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Optimal Approximations by Piecewise Smooth 
Functions and Associated Variational Problems’ 

DAVID MUMFORD 
Harvard University 

AND 

JAYANT SHAH 
Northeastern University 

1. Introduction and Outline 

The purpose of this paper is to introduce and study the most basic properties 
of three new variational problems which are suggested by applications to com- 
puter vision. In computer vision, a fundamental problem is to appropriately 
decompose the domain R of a function g ( x ,  y) of two variables. To explain this 
problem, we have to start by describing the physical situation whch produces 
images: assume that a three-dimensional world is observed by an eye or camera 
from some point P and that g l ( p )  represents the intensity of the light in this 
world approaching the point P from a direction p. If one has a lens at P 
focussing this light on a retina or a film-in both cases a plane domain R in 
which we may introduce coordinates x ,  y-then let g ( x ,  y)  be the strength of 
the light signal striking R at a point with coordinates ( x ,  y); g ( x ,  y)  is 
essentially the same as gl( p)-possibly after a simple transformation given by 
the geometry of the imaging system. The function g ( x ,  y )  defined on the plane 
domain R will be called an image. What sort of function is g? The light reflected 
off the surfaces Sj of various solid objects 0; visible from P will strike the 
domain R in various open subsets Ri. When one object 0, is partially in front of 
another object 0, as seen from P, but some of object 0, appears as the 
background to the sides of 0,, then the open sets R ,  and R ,  will have a common 
boundary (the ‘edge’ of object 0, in the image defined on R )  and one usually 
expects the image g ( x ,  y )  to be discontinuous along this boundary: see Figure 1 
for an illustration of the geometry. 

Other discontinuities in g will be caused by discontinuities in the surface 
orientation of visible objects (e.g., the ‘edges’ of a cube), discontinuities in the 
objects albedo (i.e., surface markings) and discontinuities in the illumination 

‘A preliminary version of this paper was submitted by invitation in 1986 to “Computer Vision 1988”, 
L. Erlbaum Press, but it has not appeared! 
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Figure 1. An h u g e  of a 3D scene. 

(e.g., shadows). Including all these effects, one is led to expect that the image 
g ( x , y )  is piece-wise smooth to a first approximation, i.e., it is well modelled by a 
set of smooth functions f i  defined on a set of disjoint regions R i  covering R. This 
model is, however, far from exact: (i) textured objects such as a rug or frag- 
mented objects such as a canopy of leaves define more complicated images; (ii) 
shadows are not true discontinuities due to the penumbra; (iii) surface markings 
come in all sorts of misleading forms; (iv) partially transparent objects (e.g., 
liquids) and reflecting objects give further complications; (v) the measurement of 
g always produces a corrupted, noisy approximation of the true image g. 

In spite of all this, the piece-wise smooth model is serviceable on certain 
scales and to a certain approximation. Restating these ideas, the segmentation 
problem in computer vision consists in computing a decomposition 

R = R ,  U . * *  U R ,  

of the domain of the image g such that 

(a) the image g vanes smoothly and/or slowly within each R ; ,  
(b) the image g varies discontinuously and/or rapidly across most of the 

From the point of view of approximation theory, the segmentation problem 
may be restated as seeking ways to define and compute optimal approximations of 
a general function g ( x ,  y )  by piece-wise smooth functions f ( x ,  y), i.e., functions 
f whose restrictions f i  to the pieces R i  of a decomposition of the domain R are 
differentiable. Such a problem arises in many other contexts: the perception of 
speech requires segmenting time, the domain of the speech signal, into intervals 

boundary r between different R ;. 
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during which a single phoneme is being pronounced. Sonar, radar or laser 
“range” data, in which g(x ,  y)  represents the distance from a fixed point P in 
direction (x, y) to the nearest solid object, are other computer vision signals 
whose domains must be segmented. CAT scans are estimates of the density of the 
body at points ( x ,  y, z )  in three-space: segmentation is needed to identify the 
various organs of the body. 

To make mathematics out of this, we must give a precise definition of what 
constitutes an optimal segmentation. In this paper we shall study three function- 
als which measure the degree of match between an image g ( x ,  y)  and a 
segmentation. We have a general functional E which depends on two parameters 
p and v and two limiting cases E, and E,  which depend on only one parameter 
v and correspond to the limits of E as the parameter p tends to 0 and 00, 

respectively. 
We now define these three functionals and motivate them in terms of the 

segmentation problem. In all these functionals, we use the following notation: the 
R, will be disjoint connected open subsets of a planar domain R each one with a 
piece-wise smooth boundary and r will be the union of the part of the 
boundaries of the Ri  inside R, so that 

R = R ,  u . . .  UR, u r. 
(Conversely, we could start from a closed set I‘ made up of a finite set of singular 
points joined by a finite set of smooth arcs meeting only at their endpoints, and 
let the R, be the connected components of R - r.) For the functional E, let f 
be a differentiable function on U R i ,  which is allowed to be discontinuous across 
r. Let 

where lI‘l stands for the total length of the arcs making up r. The smaller E is, 
the better (f, r) segments g: 

(i) the first term asks that f approximates g, 
(ii) the second term asks that f - and hence g - does not vary very much 

(iii) the third term asks that the boundaries I’ that accomplish this be as short 

Dropping any of these three items, inf E = 0: without the first, take f = 0, 
r = 0 ; without the second, take f = g, r = 0 ; without the third, take r to be 
a fine grid of N horizontal and vertical lines, Ri  = N 2  small squares, f = average 
of g on each R i .  The presence of all three terms makes E interesting. 

The pair (f, r) has an interesting interpretation in the context of the original 
computer vision problem: (f, I‘) is simply a cartoon of the actual image g; f 
may be taken as a new image in which the edges are drawn sharply and precisely, 

on each Ri, 

as possible. 
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the objects surrounded by the edges are drawn smoothly without texture. In other 
words, (f, r) is an idealization of a true-life complicated image by the sort of 
image created by an artist. The fact that such cartoons are perceived correctly as 
representing essentially the same scene as g argues that this is a simplification of 
the scene containing many of its essential features. 

We do not know if the problem of minimizing E is well posed, but we 
conjecture this to be true. For instance we conjecture that for all continuous 
functions g ,  E has a minimum in the set of all pairs (f, I?), f differentiable on 
each Ri, r a finite set of singular points joined by a finite set of C1-arcs. 

A closely related functional defined for functions g and f on a lattice instead 
of on a plane domain R was first introduced by D. and S. Geman [6] ,  and has 
been studied by Blake and Zisserman [4], J. Marroquin [lo] and others. The 
variational problem 6E = 0 turns out to be related to a model introduced 
recently by M. Gurtin [8] in the study of the evolution of freezing/melting 
contours of a body in three-space. 

The second functional E, is simply the restriction of E to piecewise constant 
functions f: i.e., f = constant ui on each open set Ri. Then multiplying E by 
pP2 we have 

where v, = v / p * .  It is immediate that this is minimized in the variables a,  by 
setting 

a ,  = meanR,(g) = JJ gdxdy 
R, 

so we are minimizing 

As we shall see, if r is fixed and p + 0, the f whch minimizes E tends to a 
piecewise constant limit, so one can prove that E, is the natural limit functional 
of E as p + 0. E,  may be viewed as a modification of the usual Plateau problem 
functional, length (r), by an external force term that keeps the regions R j--soap 
bubbles in the Plateau problem setting-from collapsing. Whereas the two- 
dimensional Plateau problem has only rather uninteresting extrema with r made 
up of straight line segments (cf. Allard-Almgren [l]), the addition of the pressure 
term makes the infimum more interesting. Having the powerful arsenal of 
geometric measure theory makes it straightforward to prove that the problem of 
minimizing E, is well posed: for any continuous g ,  there exists a r made up of a 
finite number of singular points joined by a finite set of C2-arcs on which E, 
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Figure 2. Continuous vs. discrete segmentation. 

attains a minimum. E, is also closely related to the energy functional in the Ising 
model. For this, we restrict f even further to take on only two values: + 1  and 
- 1, and we assume g and f are functions on a lattice instead of functions on a 
two-dimensional region R. In this setting, I' is the path made up of lines between 
all pairs of adjacent lattice points on which f changes sign (see Figure 2). Then 
E, reduces to 

which is the Ising model energy. 
The third functional Em depends only on and is given by 

where vm is a constant, ds is arc length along r and d / a n  is a unit normal to r. 
Using dx, dy as coordinates on the tangent plane to R ,  so that ds = {w, 
Em may be rewritten as the integral along r of a generalized Finder metric 
p(dx ,  dy, x ,  y )  (a function p such that p( tdx ,  tdy,  x ,  y )  = It1 p(dx,  dy, x ,  y ) ) ,  
namely: 



582 D. MUMFORD AND J. SHAH 

r 

Figure 3. Curvilinear coordinates r ,  s. 

Intuitively, minimizing E, is then a generalized geodesic problem. It asks for 
paths I‘ such that (i) length (I?) is as short as possible while (ii) normal to r, g 
has the largest possible derivative. Looking at the graph of g as a landscape, r is 
the sort of path preferred by mountain goats-short but clinging to the face of 
cliffs wherever possible. 

At first glance, E,  looks completely unrelated to E. In fact, like E, it is 
essentially E with a special choice of f :  

We consider only smooth parts of r and take f = g outside an infinitesimal 
neighborhood of r. Near r, set 

where r ,  s are curvilinear coordinates defined by normals of r (see Figure 3), 
and E is infinitesimal. Then if p = 1 /~ ,  v = ~ E V , ,  it can be checked that 

We shall see, moreover, that for fixed r, if p is very large, the f which minimizes 
E is very close to the above f with E = 1/p, so this E, is a natural limit 
functional of E as p .+ 00. 

Minimizing Em ouer all r is not a well-posed problem in most cases: if 
(Ivg1I2 5 v, everywhere, then E, 2 0 and the simple choice r = 0 minimizes 
E,. But if llvg112 > v, on a non-empty open set U, then consider r made up of 
many pieces of level curves of g within U. On such r’s, E, tends to - 00. For p 
large but not infinite, the pair (f, r) which minimizes E itself presumably has a 
r made up of many components in this open set U. Minimizing Em on a suitably 
restricted class of r’s can, however, be a well-posed problem. 

We finish this introduction by giving an outline of the results of each section. 
The proofs in the later sections will sometimes be quite technical and hence it 
seems useful to describe the main results here before plunging into detail. 

In Section 2, we analyze the variational equations for the functional E. Fixing 
I?, standard calculus of variations shows that E is a positive definite quadratic 
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function in f with a unique minimum. The minimum is the function f which 
solves the elliptic boundary value problem on each R;, 

Here a R j  is the boundary of R ; ,  and a / a n  is a unit normal vector to aRi.  The 
second condition means that a f / a n  is zero on both sides of r and on the inside 
of a R ,  the boundary of the whole domain R. Writing f r  for this solution, E 
reduces to a function of r alone: 

Next, we make an infinitesimal variation of r by a normal vector field 
X = a ( x ,  y )  d / a n  defined along r and zero in the neighborhood of the singular 
points of I’. We prove: 

6 
n E (  f r ,  r) = J a ( e + -  e - +  v curv(I’)) ds, 

r 

where 

f :  = boundary values of fr. 

Therefore if E(f,, r) is minimized at r, I‘ must satisfy the variational equation 

Finally, we look at possible singular points of I‘. Here the situation is 
complicated by the fact that although the minimizing fr is pointwise bounded: 

its gradient may be unbounded in a neighborhood of the singular points of I’. 
However, the behavior of the solutions of elliptic boundary value problems in 
domains with “corners” has been studied by several people, starting with a classic 
paper of Kondratiev [9] and recently surveyed in a book of Grisvard [7]. Using 
these bounds, and assuming that the singular points are given by a finite number 
of Cz-arcs with a common endpoint, it is easy to show, by elementary compar- 
isons of E(f,, r) with E on modified r’s, that if E( f r ,  r) attains a minimum at 
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some r, then the only possible singularities of I‘ are: 

(i) “triple points” P where three C2-arcs meet with 120°-angles, 
(ii) “crack-tips” P where a single C2-arc ends and no other arc meets P. 

