α) for α = 1, 2, 3, 4, 5, 6.

water and get brighter. This is a case of sparse fea-
tures. Figure 9(b) is the synthesized texture using five
filters chosen by Algorithm 3.

Figure 10(a) is an image taken from the skin of chee-
tah. the synthesized texture using 6 filters is displayed
in Fig. 10(b). We notice that in Fig. 10(a) the texture

is not homogeneous, the shapes of the blobs vary with
spatial locations and the left upper corner is darker than
the right lower one. The synthesized texture, shown in
Fig. 10(b), also has elongated blobs introduced by dif-
ferent filters, but we notice that the bright pixels spread
uniformly across the image.
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Figure 9. (a) The observed texture—mud, and (b) the synthesized one using five filters.

Figure 10. (a) The observed texture—cheetah blob, and (b) the synthesized one using six filters.

Finally we show a texture of fabric in Fig. 11(a),
which has clear periods along both horizontal and
vertical directions. We want to use this texture to test
the use of non-linear filters, so we choose two spectrum
analyzers to capture the first two salient periods, one in
the horizontal direction, the other in the vertical direc-
tion. The filter responsesI (α) α = 1, 2, are the sum
of squares of the sine and cosine component responses.
The filter responses are shown in Figs. 11(c, d), and are
almost constant. We also use the intensity filter and the
Laplacian of Gaussian filterLG(

√
2/2) (with window

size 3× 3) to take care of the intensity histogram and
the smoothness. The synthesized texture is displayed
in Fig. 11(b). If we carefully look at Fig. 11(b), we can

see that this synthesized texture has mis-arranged lines
at two places, which may indicate that the sampling
process was trapped in a local maximum ofp(I).

7. The Sampling Strategy for Textons

In this section, we study a special class of textures
formed from identical textons, which psychophysicists
studied extensively. Such texton images are consid-
ered as rising from a different mechanism from other
textures in both psychology perception and previous
texture modeling, and the purpose of this section is
to demonstrate that they can still be modeled by the
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Figure 11. (a) The input image of fabric, (b) the synthesized image with two spectrum analyzers plus the Laplacian of Gaussian filter. (c, d)
the filter response of the two spectrum analyzers for the fabric texture.

FRAME model, and to show an annealing strategy for
computingp(I ;3K , SK ).

Figures 12(a) and (b) are two binary (−1,+1 for
black and white pixels) texton images with circle and
cross as the primitives. These two image are simply
generated by sequentially superimposing 128 15× 15
masks on a 256×256 lattice using uniform distribution,
provided that the dropping of one mask does not destroy
the existing primitives. At the center of the mask is a
circle (or a cross).

For these textures, choosing filters seems easy: we
simply select the above 15×15 mask as the linear filter.

Figure 12. Two typical texton images (a) circle, and (b) cross.

Take the circle texton as an example. By applying the
filter to the circle image and a uniform noise image,
we obtain the histogramsHobs (solid curve) andH(x)
(dotted curve) plotted in Fig. 13(a). We observe that
there are many isolated peaks inHobs, which set up
“potential wells” so that it becomes extremely unlikely
to change a filter response at a certain location from
one peak to another by flipping one pixel at a time.

To facilitate the matching process, we propose the
following heuristics. We smoothHobswith a Gaussian
window Gσ , or equivalently run the “heat” diffusion
equation onHobs(x, t) within the interval [x0, xN ],
where x0 and xN are respectively the minimal and
maximal filter response.

d Hobs(x, t)

dt
= ∂2Hobs(x, t)

∂2x
,

Hobs(x, 0) = Hobs(x),
∂Hobs

∂x
(x0)= 0,

∂Hobs

∂x
(xN) = 0,

The boundary conditions help to preserve the total
“heat”. Obviously, the largert is, the smoother the
Hobs(x, t) will be. Therefore, we start from matching
H(x) to Hobs(x, t) with a larget (see Fig. 14(a), then
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Figure 13. (a) The solid curve is the histogram of the circle image, and the dotted curve is the histogram of the noise image, and (b) the
estimatedλ( ) function in the probability model for the image of circles.

Figure 14. The diffused histogramHobs(x, t) with t get smaller and smaller from a to f.

gradually decreaset and matchH(x) to the histograms
shown in Figs. 14(b–f) sequentially. This process is
similar to the simulated annealing method. The intu-
itive idea is to set up “bridges” between the peaks in
the original histogram, which encourages the filter re-
sponse change to the two ends, where the texton forms,
then we gradually destruct these “bridges”.

At the end of the process, the estimatedλ func-
tion for the circle texton is shown in Fig. 13(b), and
the synthesized images are shown in Fig. 15. We no-
tice that the cross texton is more difficult to deal
with because it has slightly more complex structures

than the circle, and may need more carefully designed
filters.

8. Discussion

Although there is a close relationship between FRAME
and the previous MRF models, the underlying philoso-
phies are quite different. Traditional MRF approaches
favor the specification of conditional distributions
(Besag, 1973). For auto-models,p(I(Ev) | I(−Ev)) are
linear regressions or logistic regressions, so the mod-
eling, inference, and interpretation can be done in a
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Figure 15. Two synthesized texton images.

traditional way. While it is computationally efficient
for estimating theβ coefficients, this method actually
limits our imagination for building a general model.
Since the only way to generalize auto-models in the
conditional distribution framework is to either increase
neighborhood size, and thus introduce more explana-
tory variables in these auto-regressions, or introduce
interaction terms (i.e., high order product terms of the
explanatory variables). However, even with a modest
neighborhood (e.g., 13× 13), the parameter size will
be too large for any sensible inference.

Our FRAME model, on the contrary, favors the spec-
ification of the joint distribution and characterizes lo-
cal interactions by introducing non-linear functions of
filter responses. This is not restricted by the neighbor-
hood size since every filter introduces the same num-
ber of parameters regardless of its size, which enables
us to explore structures at large scales (e.g., 33× 33
for the fabric texture). Moreover, FRAME can easily
incorporate local interactions at different scales and
orientations.

It is also helpful to appreciate the difference between
FRAME and the Gibbs distribution although both focus
on the joint distributions. The Gibbs distribution is
specified via potentials of variouscliques, and the fact
that most physical systems only have pair potentials
(i.e., no potentials from the cliques with more than
two pixels) is another reason why most MRF models
for textures are restricted to auto-models. FRAME, on
the other hand, builds potentials from finite-support fil-
ters and emphasizes the marginal distributions of filter
responses.

Although it may take a large number of filters to
model a wide variety of textures, when it comes to mod-
eling a certain texture, only a parsimonious set of the
most meaningful filters needs to be selected. This se-
lectivity greatly reduces the parameter size, thus allows
accurate inference and modest computing. So FRAME

is like a language: it has an efficient vocabulary (of fil-
ters) capable of describing most entities (textures), and
when it comes to a specific entity, a few of the most
meaningful words (filters) can be selected from the vo-
cabulary for description. This is similar to the visual
coding theory (Barlow et al., 1989; Field, 1989) which
suggests that the sparse coding scheme has advantages
over the compact coding scheme. The former assumes
non-Gaussian distributions forf (I), whereas the latter
assumes Gaussian distributions.

Compared to the filtering method, FRAME has the
following advantages: (1) solid statistical modeling,
(2) it does not rely on the reversibility or reconstruc-
tion of I from {I (α)}, and thus the filters can be designed
freely. For example, we can use both linear and non-
linear filters, and the filters can be highly correlated
to each other, whereas in the filtering method, a ma-
jor concern is whether the filters form a tight frame
(Daubechies, 1992).

There are various classifications for textures with
respect to various attributes, such as Fourier and
non-Fourier corresponding to whether the textures
show periodic appearance; deterministic and stochastic
corresponding to whether the textures can be charac-
terized by some primitives and placement rules; and
macro- and micro-textures in relation to the scales of
local structures. FRAME erases these artificial bound-
aries and characterizes them in a unified model with
different filters and parameter values. It has been well
recognized that the traditional MRF models, as spe-
cial cases of FRAME, can be used to model stochas-
tic, non-Fourier micro-textures. From the textures we
synthesized, it is evident that FRAME is also capable
of modeling periodic and deterministic textures (fab-
ric and pulses), textures with large scale elements (fur
and cheetah blob), and textures with distinguishable
textons (circles and cross bars), thus it realizes the full
potential of MRF models.
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But the FRAME model is computationally very ex-
pensive. The computational complexity of the FRAME
model comes from two major aspects. (1) When bigger
filters are adopted to characterize low resolution fea-
tures, the computational cost will increase proportion-
ally with the size of the filter window. (2) The marginal
distributionsEp[H (α)] are estimated from sampled im-
ages, which requires long iterations for high accuracy
of estimation. One promising way to reduce the com-
putational cost is to combine the pyramid represen-
tation with the pseudo-likelihood estimation (Besag,
1977). The former cuts the size of low resolution fil-
ters by putting them at the high levels of the pyramid as
did in (Popat and Picard, 1993), and the latter approx-
imatesEp[H (α)] by pseudo-likelihood and thus avoid
the sampling process. But this method shall not be
studied in this paper.