Moreover, on the boundary of the domain R,  another possibility is: 

(iii) “boundary points” P where a single C2-arc of r meets perpendicularly 

There is a wrinkle here though: assuming that E has a minimum when r 
varies over some reasonable set of possible curves, it is not clear that the 
minimizing r will have singular points made up of C2-arcs. Instead there might 
well be a larger class of nastier singular points that can arise as minima. In 
Section 3, we look more closely at crack-tips with this possibility in mind. First of 
all, assuming the crack-tip is C2 we calculate the first variation of E with respect 
to infinitesimal extensions or truncations of I’ at the crack tip. We find a new 
restriction on minimizing r’s, which is the analogue of Griffiths’ law of cracks in 
solid mechanics. Secondly, we consider the possibility that the crack-tip might be 
given by 

a smooth point of JR.  

y = (ux3’2 + +(x), x 2 0 ,  + a C2-function. 

Such singular points are called cusps in algebraic geometry. We give several 
arguments to make it plausible that such a singularity will occur on minimizing 
r ’s. Moreover, in the natural world, approximate cusps certainly look like they 
appear at the ends of arcs in other situations which may be modelled by free 
boundary value problems. For example, consider sand bars that stick out into an 
area with a strong transverse current. Sand may be washed away or may accrete, 
hence the boundary is free to shift in both directions, and its tip may likewise 
erode or grow. Figure 4 shows a chart of Cape Cod and of Monomoy Island, 
whose outlines are strongly reminiscent of cusps. 

In Section 4, we study E for small p. We use the isoperimetric constant A r  
which gets small only if some component W of R - I’ has a narrow “neck” (see 
Figure 5) .  By definition, A, is the minimum of S/min(A,, A,) over all diagrams 
as in the figure. We prove that 

where vo = v/p2.  We then study the first variation of Eo(r) .  We show firstly that 
the first variation of E( fr, r) also tends to the first variation of E,( r). Secondly, 
the equation for the first variation of E , ( r )  being zero turns out to be the 
second-order differential equation for r: 
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Figure 5. Definition of the isoperimetric constant. 
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where g ;  and gr are the means of g on the components of R - to each side 

Section 5 is devoted to the proof that min E , ( r )  exists for a r which is a 
finite union of C2-arcs joining a finite number of triple points or border points. 
We dip deeply into the toolkit of geometric measure theory, using especially the 
results in Simon [13]. The fundamental idea is to enlarge the set of allowable r’s 
until one of the compactness results of geometric measure theory can be applied 
to show that min E, exists for a possibly very wild r. And once this I? is in hand, 
use the vanishing of its first variation to show that r is in fact very nice. More 
precisely, what we do is to shift the focus from r to a decomposition of R into 
disjoint measurable sets: 

of r. 

R = R,  U U R ,  

and define 

For this to make sense, R i  must be a so-called Cucciopoii set, a measurable set 
whose boundary as a current aRi has finite length, laR,I. Then, for each n ,  we 
show that En attains its minimum, and that at t h s  minimum, R ,  is an open set 
(up to a measure zero set) with piecewise C2 boundary. We show finally that as n 
increases, the minimum eventually increases if all R j  have positive measure. How 
should Cacciopoli sets be visualized? Note that the boundaries of Cacciopoli sets 
are not fractals: their Hausdorff dimension is 1 since their length is finite, but 
they will, in general, be made up of infinitely many rectifiable arcs with finite 
total length. A good way to imagine what Cacciopoli sets are like is to look at the 
segmentation of the world into sea and land. Some coastlines are best seen as 
fractals: Richardson’s data on the indefinite growth of the length of rocky coasts 
with the scale of the yardstick was one of the inspirations of Mandelbrot’s theory 
of fractals. But other coasts are mixtures of smooth and ragged parts, and may 
serve as models (see Figure 6). 

In Section 6 we study E for large p .  The first step is to use Green’s theorem 
and rewrite E as an integral only over r: let g,, and fr be the solutions of 

Then we show that 
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where f: are the boundary values of f r  along I' and a/an points from the - 
side of r to the + side. Moreover, if 1/p is small, we prove that, away from the 
singularities of r, 

while uniformly on R 

from which we deduce that 
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where v, = 3pv. We then study the first variation of Em(r). We show firstly that 
the variation of E( fr, r) also tends to the first variation of Em( r). Secondly, the 
equation for the first variation of Em( I-) being zero turns out to be a second-order 
differential equation for r. Let Hg be the matrix of second derivatives of g, let tr  
and nr  be the unit tangent vector and unit normal vector for r. Then the 
equation is 

(To read this equation properly, note that vg,  Ag and Hg play the role of 
coefficients, tr and nr are 1-st derivatives of the solution curve and curv(I') is its 
2-nd derivative.) 

Finally, in Section 7, we look briefly at this equation, noting that like the 
equation for geodesics in a Lorentz metric, it has two types of local solutions: 
" space-like" solutions which locally minimize E, and " time-like" solutions 
which locally maximize Em. A general solution flips back and forth between the 
two types, with cusps marking the transition. Discussion of existence theorems 
for solutions of this differential equation is postponed to a later paper. 

We use the following standard notations throughout this paper: 

(a) For k 2 0 an integer and 1 5 p 
functions f on D with norm 

m, Wk(D) is the Banach space of 

(b) Ck is the class of functions with continuous derivatives through order k ,  
and Ck,' of those whose k-th derivatives satisfy a Lipshitz condition. The 
boundary of a domain D is said to be in one of these classes if D is 
represented locally by y < f ( x )  (or y > f ( x )  or x < f (  y )  or x > f( y)) ,  
where f belongs to the class. 

2. The First Variation 

As described in Section 1, we fix a region R in the plane with compact closure 
and piecewise smooth boundary and we fix a continuous function g on x. We 
also fix positive constants p and v. We consider next a subset r c R made up of 
a finite set { y,} of curves. We shall assume for our analysis initially that the y, 
are simple C','-curves meeting aR and meeting each other only at their end- 
points. Finally, we consider a function f on R - I' which we take initially to be 
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C’ with first derivatives continuous up to all boundary points.2 For each f and 
r, we have the functional E defined in Section 1: 

The fundamental problem is to find f and r which minimize the value of E. 
Note that by a scaling in the coordinates x ,  y in R and by a multiplicative 
constant in the functions f, g, we can transform E with any constants p ,  Y into 
the E for any other set of constants p,  v. Put another way, if p is measured in 
units of inverse distance in the R- plane, and the constant v is measured in units 
of (size of g)’/distance, then the three terms of E all have the same “dimension”. 
So fixing p ,  v is the same as fixing units of distance in R and of size of g. The 
purpose of this section is to study the effect of small variations of f and r on E 
and determine the condition for the first variation of E to be 0. These are, of 
course, necessary conditions for f and I’ to minimize E. 

The first step is to fix r as well as g and vary f. This is a standard variational 
problem. Let Sf represent a function of the same type as f. Then 

E ( f  + t Sf, r> - E(f, r)  

Thus 

Integrating by parts and using Green’s theorem3 we obtain 

2We shall weaken these conditions later to include certain f’s with more complicated boundary 
behavior, but this will not affect the initial arguments. Appendix 1 contains a full discussion of how 
regular the minimizing functions f will be at different points of R .  
’For Green’s theorem to be applicable, we must assume that f E 5’’. some p 2 1. Alternatively, by 
the last equation, a minimum f is a weak solution of o’/= p 2 ( f -  g) and, by the results in 
Appendix 1, f in fact has L P  second derivatives locally everywhere in R - r. 
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where B is the entire boundary of R - r, i.e., aR and each side of r. Now 
taking 6f to be a “test function”, non-zero near one point of R - r, zero 
elsewhere, and taking the limit over such 6 f ,  we deduce as usual that f satisfies 

on R - r. Now taking 6f to be non-zero near one point of B, zero elsewhere, we 
also see that 

= 0 on d R ,  and on the two sides y,’ of each y,. ( *  * )  a n  

As is well known, this determines f uniquely: the operator p 2  - v 2  is a 
positive-definite selfadjoint operator, and there is a Green’s function K ( x ,  y ;  u,  u )  
which is C” except on the diagonal ( x ,  y) = ( u ,  u )  where it has a singularity like 

1 
2n - - log( p / ( x  - u)’ + ( y  - u )2 ) 

such that, for each component Ri of R - r, and for each g, 

satisfies ( * )  and ( *  *)  on R i .  Further regularity results for this boundary value 
problem especially on the behavior of f near I’ are sketched in Appendix 1 and 
will be quoted as needed. 

If there were no boundaries at all, then Green’s function for this operator and 
the whole plane is obtained from the so-called “modified Bessel’s function of the 
second kind” KO (cf. Whittaker and Watson [14], Section 17.71, pp. 373-374): 

where K , ( r )  (defined for r > 0) is the solution of 

1 K,”+ T K , ’ - K , = O  

such that 

K o ( r )  - log(I/r) for r small, 

~ , ( r )  - m e - r  for r large. 

Its graph is depicted in Figure 7. 
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1 2 3 

Figure 7. Graph of the Green’s function and its asymptotes. 

Another way of characterizing K is that it is the Fourier transform of 

evaluated at (x - u, y - u) .  
Now look at the variation of E with respect to r. First consider moving r 

near a simple point P of r. Such a P lies on exactly one y, and, as y, is C1*’, we 
can write it in a small neighborhood U of P either as a graph y = h ( x ) ,  or as a 
graph x = h ( y ) .  Assume the former; then we can deform y, to 

y = h ( x )  + t S h ( x ) ,  

where Sh is zero outside a small neighborhood of x ( P )  (see Figure 8). If t is 
small, the new curve y,(t)  does not meet any other ys’s except at its endpoints 
and 

‘(‘1 = ya(t) u U 
B+a 

is an allowable deformation of r. Now we cannot speak of leaving f$xed while 
r moves, because f must be C’ on R - I? but will usually be discontinuous 
across r. Instead do this: Let f+ denote the function f in 

u+= ( (X ,Y) lY  ’ h ( X ) }  u 

and let f- denote f in 
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Figure 8. Deformation of r 

and choose C’ extensions of f’ from U+ to U and of f- from U -  to U. By the 
results in Appendix 1, f is C’ on both sides of r at all simple points of r, hence 
this is possible. Then for any small t, define 

if P G U ,  

if P E U ,  P below y,( t ) .  

off’ if P E U ,  P above y , ( t ) ,  
extension of f- 

+ v / [ / l  + ( h  + t 8 h ) ”  - 4-1 dx;  



OPTIMAL APPROXIMATIONS 

hence 

593 

(Sh)’dx. h’ 

Since y, is in C’.’, it has a curvature almost everywhere which is bounded and is 
given by 

h ” ( x )  
curv( y,) at (x ,  h (x) )  = 

(1 + h f ( X ) 2 ) 3 ’ 2 ’  

where curv > 0 means that y, is convex upwards (i.e., U ,  is convex, U- is not) 
while curv < 0 means y, is convex downwards (i.e., U- is convex, U, is not). 
Integrating by parts, we get 

(ds = infinitesimal arc length on y,). Note that the coefficient Sh/ 41 + h” has 
the simple interpretation as the amount of the displacement of the deformed r 
along the normal lines to the original r. Since this formula for G E / S y  holds for 
any Sh, at an extremum of E we deduce that, along each y,, 

( *  * * )  [ p 2 ( f + -  g)2 + ,,,+,I2] - [ r2 ( f - -  d2 + llof-1121 

+ v  curv(y,) = 0 .  

The terms in square brackets can be simply interpreted as the energy density 
corresponding to the functional E just above and just below the curve. In fact, 
write the energy density as e: 

then ( * * *)  says 

( * * * ’ )  e ( f + )  - e ( f - )  + v curv(y,) = 0 on y,. 
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(Note that if we fix f’ and f-, then what we have here is a 2-nd order ordinary 
differential equation for y,.) 

Next, we look at special points P of I‘: 
(a) points P where r meets the boundary of the region R, 
(b) “corners” P where two y,’s meet, 
(c) “ vertices” P where three or more y,’s meet, 
(d) “crack-tips” P where a y, ends but does not meet any other ys or aR. 

Before analyzing the restrictions at such points implied by the stationarity of E, 
we should reconsider what assumptions may reasonably be placed on f .  We saw 
above that for each fixed I’, there was a unique minimizing f: the f satisfying the 
elliptic boundary value problem (*), ( *  *). If I? is C’,’ and g is continuous, then 
the standard theory of elliptic operators sketched in Appendix 1 implies that f is 
C’ on the open set R - r and that, at all simple boundary points of I‘ and aR, 
f extends locally to a C’-function on the region plus its boundary. This shows 
that ( *  * * )  certainly holds along each y,. However, at corners, p is not always 
such a nice function. In fact, the typical behavior of f at a corner point with 
angle a is shown in the following example: 

Let z, w be complex variables and consider the conformal map w = z” ’~ 
between R, and R, (see Figure 9). Let z = reie and let 

Then f is a real-valued function on R, with 

v2f = 0, 

af = O  on a ~ , .  a n  

z-p I one w-p I one 

Figure 9. Straightening of a comer by a conformal map. 
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But note that 

595 

has an infinite limit as r + 0 if a > IT. 

V. A. Kondratiev [9] discovered that this type of singularity characterizes 
what happens to the solutions of elliptic boundary value problems at corners or 
even in “conical singular points” of n-dimensional domains. We have collected 
the results we shall use in Appendix 1, where it is shown that 

(a) f is bounded everywhere, 
(b) f is C1 at comers P of R - r whose angle a satisfies 0 < a < T, 

(c) at corners P such that n < a 5 2a, including the exterior of crack (i.e., P 
is the endpoint of a C’*’-arc which is not continued by any other arc), f has the 
form 

where fl is C’, (r ,  6) are polar coordinates centered at P and c, 6, are suitable 
constants. 

Using these estimates, let us first show that if E(f, r) is minimum, then r 
has no kinks, i.e., points P where two edges y, and yj meet at an angle other than 
n. To do this, let U be a disc around P of radius E and let yi U yj divide U into 
sectors U -  with angle ad> n and U’ with angle a+< n (see Figure 10). We 
assume 0 < a+< n and hence n < a-< 2n. Fix a C”-function q ( x ,  y )  such 

I 

Figure 10. A comer in r. 
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that 0 5 17 1 and 

and let q ,  denote 17 “adapted” to U, i.e., 

(so that qu = 1 outside U, q ,  = 0 in the concentric disc U’ of radius 4~). 
shrinking Ut 

and expanding U-; define a new f on the new U+ by restriction; and define a 
new f on the new U -  by f - ( O )  + q,(f--  f-(0)). Let us estimate the change in 
E(f, r). To make this estimate we can assume that f - ( O )  = 0 by replacing f by 
f - f-(O), g by g - f ( O ) ,  which does not affect E .  Then we have: 

What we will do is to “cut” the corner at P at a distance 

(a) Change in 1-st term: 

JJ ( 1 7 u r -  d2 - JJ (f-- g)’  
U- U -  

- - c C,&2. 

(b) Change in 2-nd term: 

But JIvq,JI 5 C / E .  Moreover, the estimates just discussed show that 

Taking into account that vqU = 0 outside the annulus between E ,  + E ,  we can 
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n 

Figure 11. “Cutting” a comer on r 

bound the above expression: 

= C3&2T/a-* 

(c) Change in 3-rd term: 
Asymptotically, we are replacing the equal sides of an isosceles triangle with 

angle a+ at apex by the 3-rd side (see Figure 11) which decreases the length term 
in E from E to E sin(ia+). 

Note that terms 1 and 2 increase by order E~ and E * “ / ~ - ,  respectively (and 
27r/a-> l), while term 3 decreases by order E which shows that if E is small, E 
decreases. 

The same argument gives us more results. Consider next points P where an 
arc y, of I‘ meets the boundary of the region R where the problem is posed. At a 
minimum of E ,  we claim that y, must meet aR perpendicularly. Let U be the 
intersection of a disc around P of radius E and R ,  and suppose instead that y, 
divides U into a sector U+ with angle a+< $7 and a sector U- with angle 
a-> $7 (see Figure 12). We modify I‘ and f as follows: replace y, by a new 
curve which, when it hits U, has a corner and follows a straight line meeting aR 
perpendicularly; replacef’by its restriction, and f- by f-( P) + qu *(f - f-( P)), 
extended by f - ( P ) .  The above estimates show that the first two 
terms go up by order at most E’, while the 3-rd decreases by order E, hence E 
decreases. 

Look next at triple points P where three arcs y,, y,, yk meet with angles a,,, 
aJk, akr (see Figure 13). We claim that, at a minimum of E ,  a,, = aJh = (Yk, = 3.. 
If not, then one of the three angles is smaller than $T: say aJk < f~ as in the 
diagram. Then modify I? by extending y, along the bisector of angle aJk and 
joining it by straight lines to the points where y, and yk first meet U (see Figure 
13). The new triple point is chosen so that its three angles are each f r .  A little 
trigonometry will show that the old segments of y, and yk of total length 
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Figure 12. r meets the boundary of R 

asymptotically equal to 2~ are then replaced by three new straight segments of 
total length exactly 

2 sin( + in)  E 

which is clearly less than 2~ if txJk < $r. This linear decrease in length is greater 
than the increase in the 1-st and 2-nd terms of E by the same argument as 
before. 

Finally, we can apply this argument to show that at a minimum of E there 
are no points where four or more y, meet at positive angles; simply choose the 
smallest angle (Y at the intersection. Then a 5 5.. and replace the 4-fold 
intersection by two 3-fold intersections as in Figure 14. 

In all of this, we have ignored “cuspidal corners”, i.e., corners where the two 
arcs yi and y, are tangent. Our argument breaks down for cusps, but we can 
show that these do not occur by another argument. We cut off the end of one of 

‘Y j 
Figure 13. Modifying a triple point in r. 
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Figure 14. Splitting a 4-fold point into 2 triple points. 

the arcs y,, join it to the nearest point of yj and leave the end of y j  as a 
"crack-tip" (see Figure 15). To extend f -  from the old U -  to the new bigger 
U - =  U - crack yj,  we simply extend it from y, by asking that f- be constant on 
circles with center P. Again the length decreases by order E. To check the increase 
in the 1-st and 2-nd terms, note the estimate on f-: 

f - = f - l @ )  + o(fi), 

Write y, in polar coordinates as B = d , ( r )  and yj by B = Bj(r), so that B, - Bj = 
O ( r ) .  Thus the new part of the second term is estimated like this: 

2 I - C1& . 
This proves: 

THEOREM 2.1. If ( f ,  I?) is a minimum of E such that r is a finite union of 
simple C','-curues meeting aR and meeting each other on& at their endpoints, then 

Figure 15. Eliminating cuspidal comers in r. 
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g = 112 

__________ ------ 

Figure 16. An image leading to a r with a crack 

the only vertices of r are: 

(a) points P on the boundary of R where one y, meets aR perpendicularly, 
(b) triple points P where three y, meet with angles 4 m ,  
(c) crack-tips P where a y, ends and meets nothing. 

3. Cuspidal Crack Tips 

Considering the original variational problem, we would first like to argue 
heuristically that “cracks”, i.e., arcs in r that end at a point P without any 
continuation, are likely to occur in minima of E .  Take g to be a function of the 
type shown in Figure 16. If v is set carefully, it will “pay” in terms of decreasing 
E to have an arc of r in strip A separating the g --= 0 and g = 1 regions but it 
will not pay to have arcs of l? in strips B and C: this is because g has been 
concocted so that its gradient is much larger in strip A than in B or C; so putting 
I’ along A saves a big penalty in jlll~f11~ but putting I? along B or C does not. 
We expect that in this case the optimal r will run along A to a crack-tip 
somewhere in the middle. 

However, if I(vgll is somewhat larger in B than C ,  the crack will be expected 
to bend to the left into B at its tip. Consider the rule which determines when r is 
in balance between bending left or right: 

At the crack-tip itself, (f,- g ) 2  is bounded, but llvfJ2 is not. Ilvf+l12 grows 
like l / r ,  where r is the distance to the crack-tip. Some cancellation takes place in 
l l ~ f + 1 1 ~  - l l ~ f - 1 1 ~ .  Suppose for instance that the crack-tip is the positive x-axis 
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and f is approximated by 

f*= * c 9 &  + b x + * - *  

(which satisfies ( d f / d n ) +  - = b',f/dy = 0). Then 

which still grows unboundedly near the crack-tip. Thinking of ( * )  as an O.D.E., 
one would expect that this growth would, in general, force curv(r) to grow like 
1/ 6 also. Curves that do this are curves with cusps at their endpoints: 

where 

+ . . .  3c = -  Y" cuW(r)  = 
(1 + y,2)3'2 4 6  

For this reason, it seems logical to expect that crack-tips have cusps at their 
end. To confirm that such I' were consistent, we have made a careful calculation 
to produce functions f and g and a cuspidal crack r satisfying the variational 
equations ( * )  and Af = p 2 ( f  - g).  In outline this goes as follows. 

We work backwards: 

(i) Start with r given by 

y = x3 l2  + A,x2 + A2x5I2, x 2 0 ,  

where A,, A, will be chosen later. 
(ii) Choose f of the form 

f = fsing + fsrnooth, 

where 

3pr cosh( pr ) - 3 sinh( p r )  

p2 ( r ) 3/2 
+ aJE; sin( $ 0 )  

(Y will be chosen later, and fsmooth is a C"-function. It is easy to verify that 



602 D. MUMFORD AND J. SHAH 

(iii) Choose 

g =  f smooth -p. v *fsmooth. 

Then by the choice of f and g, it is clear that 

A f  = P2(f  - g ) .  

Also, the leading term of f is 

hence the extra variational condition, Griffith's law of cracks, derived later in this 
section is satisfied. We must check that for suitable A,, A,, a and suitable f 
smooth, we also get 

(a) af/anl, = 0, 
(b) e + -  e - =  v curv(I'). 

Tahng into account that 

f+ = fsmooth + fsing 3 

f - = fsmooth - fsing , 

and the definition of g, (b) simplifies to 

v curv( I?) afsmooth afsing 
4pL-2 v 'fsmooth fsing + '- ' - = at at  

(where a/at is the directional derivative along r). The construction of fsmooth is 
rather tedious and the values of the constants messy, but in outline, we may see 
that a solution is possible like this: Parametrize r by x. Then (1,' 6)( d / d n )  fsing 

is a power series in fi beginning with 

and curv(r) is a Laurent series in 6 beginning with 

3 - + 2A1 + @ A 2  - g ) 6  + * * *  

4 6  

and (1/ G)( a/at)fSing is a Laurent series in 6 beginning with 
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So we must solve the partial differential equations 

= (2 + 2 h , G  + - ). 