No doubt many textures will not be easy to model,
for example some human synthesized textures, such as
textures on oriental rugs and clothes. It seems that the
synthesis of such textures requires far more sophisti-
cated or high-level features than those we used in this
paper, and these high-level features may correspond to
high-level visual process. At the same time, many the-
oretical issues remain yet to be fully understood, for
example, the convergence properties of the sampling
process and the definition of the best sampling proce-
dures; the relationship between the sampling process
and the physical process which forms the textures of
nature and so on; and how to apply this texture model
to the image segmentation problem (Zhu and Yuille,
1996). It is our hope that this work will simulate future
research efforts in this direction.

Appendix: Filter Pursuit and Minimax Entropy

This appendix briefly demonstrates the relationship
between the filter pursuit method and the minimax
entropy principle (Zhu et al., 1996).

Let p(I ;3K , SK ) be the maximum entropy distri-
bution obtained at stepk (see Eq. (18)), since our
goal is to estimate the underlying distributionf (I),
the goodness ofp(I ;3K , SK ) can be measured by the
Kullback-Leibler distance betweenp(I ;3K , SK ) and
f (I) (Kullback and Leibler, 1951):

K L( f (I), p(I ;3K , SK ))

=
∫

f (I) log
f (I)

p(I ;3K , SK )
dI

= E f [log f (I)] − E f [log p(I ;3K , SK )].

SinceEp(I ;3K ,SK )[H
(α)] = E f [H (α)] for α = 1, 2, . . . ,

K , it can be shown thatE f [log p(I ;3K , SK )] =
Ep(I ;3K ,SK )[log p(I ;3K , SK )] = −entropy(p(I ;3K ,

SK )), thus

K L( f (I), p(I ;3K , SK ))

= entropy(p(I ;3K , SK ))− entropy( f (I)).

As entropy( f (I)) is fixed, to minimizeK L( f, p(I ;
3K , SK ))we need to chooseSK such thatp(I ;3K , SK )

has the minimum entropy, while given the selected fil-
ter setSK , p(I ;3K , SK ) is computed by maximizing
entropy(p(I)). In other words, for a fixed filter number
K , the best set of filters is chosen by

SK = arg min
SK⊂B

{
max
p∈ÄK

entropy(p(I))
}

(29)

whereÄK is defined as Eq. (14). We call Eq. (29) the
minimax entropy principle(Zhu et al., 1996).

A stepwise greedy algorithm to minimize the en-
tropy proceeds as the following. At stepk + 1,
suppose we chooseF (β), and obtain the ME distribu-
tion p(I ;3+, S+) so thatEp(I ;3+,S+)[H

(α)] = f (α) for
α = 1, 2, .., k, β. Then the goodness ofF (β) is mea-
sured by the decrease of the Kullback-Leibler distance
K L( f (I), p(I ;3k, Sk))−K L( f (I), p(I ;3+, S+)). It
can be shown that

K L( f (I), p(I ;3k, Sk))− K L( f (I), p(I ;3+, S+))

= 1

2

(
f (β) − Ep(I ;3k,Sk)

[
H (β)

]T)
M−1

× ( f (β) − Ep(I ;3k,Sk)

[
H (β)

])
, (30)

whereM is a covariance matrix ofH (β), for details see
(Zhu et al., 1996). Equation (30) measures a distance
between f (β) and Ep(I ;3k,Sk)[H

(β)] in terms of vari-
ance, and therefore suggests a new form for the distance
D(Ep(I ;3k,Sk)[H

(β)], f (β)) in Eq. (26), and this new
form emphasizes the tails of the marginal distribution
where important texture features lies, but the computa-
tional complexity is higher than theL1-norm distance.
So far we have shown the filter selection in Algorithm 3
is closely related to a minimax entropy principle.
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Notes

1. Among statisticians, MRF usually refers to those models where
the Markov neighborhood is very small, e.g., 2 or 3 pixels away.
Here we use it for any size of neighborhood.

2. Here, it is reasonable to assume thatφn(x) is independent of
φ j (x) if i 6= j .

3. It may help understand the spirit of this theorem by comparing it
to the slice-reconstruction of 3D volume in tomography.

4. Throughout this paper, we use circulant boundary conditions.
5. Empirically, 128× 128 or 256× 256 seems to give a good esti-

mation.
6. We assume the histogram of each subbandI (α) is normalized

such that
∑

i H (α)
i = 1, therefore, all the{λ(α)i , i = 1, . . . , L}

computed in this algorithm have one extra degree of freedom for
eachα, i.e., we can increase{λ(α)i , i = 1, . . . , L} by a constant
without changingp(I ;3K , SK ). This constant will be absorbed
by the partition functionZ(3K ).

7. Note that the white noise image with uniform distribution are the
samples fromp(I ;3K , SK ) with λ(α)i = 0.

8. Since both histograms are normalized to havesum= 1, then
error ∈ [0, 1]. We note this measure is robust with respect to the
choice of the bin numberL (e.g., we can takeL = 16, 32, 64),
as well as the normalization of the filters.
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