Looking at low-order coefficients, it turns out that fsmmth has three too few 
coefficients: in fact, if 

fsmooth = 16 3fi x + E y  + higher order terms, 

then the constant terms in (a) and (b') are OK, but to make the &-coefficients 
cancel we must set A, = 3/77 and a = 3(1 + & r 2 ) / p  Likewise the three 
quadratic coefficients in fsmooth and A ,  are needed to make the x- and x3/2-  
coefficients cancel. Thereafter the four terms x", x " - l y ,  xn-'y2 and x " - 3 y 3  in 
fsmooth are sufficient to satisfy (a) and (b') mod x n .  To see that convergence is not 
a problem, note that as soon as fJ:&th satisfies (a) and (b) mod x3, we can set 

Substituting in (a), we solve for unique f l ,  f2 by dividing: 

(noting that ( a/an)(y2 - x3)Ir = 2x3/2 + . . . , so this is OK so long as x 3 I 2  
divides the numerator). Substituting in (b), we solve similarly for f3 and f4, 
dividing this time by 

In Section 1, we derived extra variational equations at triple points and 
boundary points of r. There is also a new variational equation at crack-tips. It is 
the analogue of Griffiths' law of cracks well known in solid mechanics; see [12]. 
The difference is that in our case, cracks can be "sewn" back together as well as 
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extended, hence we get an equality at critical points of E ,  not just an inequality. 
The result is this: 

THEOREM 3.1. Let f ,  be a critical point of E ,  and assume r includes an arc 
ending at P of the form 

y = a x 3 / ,  + g ( x ) ,  g ( x )  E C 2 ,  g ( O )  = g'(O) = O 

in suitable coordinates x ,  y where a may or may not be zero. Then if, near P ,  

we must haue 

To derive Griffiths' law of cracks and at the same time check for possible 
further conditions on a solution ( f ,  I?) related to sideways perturbation of 
crack-tips, we use the general technique for deriving the first variation whxh is 
employed in geometric measure theory for highly singular r's. Let X be a 
Coo-vector field on R ,  tangent to aR and let a, be the one-parameter group of 
diffeomorphisms from R to R obtained by integrating X .  We want to compare 
E (  f a a,, @;'(I?)) with E (  f ,  r) and, especially, compute 

For simplicity, we shall assume that X is locally constant near crack-tips in I?. 
First, write 

length @,-'r - length I' 
t f v  lim 

f--O 

Call these terms T,, T, and T,. To evaluate the first integral TI,  let 
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be the band swept out by r while moving from r to @,-l(I?) and let 

We claim 

This follows from the Lebesgue bounded convergence theorem, plus the 
estimate: 

LEMMA 3.2. Near a. crack-tip P ,  

Ih,(x, u )  I 5 C / O ?  

where d is distance from (x, y ) to the line { @, ( P )  It E R }. 

Proof: The leading term in f 0 @, is 

where z is a suitable complex coordinate centered at P ,  a E C,  c E R. The 
corresponding term in h ,  is 

1 1 -  - cger- z - a t  + h '  
But in R - B,, 

(let z = rl exp( i d l } ,  z - at = r2exp{ id2 } .  Then, if 18, - 8,1 5 T, 

~\/.-.r + & 1 2  = rl + r2 + \Ir,r,cos(f(e, - e,)) 2 r l .  

In R - B,, 113, - d21 r n (see Figure 17). Therefore the leading term in h ,  is 
bounded by c /  m, hence c /  0. The remainder S in f satisfies S E o( rl-'), 
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Figure 17. The function 0, - 

JIvS~I E ~ ( r - ' )  for all E > 0, hence the remainder Sr in h ,  satisfies 

ISt( Z )  1 SUP llVRll( z - U S )  5 Cd-'. 
O $ s s r  

This proves the lemma. 

The rest of the first integral is 

which equals 

( f ,  - = boundary values of f along I?). 

the crack-tips P of 
translation on D and 

To evaluate the second integral T2, let D be a union of discs D, around all 
of small radius 8. Since X is constant in D, @t is a 

Therefore the second integral equals: 
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As above, define 

607 

Then it is easy to check that 

while 

But 

lim - llvfl12 - JJ  IlVfll') 
D-@,D 

where ( r ,  8 )  are polar coordinates at P and 0, is the direction of X( P). At each 
crack-tip P, write 

f = C P 9 &  + sp. 
Then 

where S i  E ~ ( r - ' ' ~ - ~ ) .  Therefore, 
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Finally the thrd term T3 is easily evaluated as 

where K ( P )  is the curvature of r at P ,  iip, 7', are the unit normal and tangent 
vectors to I?. Putting this together, we get 

K d s +  c 2 /  X f z d s  af 
crack- a D ~  
tips P 

+ c c V ( X Q * G )  +0(6). 
singular branches 
Doints P of r 

Now let 6 -+ 0. Use the fact that A f = p2(f - g)  on R - I?, and that e + -  e c +  
V K  = 0 along r, as proved in Section 1. Moreover, at all singular points Q other 
than crack-tips, it follows as before that either Q is a triple point with 120" 
angles, hence 

branches 
P at Q 

or Q is a point where r meets aR perpendicularly, hence ( XQ G) = 0. Thus all 
terms drop out as expected except for those at crack-tips, where we have 

At each P, take coordinates such that r is tangent to the positive x-axis, and 
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write f = C,  986 + S,. Suppose X = a a / a x  + j3 a / a y .  Then 

609 

from which it follows easily that 

4. Approximation when p is Small 

We derive here limiting forms of the energy and its first variation when p is 
small. As before, let fr minimize E(f, r) for fixed r. Let R, be the components 
of R - r: 

R - r = R, u . . .  UR,  

and let 

function constant on each R ,  
g r =  ( with value mean,, ( g  ). 

We shall prove that fr is very close to 8, when p is small. Throughout this 
section, we assume that r is a finite union of C’,’-arcs meeting at corners with 
angles a, 0 c a c 2 ~ ,  or ending at crack-tips. 

The error term depends on the smallest “necks” of each component R,. For 
any region W, define the isoperimetric constant h( W )  by 

y is a curve dividing W 

sets W, and W2 
. into 2 disjoint open h ( W )  = inf 

where IyI = length of y and IK.1 = area of W, (compare Figure 5) .  Note that we 
have excluded cuspidal corners on the components Ri  of R - r so h(Ri) is 
positive. A bad case is shown in Figure 18. Let 

A, = minh(R,). 
i 
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Figure 18. A domain with zero isopenmetric constant. 

As in the introduction, we write 

We now set vo = v / p 2 .  

THEOREM 4.1. 

Proof: Let f, = fr - 8,. and g, = g - 8,. Then fi satisfies the equation 
v 'f, = p2( fl - g,) in R - r and homogeneous Neumann boundary condition 
along r u a R .  By Green's identity for each component W of R - r, 

P'J fig1 = JJ-V2f1 + P2f1)fl = J lVfiI2 + P 2 J  r: - J ant,. afl 

W W W aw 

Since the last integral is zero, 

(4 llvrlll:,2, w + cL211fl11:,2. w = r 2 J p  5 P2llf1llo,2. w Ilg1ll0,2, w 

by Cauchy-Schwarz inequality. By Cheeger's inequality (see [3]), 
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Since lwg1 = 0 and, by Green’s identity, 

61 1 

we have 

Therefore, 

(b) llvflll;,2, w 1 ah2(W)llflll;,2, w 2 a ~ ~ l l f l l l ~ , 2 ,  w -  

Combining (a) and (b), we have 

and 

Squaring these inequalities and summing over the components of R - I‘, we 
obtain the same inequalities with W replaced by R - I?. Finally, 

= 2P2Jf1& - P2/f: - J IVfll’ 
R R-I?  

= P2/f&-1, R by Green’s identity as above, 

so the theorem follows. 
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We consider now the first variation of E ( f r ,  r). Let Ck(I’) be the space of 
continuously differentiable functions on y which vanish in a neighborhood of the 
singular points of r. For each cp E Ci(I’) and all sufficiently small r > 0 define 
nearby curves rTq as follows: let ( x ( s ) ,  y (s ) )  be a local parapletrization of r by 
arc length. Then rTq is the curve 

s ( x ( s ) ,  A s ) )  + .cp(s)(-Y’(sL x ‘ ( 4 ) .  

THEOREM 4.2. 
(9 

where J / o  = (g , ‘ -  g , ) (g ;  + g, - 2g), K = curvature of r. 
that 

(ii) There exists a constant C ,  independent of p (but which depends on r) such 

Proof: Since 8, minimizes E(f, r) over the space of locally constant 
functions over R - I‘, the first variation formula in part (i) follows in the same 
way as in the general case, derived in Section 1. 

Define fi and g, as in the proof of Theorem 4.1. Let 

The left-hand side in the inequality in part (ii) equals 

We need to estimate ~ ~ f l ~ l l , 2 ,  aw. The boundary value problem 
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has a solution provided that j w u  = 0 for all components W of R - r. The 
solution is unique if we require that jwu = 0 for every W. In this case, since r 
has no cuspidal corners, u E Wt(R - r) for every p ,  1 5 p < $, by Appendix 
1, H, and 

Ilu112,p, R - T  5 clllullO,p, R-T, 

where C, is a constant which depends on r. Applying this to the equation 
v 'fl = P2(fl - gl), we get 

l lhl lz ,p,w 4 P2cl( l l f i l lo ,p,w + Ilglllo,p,w). 

Since L2( W )  embeds in Lp( W) and we know from the proof of Theorem 4.1 
that 

4P2 
I l f l l lO ,Z ,  w 5 + 4p2 Ilglll0*2, w, 

we have 

ll.fll12,p,w 5 P2C211g1110,2, W '  

By the trace theorem (see [7]), the restriction of u E Wp?(W) to dW defines a 
continuous linear map 

w,"(w) -+ w;(aw) c w;(aw). 

Therefore there exists a constant C, depending on F such that 

2 
l l ~ l l l l , 2 ,  aw 5 C3P llg1lIo,2, W '  

Going back to the energy density el(I'), we have 

5. Existence of Solutions when p = 0 

In case p = 0, our free boundary value problem is not much more compli- 
cated than minimal-but singular-soap bubble problems. This is an especially 
easy case since we are dealing with singular sets r which have dimension as well 
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as codimension equal to one. The main result of this section is 

THEOREM 5.1. Let R be an open rectangle4 in the plane and let g be a 
continuous junction on R U aR.  For all one-dimensional sets I’ c R such that 
r U 8R is made up ofafinite number of el*’-arcs, meeting each other only at their 
end-points, and, for all locally constant functions f on R - I?, let 

Then, there exist an f and a r which minimize E,. 

Geometric measure theory approaches problems of this sort by embedding 
them in larger minimizing problems in which extremely singular ’s are allowed, 
then showing that in this larger world, a “weak solution” I‘ exists and finally 
arguing that any weak solution r must be of the restricted type envisioned in the 
original formulation. As a weak version of our problem, we consider segmenta- 
tions of R by Cacciopoli sets which are measurable subsets of R with finite 
“perimeter”. Our standard reference for geometric measure theory is the book by 
L. Simon [13]. We let L2 denote the Lebesgue measure on W 2  and H 1  denote the 
one-dimensional Hausdorff measure on W ’. 

We begin by recalling De Giorgi’s theory of Cacciopoli sets (see Section 14 in 
[13]). A bounded subset F of W 2  is called a Cacciopoli set if it is L2-measurable 
and has finite “perimeter”; that is, the characteristic function x F  of F has 
bounded variation. For such a set F, there exists a Radon measure pF on W 2  and 
a pF-measurable function qF: W 2  -, W 2  with IqFI = 1 pF-a.e. such that 

for all C’-functions g’: R 2  + W 2  with compact support. We call p F  the “gener- 
alized boundary measure” and qF the “generalized inward unit normal”. Let 
D x F  denote the gradient of x F  in the sense of distributions. Then, DxF = qF dpF 
and q,, p F  can be recovered from DxF by 

and 

U open, 

4The restriction to a rectangle R is not essential, but simplifies some technical aspects of the proof. 
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where B p ( x )  denotes the ball of radius p, centered at x .  The “perimeter” of F is 
defined to be equal to pF(R2) .  Notice that if Fl = F2 L2-a.e., then p4(W2) = 

We may restate these results in the language of currents. Let F‘ be the 
P F p  2>. 

2-current defined by F: 

for all C“ 2-forms cp with compact support. Let aFdenote the current boundary 
of 2 

for all C” 1-forms cp with compact support. Then 

For any set S,  let as be the topological boundary s - Int(S) of S.  Then the 
topological boundary aF of a Cacciopoli set F may have positive L2-measure and 
hence, infinite H’-measure, even though F still will have finite perimeter. 
Fortunately, it is possible to define the reduced boundury a*F so that the 
perimeter of F equals the H’-measure of a*F: 

qF( x )  as defined above exists 
R2: and has length 1 

By De Giorgi’s theorem (cf. [13], Section 14): 

(i) a*F is 1-rectifiable. 
(ii) pF = H’La*F (i.e., H’ restricted to d*F). 

(iii) For any set S c R2, x E W2,  p > 0, let 

Then for every point x E a*F, the approximate tangent space Tx,a.F exists and is 
given by { E W21 v F ( x )  = 0}, i.e., 
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for all continuous j with compact support. Moreover, 

lim j j d L 2 =  jdL2 
P'O F i P  ( YIY'?F(x)'o)  

for all j E L ' ( w ~ ) .  

orient the 1-rectifiable set d*F,  we obtain a 1-current a s u c h  that 
(iv) Rotating q, by 90" defines a unit tangent vector t ,  to d*F. Using t ,  to - 

d ( F )  = ( d * F )  

In particular, for all bounded open subsets U c R2, the mass Mu( d F ' )  equals 
H'(U n a*F) .  

We next reformulate E,  using Cacciopoli sets. Note that if r has an arc y 
which is surrounded by a single component of R - r, we can reduce the energy 
E ,  simply by removing y. Hence, we might as well assume in our original 
formulation that the boundary of each component of R - r consists of piecewise 
C1.'-loops which mutually intersect in only finitely many points (see Figure 19). 
Therefore, for each component F of R - I?, and each arc y in aF, y is the 
boundary of F from only one side; hence using the notion of the mass of a 
current: 

length( J F )  = M( d F ) .  

Thus 

2 length( I?) + length( d R )  = M( d F )  
( y R y P . )  

and 
1 

length(I') = 7 M,(JF) .  
(;E;Rc:y.) 

Figure 19. Removable arcs y,. 
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This motivates the following new functional: fix some positive integer n ,  and 
consider sets of n Cacciopoli sets, U,, U2; * * ,  U,, such that 

U , c R  for l s i s n ,  
and 

n 

i = l  

For such { U , )  and for all constants al; . ., an, define 

1 E,({U,,  a ; } )  = ) voMR(  8 q ]  + 1 ( g  - a i ) 2 d L 2  
u, 

This is our “weak” formulation. Note that to make a reasonable “weak” 
problem, we have to fix n. However, the V ,  are required to be neither connected 
nor nonempty. Hence, 

We shall show: 

THEOREM 5.2.  (a) For each n 2 1, En takes on a minimum value for some 

(b) If { U,, a , )  minimizes En, then each U, is an open set with aJinite number 

(c) There exists an integer no such that 

{U,? a , } .  

of components and piecewise C2 boundary. 

for all n 2 n o .  

In fact, 

if n > no and each is nonempty. 

Clearly, this will prove Theorem 5.1. Now consider Theorem 5.2. Part (a) is an 
immediate consequence of the compactness theorem for functions of bounded 
variation (see [13], Section 6). In fact, if { U,., a:} is a minimizing sequence so 
that 

limEn( { v, a : } )  = inf En,  
U 

then, by the compactness theorem, for each i ,  there exists a subsequence of { w) 
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which converges to a Cacciopoli set U, (i.e., the integral of any L'(W2) function 
on converges to its integral on U,)  such that 

~ l (  d * q )  5 IiminfH'( d * v ) .  
a 

Moreover, minimizing with respect to a,  is seen immediately to mean 

Hence, we may assume that 0 
suitable subsequence, all v and a: converge, and 

up maxlg) for all i and a. Therefore, on a 

inf E,, 5 En( { V,,  a , } )  5 liminfE,,( { Up, u p } )  = inf En.  
U 

4 4  

The identity ZY-, 
Part (b) is the hardest to prove. Our method is essentially a generalization of 

the theory of minimizing currents of codimension 1. In outline, the proof is as 
follows: Let 

= R' passes to the limit so that Z:=, U, = R. 

n 

r* = U ( R n a*Q. 
1 - 1  

r* is the weak version of the set of curves I' specified in Theorem 5.1. We rewrite 
E,, in terms of I'* and then consider the first variation of E,, with respect to r*. 
This shows that I'* has generalized mean curvature and hence the monotonicity 
formula of geometric measure theory applies. We conclude that if { V,, a , }  
minimizes En, then I'* equals its closure r H'-a.e. in R. Hence, we may assume 
that the U, are open and r is the union of their topological boundaries in R. We 
next study the singularities of r. To do this, we first show that tangent cones 
exist everywhere on r and that they have multiplicity away from the origin. We 
conclude that the singularity set of r is discrete. Allard's theorem implies that r 
is C2 away from singularities. The rest of the proof now follows easily. 

Before giving the details of the proof, we introduce a construction which will 
be used several times in the proof to handle the behavior of I'* along dR. This is 
to consider a larger region R" built out of four copies of R centered around one 
of the corners P of R; see Figure 20. The function g is extended to a continuous 
function g" on R" by reflection. Thus suppose P = (0,O) after a translation. 
Then in the situation of the figure 

in R , ,  
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Figure 20. A segmentation reflected around a comer P. 

Define q# to be the union of V, and its three mirror images in R # .  Note that 
MR+(dC*) = 4M,(aG). In fact, 

R# = R ,  U R 2  U R ,  U R ,  U A ,  

where A is the part of the horizontal and vertical axes through P which is in R". 
Then 

4 

M,#( aG#) = M,J@) + H'( a * z p  n A ) .  
a--1 

But 

a*G# = a$) + a Q 2 )  + a @ 3 )  + a@4) 

and if a*U,# were to include a portion of A of positive H'-measure, it would 
occur in two boundaries a*qca), but with the opposite normal vectors 7:"). Thus 
it would have to cancel out in a(@). This shows that in fact 

En( { q#, u i } )  = 4 ~ n ( { ~ , ,  ui>)* 

If (q, u i }  minimizes En and if { V;, b , }  is any other decomposition of R#, then 

4 

En({V;,biI) L C ' n ( { Y n R a y b i > )  
a-1 

B 4En({ V,, a i > )  

= En( { q#, a , } ) ;  
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hence { L$*, a , }  minimizes En for g' on R#. Finally, the curve I'#. * defined by 
{ q*, a , }  is obtained from r* and its three reflections and a set of H'-measure 
zero in A. 

We now begin the detailed proof. 

LEMMA 5.3. 
F= 6 + G. Then, 

Let Fl, F2 be Cacciopoli sets. Let F = F, U F2 and assume that 

d*F = d*Fl U d*F2 - d*Fl n d*F2 H'-a.e. 

Hence, for all open bounded subsets U c W2, 

H'(U n d * F )  = [ H ' ( u  n d*F,) - H'(U n d*Fl n a * ~ , ) ]  

Proof: Let M denote d*Fl U d*F2 and N denote d*Fl n d*F2. We shall 
show 

(i) N n d*F is empty, 
(ii) M - N c d * F  H1-a.e., 
(iii) d*F C M - N H'-a.e. 

(i) Let x E N. For p > 0, let 

and 

Fx,  P = { p - ' ( y  - x):  y E F }  

By De Giorgi's theorem, limpLo(4)x,p = Hi,  where H, is an open half-space in 
W '. Hl and H2 must be disjoint. For, if Hl n H2 is non-empty, there exists a ball 
B c Hl n H2 and f E C:(B) such that, for i = 1,2, 

= 2 I 2 f d L 2 .  
R 
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Therefore, there exists p > 0 such that 

j f d L 2  > j fdL2 
F X . P  R2 

which is absurd. It follows that Hl and H2 are complementary half-spaces; hence 
limp .1 F,, = W and thus x 4 a*F by De Giorgi's theorem. 

(ii) Let x E M - N, say x i a*Fl - N. Outside a set of H'-measure zero, 
we may assume that the upper density @*(H', a*F2, x )  = 0. Write out q F ( x ) :  

Since @(H' ,  a*F,, x )  = 1 and O*(H1, a*F2, x )  = 0, 

Since D x  = D x  F, + D x  F2 it also follows that 

Hence v F ( x )  exists and has length 1, i.e., x E a*F. 
(iii) If x E a*F - M, we may assume that 

o*(H',  a*e., .) = o for i = 1,2 .  

Then, @*(H', a*F, X)  5 O*(H', a*F,, x )  + O*(H', a*F,, x )  = 0 and so 
H'(a*F - M) = 0. 

LEMMA 5.4. 
(a) for H'-a.e., x E r* betongs to precisely two a*qis, 

Let Ul, U,, . * -, U, be Cacciopoli sets such that Cy-la = 2. Then, 

(b) HILr* = +C;-' , ,H~L(R n a*u& 
In particular, 

Proof: (a) Suppose x E R n a * q  for some i .  Let u = ujZ iq .  Since Q = 
z - $ a q = a i ? - a v ' a n d h e n c e  

R n a * y  = R n a*u HI-a.e. 
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By Lemma 5.3, 

R n a * u =  U ( R  n d * q )  
j t i  

- { y : y E ( a * % )  n (a*U,) n R for j ,  k # i }  H'-a.e. 

= { y : y E R n a*u, for some unique j z i } H'-a.e. 

(b) Let p = H'Lr* and pi = H'L(R n d*q) :  

n 

D~ C pi(.) def = p J 0  lim % 
i - 1  

= 2 H'-a.e. b y  part (a). 

Part (b) now follows from Theorem 4.7 in [13]. 

LEMMA 5.5. Let {Q, a i }  minimize En. Let r = closure of I?* in 2. Let qi 
denote the generalized inward unit normal in R corresponding to the Cacciopoli set 
V,. Letting q i  be zero on I'* - a*q, deJine K : r* + R 2  by 

Then, 
(a) I?* has the generalized curvature K .  That is, for all C'-vector Jields X on 3 

tangent to i?R along aR, if DX is the 2 X 2 matrix of derivatives of the components 
of X and i f  t : r* -, W 2  is a unit tangent vector (with any choice of signs), 

(1'  DX t )  dH' = - i*( K X) dH'. L* 
(b) Monotonicity: Dejine a function E on 2 by 

1 if X E R ,  
2 
4 if x is acorner of 2. 

if x E aR,  but x is not a corner, 
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Then the density @( H', r*, x )  exists for all x E I', EO is greater than or equal 

(c) r = r* H'-a.e. SO that t C ; , , M k ( a g )  = H1(I'). 
(d) We may assume that the U, are open and that r equals the union of their 

to 1, and is upper semi-continuous. 

topological boundaries in R . 

Proof: (a) By Lemma 5.4, 

En = voH'( I?*) + 
i -1  

Consider the first variation SxEn of En with respect to a C'-vector field X on R ,  
tangent to aR along aR.  The formula 

S,H'( r*) = 1 ( t '  DX t )  dH1 
r* 

is standard, and 

8 x 1  ( g  - dL2 = 1 div(( g - a,)'X) dL2 by direct computation, 
u, u, 

- - ( g  - a,)'( v i  X )  dH' by De Giorgi's theorem. 
- /a*, 

Since { V,, a , }  minimizes En, SxEn = 0; hence 
n 

0 = y o k e (  t' DX t )  dH' - 1 ( g  - ai)*(vi X )  dH' 
i - 1  a * q  

= yo[  L J i '  DX t )  dH' + 1 K X d H 1 ] .  
r* 

(b) The fact that @(H', r*, x )  exists at every point of R and that it is upper 
semicontinuous follows from the monotonicity formula (see Corollary 17.8 in [13] 
or Almgren-Allard [l]). Since I?* is rectifiable, O(H', r*, x )  =.1  H'-a.e. on 
r*. (This follows from Lemma 5.4.) Hence, @(H' ,  r, x )  2 1 for all x E r n R 
by upper semicontinuity. To extend this argument to R ,  we use the reflection 
technique explained in the beginning of this proof. Then @(H',  I'#. *, x )  exists, 
is at least 1 and is upper semi-continuous on R#. But it is easy to See that 
8(H1, I?*, X )  = E(x)@(H' ,  r*, X) for x E R# n R ,  i.e., along edges of R, r* 
is half of r". *, and at corners, r* is a quarter of r#. *. 

(c) This follows from part (b). 
(d) Let U = R - r. Since L Z ( r )  = 0, we may replace V, by q. n U witkout 

altering En({V,, a , } ) .  Let { V,} be the set of components of U. Then V, = 

Xi( V, n V,):. hence, by the constancy theorem, = Qca, n V,'for exactly one 
i (  a). Therefore we may replace V, by U ,{ V,li( a) = i }. 
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We now consider the tangent cones of r. Let 

rreg = { E r EO( H I ,  r, X )  = I} 

and 

By Theorem 6.3 in [13], for any sequence p k  40, there exists a subsequence 
P k W  40 and Cacciopoli sets{V,} such that, for 1 5 i s n ,  (U, )x ,Pk, , )  + V,  in the 
L'(R 2, sense. 

LEMMA 5.6. Suppose { U,, a i }  minimizes En. Let x E r n R. Let P k  40 be a 
a*V,. and let sequence such that, for 1 5 i 5 n ,  (U, . )x ,p,  -+ V,. Let N* = U 

N = (closure of N* in R2). Then: 
(a) J?x,pk -+ N*; that is, for all f E L'(R2) with compact support, 

(b) N* is stationary in R2; that is, for all C'-vector fields X on R 2  with 
compact support, 

( t &  DX t N * )  dH' = 0.  
N' 

Hence, we may assume that the V,  are open and N is the union of their topological 
boundaries. 

(c) N is a finite union of rays and each K. is a finite union of sectors of R '. 
(d) O(H' ,  I?, x) E SH. 
(e) If { t i }  is the set of unit tangent vectors along the rays of N ,  pointing away 

from the origin, then Cti  = 0. 
Finally, i f x  E r n aR, (a) and (b) hold for the extension { U,", r"} described 

above; hence (c) holds, E(x)O(H' ,  r, x)  E ti! and, along edges of R ,  Cti  is 
normal to the edge. 

Proof: To simplify notation in this proof, let 

so that, for any set S,  
by a large factor p i ' .  

is the same as f k ( S ) :  the set S expanded around x 

To prove (a), it is enough to show that 
(i) for all w c w 2  open, H'(N* n W )  5 liminf, H'( f k ( r )  n w);  
(ii) for all K c R 2  compact, H'(N* n K )  2 lim supk H'( f k ( r )  n K ) .  
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Since afk (U,) + a c, M w( a c) lim inf M w(fk( U,)) for all open W. Hence 

(i) follows. Now fix K c R 2  compact and E > 0. Choose a smooth function 
rp : R + [0,1] such that 

rp = 1 on K ,  
SUPP(rp) = {YIdiSt(Y? K )  < E l .  

Let k, be an integer such that 

SUPP(rp) C f k ( R )  for k 2 k,. 
Let 

Wa = { Y I F ( Y )  > a > ,  

<(“) = q - f k (  q) (difference of 2- currents). 

Then M,(*(&)) + 0 for all open W C R2.  By the slicing theorem, we may 
choose 0 < a < 1 such that for 1 5 k 5 n and k 2 k,: 

d(@k)LW,)  = ( a p ’ ) L W ,  + Q!”, 

Gik) = “slice” of @ k )  by a W,, 

so that 

lim, M( Q i k ) )  = 0.  

Moreover, for suitable a, we may assume - 
M( afk(i7.) L aW,) = M( L dW,) = 0. 

The main idea is to define, for all k, a modified decomposition of R into 
Cacciopoli sets { u,‘“)), namely: 

u,(,) nfi1(w,) =f;l(v,), 

u,(,) n ( R - ti1( w,)) = u,, 

or alternately, define q(k)  as a current by 
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Figure 21. Modifying a decomposition via its tangent cone. 

i -1  

But now EN({ q(k), a , } )  >= E,({ U,, a , } )  by hypothesis, so 

o 5 H’(N* n w,) - H1(fk(r) n wa) 

It follows that 

H’( N* n w,) >= lim sup H’( f k (  r) n w,) 
and hence 

H ’ ( N *  n {y:dist(y,  K )  c E } )  2 limsupH’(f,(r) n K ) .  

Letting E 10, we get 

H ’ ( N *  n K )  2 limsupH1(f,(r) n K ) .  

It follows that f k ( r )  -, N*.  
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To prove (b), note that f k ( r )  has generalized curvature K~ such that lKk(y)I 
= p L I ~ ( p k y  + x) l .  Therefore, N is stationary by lower semicontinuity of varia- 
tion measures (Theorem 40.6 in [13]). The rest of part (b) now follows as in 
Lemma 5.5. Part (c) follows from Theorem 19.3 in [13]. (d) holds because 
O(H' ,  r, x )  = O(H' ,  N, (0)). Part (e) follows from part (b). The extension to 
aR follows immediately by reflection. 

LEMMA 5.7. If {U,, a i }  minimizes En, then rsing i s jn i t e .  

Proof: Suppose that rsing is not finite. Let x l ,  x2, - .  - be a sequence of 
points in rsing - { x }  converging to x. If x E aR, replace { U,, a i }  by { U,#, a,}. 
Let pk = Ixk - XI. If we replace { p k }  by a suitable subsequence, then rx,pk 
converges to a cone N as in Lemma 5.6. The points [ k  = p;l (xk - x )  are on 
aBl(0) and hence converge to a point [ E aB,(O). By monotonicity and Lemma 
5.6, O(H1, N ,  5 )  2 limsupQ(H', rx,pk, t k )  2 l$. Therefore, [ E N - (0). But, 
O(H' ,  N ,  y) = 1 for all y E N - {0} by Lemma 5.6. Contradiction! 

LEMMA 5.8. If { U,, a i }  minimizes En, then rre, is C2. 

Proof: By Allard's regularly theorem (see Theorem 24.2 in [13]), rreg is C1. 
Its curvature K is C o  along r,, since g is. It follows from the standard regularity 
theory of elliptic differential equations that r,,, must be C2. 

Proof of Theorem 5.2: Parts (a) and (b) have already been proven. Note that 
the theory of Section 1 now applies and we have a classification of the singulari- 
ties of I?. The key point in proving (c) is to show that 

for all components W of R - r. Notice that the inequality does not depend on n. 
To prove the inequality, suppose that there is a W for which the inequality is 
false. First consider the case when one of the components y of aW is wholly 
contained in R,  i.e., does not meet aR. Let m be the number of singular points 
on y.  We claim that m 5 6. To see this, orient y and let { Oi} be the set of angle 
changes in the tangent directions at the singular points of y (see Figure 22). 

By the Gauss-Bonnet formula, 

where K is the curvature vector and n is the inward unit normal. By the results of 
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di positive when counter-clockwise 

Figure 22. Conventions for the exterior angle 6,. 

Section 1, 0, = f n  for all i. By Lemmas 5.4 and 5.5, 

It follows that 

Therefore y contains a C2-arc I of length greater than or equal to i lyl. Suppose 
1 c V, n U;, where Q meets 1 along the side interior to y. Let W' be the 
component of U, meeting 1. Consider a new segmentation { U, ' }  of R so that 

+ U,'= q -  *, 
v,'= q +  *, + 

U,l = U, if k # i, j .  

A E , =  E , , ( { U , , a i } )  - E n ( { U , ' , u i } )  1 v o l -  21gl;,*area(W'). 

By the isoperimetric inequality, 

lY12 area(W') 5 - 4n 

Therefore, 

> i v o l u l ( i )  > 0 

which is a contradiction since { V,, ai} minimizes En. 



OPTIMAL APPROXIMATIONS 629 

If R n aW does not contain a loop, then it must have a component y 
meeting aR twice. Moreover, since ( R  n dWI < width(R), y cannot meet the 
opposite sides of R .  Now we apply the reflection construction where R" is 
obtained by reflecting R across the two sides met by y .  Let W" be the set in R# 
corresponding to W, obtained by reflecting W. Then 8 W" must contain a loop 
y* .  We argue now as before to get a contradiction again. 

Observe that 

5 E n ( {  y ,  b i } ) ,  where V, = R ,  6 ,  = 0 and r/: = 0 for i > 1, 

5 Iglk, area( R ) .  

Therefore, 

( 2 / v o ) l g l L  area@) [number of components of R - I'] 5 
min{ vv/12(glk,, width( R)} . 

Part (c) of Theorem 5.2 now follows. 

6. Approximation when p is Large 

We derive here limiting forms of the energy and its first variation (along 
smooth portions of r) as p + 00. When p is large, the effect of r on the energy 
is essentially confined to a narrow strip along r. We can even express the 
contribution of r to the energy as an integral along r and analyze the first 
variation in the form of variation of this line integral. The whole approach is 
based on the following: 

LEMMA. Suppose gp satisfies the equation V 'g, = p2(gp - g )  everywhere in R 
and a g , / a n l a R  = 0. Let f r  minimize E(  f ,  r) with r fixed. Let hr  = fr  - g,,. 
Then 

where the superscripts + and - distinguish between the values of a variable on the 
two sides of r and a /an  is the normal derivative in the direction from the - side to 
the + side. 
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by Green’s identity. 

The lemma follows since the first integrand in the last step is zero and ahr+/an 
= a h f / d n  = -ag,,/an along r. 

Thus r minimizes E ( f r ,  r) if and only if it maximizes the line integral 

/ , [%(hi -  h - )  - v ]  ds, 

where h is the solution to the boundary value problem 

v 2 h  = p2h on R - I-, 

To understand the limiting behavior of this integral as p + 00, we need to 
describe the asyinptotic behavior of hr as p + 00. This involves considerable 
technical details, which we have put in Appendices 2 and 3. Appendix 2 is 
devoted to proving that 

SUP Ihr(P)I  = O(l/p)  as p -+ 00. 
P E R  

This estimate is very simple away from I‘ and near smooth points of r, but to 
prove this near singularities of r seems harder (in fact, we had to exclude cusps 
on I’). Appendix 3 is devoted to studying h r  near smooth points of I‘ and 
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deriving the precise asymptotic form. Introduce coordinates r and s along r, 
where r ( P )  is the distance from P to the nearest point F on I' and s ( P )  is arc 
length on r from some origin to F (see Figure 3, Section 1). We can prove that if 
I? is sufficiently smooth, e.g. C3q1, then 

where K(S) is the curvature of I' at s. The proof is rather long, however, but the 
essence of it, a careful application of Green's theorem, is given in Appendix 3 for 
the points on I?, where we shall use it. It is easy to derive the form of this 
expansion for hr by examining the case r = circle, and using the explicit 
expression for hr in terms of Bessel functions of the 2-nd kind (cf. [14], Ch. 17). 

An interesting question is to find the asymptotic expansion of hr for large p 
near the singularities of r. We were quite puzzled looking for appropriate 
"elementary" functions from which to construct this expansion. In the case where 
r is the positiue x-axis, John Myers found a beautiful explicit formula for the h ,  
satisfying 

(a) V 2 h r  = p2hr, 
(b) a h r / d n  = 1 along I', 
(c) h r ( x ,  y) = sgn(y) e - P y / p  if x >> 0, lyl 5 C, 
(d) hr  = O(e-Pr)  if 0 < 8, 5 8 5 27  - 0,. 

Using ths: error function, he introduces 

One can check that (a) and (d) hold for g and that (b) and (c) also hold for 

h r ( x ,  Y )  = g ( x ,  Y )  - g ( x ,  -v ) -  
Using this special hr,  one should be able to construct good asymptotic approxi- 
mations to the general h ,  near crack-tips, as p + bo. 

Applying the estimates for hr in Appendices 2 and 3, we can estimate the 
behavior of E(  fr, r) when p + 60 and r is Jixed. As in the introduction, we 
write 

We now set vm = ipv. Then we have 

THEOREM 6.1. Suppose that g is C'.' and that r is the union of Jiniteb many 
C'.'-arcs. Assume that I' U dR has no cusps. Then, as p 4 60, 
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Proof: We first construct g,, and derive estimates for it. Pave R 2  by 
successive reflections of R about edges and thus extend g to all of IF2. The 
solution g,, can then be expressed as 

for all P E W 2 .  Here KO is the zeroth-order modified Bessel function of the 
second kind. 

We need estimates on g p  and its first and second derivatives: 

Moreover, 

~ ~ g p ~ ~ l , c o ,  R 5 const'llgllO,m, R. 

Proof: To see this, we first note that, for n 2 0 and i = 0 or l5 

and 

m 27r m 

d pd 
K f ( p r ) = 2 r /  r K , ( p r )  dr = F/ z K , ( z )  dz 

by Lemma 3 in Appendix 3, 

2 - O (  i) if pd >= 3log(plaRI). 
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Let d = dist(P, J R )  and let U, be the disc of radius d with center at P .  Since 

and 

by Green’s identity, 

I - const.(pd)-”2e-~~llg((0,m, R ,  

by Lemma 3, Appendix 3 ,  
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Therefore, 

Also 

The remaining estimates may be proved in the same way. 
We proceed now with the proof of the theorem. If r contains arcs which 

terminate in free ends (i.e., crack-tips), extend these arcs in some C'x' way until 
they meet I' u aR (without creating cusps, however). Let I; denote the extended 
r. In order to apply the theorem in Appendix 3, we need to define several 
constants which depend only on r. If y c y* c I? are curves, let 

00, if y* is a connected closed curve; 
arc length between y and the end points of y * ,  

min,d( y,, y,* ), in general, where y, are the components of y and 
d (  y ,  y * )  = if y and y* are connected and open; I y,* is the component of y* containing y,. 
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For some E > 0, we introduce constants: 

rsing = singular points of r U dR (including the crack-tips) , 

A p  = the diameter of the largest circle through P 

contained in a single component of R - ?;, 

ye = { P E rldist( P, rsing) 2 F } ,  

A,  = minA,. 
P E Y ,  

Since there are no cusps and since each arc of r is C'.', there exist constants C,, 
C2 and C, such that 

A,  2 C ~ E ,  

dist( y,, d R )  2 C2e, 

and 

arc length( - ye)  5 C3&. 

Let C = f in{&,  tC , ,  $C,} ,  LY, be the C2-norm of the i-th arc of r and 
LY = max ( x i .  Let p be the universal constant as defined in Lemma 2 of Appendix 
3. Let 

Now fix p 2 p o  and let E = (6/pC)log(pldRI). Let y = y, and y* = 
d(y ,  y*) 2 f e  and if 

Then 

8 = min( $, h d ( y ,  y*), $A,,,), 

then 
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Let hr = f r  - gp as above. We now apply Part A of the theorem in Appendix 
3. This shows that, for each component 51 of R - T‘, 

Substitute the following estimates in this formula: 

IIhrllo,m, S IIgplIo,m, aa + Ilfrl lo.m, an 5 2IlglI0,~. R -  

Note that a h r / a n  must be estimated on i? - I’ as well as on r and it will 
certainly have singularities at crack-tips. To deal with the last term, recall that 
hr E W,”( R - I?) for 1 5 p c 4 by the results in Appendix 1. Therefore, by 
Theorem 2.3.3.6 in Grisvard [7] (applied to gp and f r  separately), 

I I ~ ~ I I ~ , ~ , R - - ~  5 ~ ~ g ~ ~ O , p . R - ~ o ( ~  ) s ~ ~ g ~ ~ 0 , m , R o ( ~ 2 ) ~  
2 

hence 

by the trace formula in Sobolev spaces (see [7], Section 1.5). We get 

and 

By the theorem in Appendix 2, 

and 
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It follows that 

This finishes the proof of Theorem 6.1. Note that, by a similar argument, we can 
also prove 

We derive now the asymptotic form of the equation of first variation. We 
show that the first variation of E m ( r )  agrees with that of E( fr, I?), at least when 
rsing is kept fixed. For simplicity, we assume that r consists of C2*l arcs only. We 
shall work with an oriented piece y c I7 - rsing and then label the left side of y 

, the right side "+". This fixes the sign of the unit tangent vector t to y, the 
unit normal n (let it point from the - side to the + side) and the curvature K of 
y via its definition: 

6 6  - ,, 

THEOREM 6.2. Assume that g is C2,'. Let y be an oriented C2,'-curve 
contained in r, not meeting the singularities of I' U aR. Then for all C1-jields X of 
normal vectors along r with support contained in y :  

(i) The first variation is given by 

where 
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Proof: Let 9, = (X n) .  Let F(s )  denote the parametrization of y by its arc 
length. Let F,,(s) = F(s)  + AX(s). For small 1x1, FA parametrizes curves y,, near 
y. Let sA, t ,  and n,, denote, respectively, the arc length, unit tangent vectors and 
unit normal vectors along y,,: 

Hence, up to the first-order terms in A,  we have 

ds, = (1 - A ~ K )  ds, 

t,, = to + A x n o ,  d v  

dv n,, = no  - A-to. ds 

Therefore, 

2 

ax[(%) d s -  ( v g ) - S x n ] d s  

(where a2g /an  an  means that, at each point of y ,  we take the 2-nd derivative of 
g along the straight line normal to y at that point). But 

(here a2g /as2  means the 2-nd derivative of g restricted to y )  and 

so we get part (i) by substitution. 
To prove part (ii), we now apply Part B of the theorem in Appendix 3. If r 

has arcs terminating in free ends, extend these arcs to meet I' U aR without 
creating cusps. Pick y* such that y c y* c r, dist(y, y * )  > 0 and y* does not 
meet the singularities of r U aR. Let 6 be the constant specified in the theorem 
in Appendix 3. (We may choose S so that it serves all the components of R - F). 
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Let E = dist(y*, aR). Let pv = min{S, E } .  Let R ,  = {P E Rldist(P, 8 R )  2 E } .  

Following the method used in the proof of the lemma in Theorem 4.1, we can 
extend the estimates for gp as follows. For all P E R e  and for all p 2 
3 log(PlaRo/P,, 

(i) for 0 5 k 5 3, Ilg,,llk,m, R, 5 (const.)~~g~Ik.m, R ?  

(ii> \18,,1\4,m, R, 5 l \g\ l3,co, R O(P), 
(iii) Since 

Let hr = - f r  - g,, as before. From Appendix 3 we get, for each component Ci 
of R - r, 

and 

where 

We have 
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Therefore, 

( !!E)2 - ( 2)2] 

= p 2 ( h + -  h-)(2gp - 2g + h + +  h - )  

+(ah+ ah- as )( 2 - + -  ag, ah+ + %). as as as 

Part (ii) of the theorem follows by substitution. 

7. The Case p = 00 

In the last section, we have argued that, in a certain sense, Em is the limiting 
functional of E when p + 00 and S,uv has a finite limit vm. However, the sense 
in question involves Jixing r while p increases. To see if this is reasonable, 
consider the problem of minimizing the limit functional 

over all r. There are two cases: 

(a) suP,llvgl12 5 vm. 
(b) For some P E R ,  IIVg(P)I12 > vm. 

In the first case, Em is clearly minimized by r = 0. In the second case, we may 
make I”s with more and more components each of which is a short arc from a 
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Figure 23. Conjectural form of I', p large. 

level curve of g in the region R, where llvgJ12 > u,. On such r's, inf E, = - m, 
so no minimum exists! 

On the other hand, we conjecture that minimizing E itself is a well-posed 
problem. The explanation of this is that for p >> 0 and pv fixed, the minimum of 
E( fr, I') will presumably be taken on for a r supported in R, and made up of a 
curve which locally has more and more components, these being smooth nearly 
parallel curves with a separation of about c / p  (see Figure 23). The limit of such 
r should be taken as a current, not a curve. 

Instead, the reason we are interested in the limit E,  is the hope that an 
approximate solution to minimizing E can sometimes be obtained by a very 
different procedure, involving two steps: 

(a) smoothing g by convolution with a suitable kernel of size c / p ,  so as to 
create a modified problem in which l / p  is already small compared to 
fluctuations in f, 

(b) solving for a curve r which maximizes Em(r) for this smoothed g and 
with respect to all small deformations of r (as in Section 3). 

Unfortunately, it is still unclear whether there is a natural class of g's for 
which r's satisfying (b) can be found. We hope to clarify this in a subsequent 
paper, and will only make a few preliminary remarks here. As we have seen in 
Section 4, requiring that the first variation of Em vanishes on a smooth curve I? 
is equivalent to asking that, along r, 

Now g is a given function and this is not a PDE for g: instead it is a 2-nd order 
ODE for I?! To see this, let ( x ( t ) ,  y ( r ) )  be a parametrization of I? and let O ( t )  be 
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the angle between the tangent line to r and the positive x-axis. Then 

- a = -j(z)x a + i ( t ) - @  a 
a n  

If we let t be the arc length s, then 

(i, 3 )  = (cos 0 ,  sin #), 

e = K .  

Thus 

_ -  a' - - s ine*g ,+cosa*g, ,  an 

a = cose g, + sine g,, as 
and 

a ag = - ( - s ine*g ,+cos8*gy)  d 
X ( % )  dt 

= cos6sin8(gyy - gxx) + (ms2e - sin2B)g,, 

- (cos e g, + sin e g, ) K. 

With these formulae we can rewrite the requirement on r as the system of 
first-order ODE'S for (x, y ,  e): 

J = case, 
9 = sine, 

. d ; ( ~ ) A g + d , ( B ) - ( ~ s i n 2 8 ( g y y - g x , )  + ~ 0 ~ 2 8 * g , , )  
6 =  

where 

dg( e )  = g,cos 8 + g,, sine, 

d,*(8)  = -g,sinB + gycose, 

2 T(8) = d,(B)' - fd;(B) - iv,. 
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However, we see immediately that these equations may be singular if the 
denominator ~ ( 6 )  in the expression for 4 is 0. It is better not to use arc-length 
parametrization, but to rewrite the equations by multiplying each equation by 
~ ( 8 )  and then choose a new “time” t so that 

3 = 7(6)sin6, 

d -  (Ag) d,*(6) + ((gYy - gx,)$sin26 + gx,,cos26) .d,(6) 

This form shows that the solutions are the integral curves of a smooth vector field 
on the unit tangent bundle T to R. (Note that d, : T W is the function on T 
defined by the differential dg and d: is the function on T defined by the 
differential (*dg).) 

However, we may divide the unit tangent bundle T into two zones: 

“space-like” zone: T (  6) < 0, 

“ time-like” zone: T (  6)  =- 0. 

On the boundary between these two zones, 1 = 3 = 0, i.e., the vector field is 
“ vertical”. Integral curves of this field will, in general, be smooth curves on T, 
crossing from space-like to time-like and back again. But they project to curves 
on R with smooth space-like segments that end in cusps, at which they turn into 
smooth time-like segments. A computer-generated example of such a curve is 
shown in Figure 24. It corresponds to the case g(x, y) = eY and v, = 0, for 
which all solutions are identical up to translation. 

It can be shown that along its time-like segments, an integral curve locally 
maximizes E, whereas along its space-like segments, it locally minimizes E,. For 
instance, if v, = 0, the gradient curves of g are time-like integral curves (on 
gradient curves, a g / d n  = 0, hence (*) is satisfied) and these give the absolute 
maximum, namely 0, of the functional 

Therefore, the existence problem for v = 00 becomes: 

Find criteria for the existence of closed everywhere space-like integral 
curves of ( *  *), or singular curves, as in Section 2, whose smooth pieces 
are everywhere space-like integral curves of ( *  * ). 

Unfortunately, the requirement of being everywhere space-like is rather unstable. 
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Figure 24. A solution of the ODE with ‘‘space’’-and “ time”-like segments. 

Appendix 1 

Boundary Behavior of the Solutions of Neumann Problems in 
Non-smooth Domains 

A. We want to study the problem: given a bounded open set 51 in W 2  and a 
function g(x, y ) ,  continuous on a, solve for a function f ( x ,  y )  such that 

( * >  31 = 0. 
a n  an 

If fd has a smooth, e.g., C’*l-boundary, it is well known that ( * )  has a unique 
solution f which is C’ and has second derivatives which are in L, for all 
p < 00. If g and dfd are a bit smoother, then so is f. Unfortunately we need the 
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solution f for domains Q with corners and slits and even with cusps at the end of 
the slits. We can find no standard reference for the existence and regularity of the 
solutions f in this case, hence we must summarize “standard” theory here. 
Grisvard [7] contains all the basic ideas that we need, but they must be adapted 
to our particular case. 

B. First of all, we use the Hilbert space W i ( Q )  defined in the introduction 
and consider the positive definite continuous quadratic function on W:( Q ) :  

By the Lax-Milgram lemma, E has a unique minimum, i.e., the function f such 
that 

for all functions + E W,’(Q). This f exists because + - p2/J+ g is a bounded 
linear functional on W;(Q), hence is given by dot product with some f. 

C. Secondly, as a distribution on Q ,  f satisfies A f = p2(f - g ) .  Putting Q 
inside a large domain R with C’3’-boundary, let fR be the solution of ( * )  for this 
domain R. fR is C’ with LP-second derivatives for all p .  But then, on Q ,  
A( f - fR) = p 2 ( f  - fR), i.e., f - fR is in the kernel of the elliptic operator 
A - p2. Thus f - fR is C“O. Therefore f is also C’ on Q with LP-second 
derivatives. Thus f is a strong solution of A f = p2( f - g) on Q ,  i.e., we have 
equality a.e. of A f with p2(  f - 8). 

D. Thirdly, note that f is bounded on Q by the max and min of g: 

ming g f ( x )  5 maxg for all x E 9. 
52 62 

To see this, let 

Then at almost all points of Q either f2 = f or f2 is locally constant, hence, at 
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almost all x E Q ,  

Ilvf21I2(x) s llvf1I2(x). 

Moreover, at every x E Q, 

(fib) - g ( x ) ) 2  s (fb) - d.))'. 
Therefore, 

hence f = f 2  since f is the unique minimum of E. 

E. Fourthly, look at points P E aQ such that d Q  n U is C'.' for some 
neighborhood U of P. We claim f is C' on a n U and that il f/a n I aQ ,-, = 0. To 
see this, introduce a subdomain Up of Q which is C',' and whose boundary 
coincides with that of Q near P (see Figure 25). Let q be a C1*'-function which is 
1 near P, which is zero on aUp - ( a Q  n dUp) and such that aq/iln(aup = 0. 
Then f= qf satisfies 

Af- p 2 f =  q p 2  g + 2017 vf + f Aq. 

Moreover, f satisfies Neumann boundary conditions on Up weakly, in the sense 

Figure 25. A smooth subdomain with same boundary near P. 



OPTIMAL APPROXIMATIONS 647 

of Lions and Magenes, i.e., 

for all J, E W,'(Up) such that a $ / d v I a U p  = 0. 
This follows from applying the basic property ( *  * )  of f with cp = q$ and 

some juggling with Green's theorem. We apply the weak existence theorem, 
Proposition 2.5.2.3 in Grisvard 171, to deduce that f l ~  W,'(Vp). We can soup this 
up a bit, because now we know that af;/ax and d f ; / a y  are in the space W:(Up), 
hence they are in L,(Up) for all p, by the Sobolev inequalities. Now repeat the 
argument with f= q2f, but starting with 

A f - p 2 f l = q 2 p 2 g + 4 q ( ~ q * v f )  +fA(q2)  = L p ( U p ) .  

By the same result in Grisvard, f~ Wp?(Up) for all p. This tells us that f is C' 
on 0 near P, by the Sobolev inequalities, and now the weak Neumann condition 
becomes a strong Neumann condition: 

F. Before studying the behavior of u in corners of Q ,  we must make a 
digression on C','-coordinate changes that straighten comers. We claim that for 
any two C'.'-arcs meeting at (0,O) with distinct tangent lines, in a neighborhood 
of (0, 0), there is a C'.'-diffeomorphism Q, such that 

(a) Q, maps the two arcs to straight rays through (O,O), 
(b) dQ, is the identity at (O,O), 
(c) d@ carries normals to the two arcs to normals to the corresponding rays. 
We prove this in two steps. In the first, we satisfy (a) and (b) but not (c). In 

Let the two arcs be 
the second, we satisfy (c) while preserving conditions (a) and (b). 

and 

X =f'(O), p = g'(0) where f ( x )  > g ( x )  if x # 0. 

Define Q1 : W 2  + W 2  by 

carries vertical lines to vertical lines. It carries y = f (x)  to the line y = Ax 
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and y = g(  x )  to the line y = p x  and d@',(O, 0) = Z2. Therefore cPl is a CIT'-dif- 
feomorphism in some neighborhood of (0,O). Next for any Co,'-function h ( x )  
such that h ( x )  = 0 if x 0 and for any Y > 0, define \kh.u by 

Then 

especially 

Thus 'kh, is a C'.' diffeomorphism near (0,O) which maps the sector 0 < y < vx 
to itself, preserves perpendiculars along y = vx ,  but maps the perpendiculars 
a / a y  to y = 0 to the vectors a / a y  + ~ ( Y x )  a / a x .  q h ,  may be extended to any 
sector bounded by y = 0, x > 0 at one edge and including 0 < y < vx  by setting 
it equal to the identity at the new points: it is still C'". 

We may then use a conjugate 

where A is a rotation or reflection, to modify the field of normal vectors to any 
sector at one edge without changing those at the other. Two such maps then will 
modify the two fields of normal vectors by arbitrary Co,'-maps, so long as the 
normals of the apex do not move. The resulting a2 0 (Dl can be made to have 
property (c). 

Finally note that this argument can be extended to map the exterior sector of 
two C'y' arcs tangent at (0,O) or the complement of one C'-'-arc to the 
complement of a single ray by a diffeomorphism iP with properties (a), (b) and 
(c) above. Let the arcs be given by 

y = f ( x )  and y = g ( x ) ,  
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where 

The exterior sector is given by ( y > f ( x ) )  U ( y < g(  x ) )  U ( x  < 0). The comple- 
ment of the C1,’-arc is just the special case f ( x )  = g ( x ) .  To construct CP, we first 
use the map 

and then “correct” the fields of normal vectors as before. 

G. We next look at singular points P E ail  which are corners with convex 
angles a, 0 < a < B. At such points P, we claim that f is still C’ in n U for a 
suitable neighborhood U of P, and since the two arcs of ail at P have distinct 
tangent lines, (vf )( P) = (0,O). To prove this we use the techniques in Grisvard, 
Section 5.2, together with a C’*’-map c9 of the type just constructed. More 
precisely, we assume CP is a mapping of a neighborhood W of P in R 2  to a 
neighborhood of (0,O) in W 2  carrying W n Q to an acute triangle d in R and 
such that d @ ( P )  = identity, and CP carries normals to W n as2 to normals to ad 
(see Figure 26). Let r, be the two sides of d through (0, 0), and r2 the third side. 
Let 9 be a C“-function of (IzJI on 0 which is 1 near (0,O) and 0 on r,. Consider 
the function 

fl(4 = m f ( W 4 )  
on 5; f satisfies a variable coefficient elliptic problem on h: 

Figure 26. Straightening a comer of 51. 
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for suitable bounded functions b,,, bi, c and S on 0, bij continuous with 
bi,(O, 0) = 0, g continuous. Next choose p such that 

2 < p c  min (&) 
angles 

and consider the family of operators 

As in Grisvard, B, are bounded operators, B,  is an isomorphism by Theorem 
4.4.3.7. Therefore B,, is an isomorphism. This shows f E  w,”(n) C C’(0 )  using 
the Sobolev inequalities and the assumption p > 2. 

H. We may extend this last argument to cover corners P of a Q  with angles a 
such that ?T < a 2n. Here a = 2n includes both the exterior sector to “cuspidal 
corners”, pairs of C’.’-arcs tangent at P and the exterior of a single C1.’-arc 
ending at P. However, the result is different: f is not generally C’ on a near P. 
Instead f has a singular leading term. 

Let z = x + Q be a complex coordinate on W 2  and let 4, 62 be the angles 
with the positive x-axis of the tangent lines to the arcs of at P (6, = e2 
allowed); see Figure 27. Let 

Figure 27. Orienting the sides at a comer of Cl 
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Then we claim that, near P, 

f = Cfsing + frrgr f,, a C'-function. 

To prove this, use a Q, carrying a neighborhood Wof P to a polygon b, an q zero 
on aW n Q and consider f= qf 0 Q,-' as a function on d satisfying an elliptic 
boundary value problem with mixed Dirichlet-Neumann boundary conditions. 
Take p slightly larger than 2 and use Theorem 4.4.3.7 plus the methods of 
Section 5.2 to deduce that, on Wp, this boundary value problem has index 1, i.e., 
the map B, defined in subsection G has index 1. 

What we have to verify is that fsing fills in the required range, i.e., 

(ii) af&@(, E w;-l/p(rl). 

But Lhg is harmonic and continuous, so (i) follows. 

To show (ii), let r ,  0 be polar coordinates at P and use r as a coordinate on 
the arcs of r,. Take one of these and, assuming for simplicity that it is tangent to 
the x-axis, write it as 

(0 (A - P2)fsing E Lp(Q)9 

Y = f ( r ) ,  f E c'.', f(0) = f'(0) = 0, 

or 

Let g ( r )  = sin-'( f(r)/r). Now if f ( r )  is C'.' and f (0)  = 0, then f(r)/r is 
Co,', hence g ( r )  E Co,'. Moreover, 

which is in C0v1 also. Now, in these coordinates, 

so 

= (CO*'-function) r w / a - l .  
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We use the following easy calculation: 

LEMMA. I f g ( x )  is a Co*'-function on [0,1], then g ( x )  x k  E W:-'/"([O, 11) if 
k z  - $ a n d p < 4 .  

Differentiating fsing, we also note: 

LEMMA. 

I. Another case that we need is a point P E ds l  such that i2 is the comple- 

If 1 4 p < f ,  then fsing and hence f belongs to Wi(sl) .  

ment of an arc ending at P with a cusp at P, i.e., an arc I' given by 

y = aX3'2 + g(x), g f c',', g ( 0 )  = g'(0) = 0, a E R, a # 0, 

after a rotation. This is a C1*1/2-boundary point and cannot be straightened by a 
C1.'-map a. Nevertheless we claim that, near P ,  the solution f ( x ,  y) has the 
form 

f =  a, + a,\/;cos(:d) + ~ ( x ,  y ) ,  

where 

R E O(r' -e ) ,  

l\vR\l E ~ ( r - ' )  for all E > 0. 

In particular, f has a continuous extension to a near P (where the two sides of 
r are considered as distinct points of a). 
This can be shown by considering 

f7 u ,  u )  = f( u2 - u 2 ,  2uu) 

defined on 8, one of the two components of 

{(u,u)((u2- u2,2uv) E Q ) .  

In complex coordinates, we are letting x + y = ( u  + iu)2.  This opens up the cusp 
into C'*'-boundary (with a discontinuity in the curvature at (0,O)); see Figure 28. 
On a, {satisfies 

A{= 4p2( u2 + u')( f- g), 
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Figure 28. Smoothing a cuspidal crack by complex square root. 

Therefore, as in subsection G, fE W,'( Q), but for all p < 00. Thus f can be 
written as 

f= a,, + alu + ii, 
j ( 0 , O )  = IlvRll(0,O) = 0. 

By the Sobolev inequalities, E C'** and vt? E Co*" for all a < 1; hence 

Going back to f ,  this gives us the expansion above. 

J. One estimate is missing from our analysis: it would be nice to state it 
inside a cuspidal corner, i.e., in a domain 

where 

the solution to the Neumann problem is C' at the corner (O,O), or at least Co. 
We do not know how to prove this. Fortunately we do not need it either. 

Appendix 2 

Estimation of Neumann Problems via Brownian Motion 

Let D be a domain in W 2  bounded by a finite number of C','-curves, meeting 
at comers with various angles ai or ending at crack-tips. Thccase ai = 0, ie., 
cusps sticking out from B, is excluded, but a, = 2n, i.e., cusps sticking in, is 
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allowed. Let g E C'(B) .  We are interested in solving 

Af,. = P 2 ( f ,  - g ) ,  

a f p / a n l , D  O, 

for various p's. The main result of this appendix is 

THEOREM 1. 
all g and all p,  

Given a domain D as above, there is a constant CD such that, for 

We know two proofs of this result. One that we found and that seems very 
intuitive to us which uses Brownian motion, but does require some painful 
estimates. The other was found by S.-T. Yau after we posed the problem to him, 
which is based on iterating the Sobolev inequality infinitely often to estimate 
I( f p  - gl), for higher and higher p in terms of ( 1  f,. - gl12. Yau's proof demon- 
strates once again that things that can be proven with Brownian motion can 
generally be done directly. We give here our original proof because it seems so 
natural however. 

We need Brownian motion $( t )  with reflection on the boundary of D. The 
simplest way to define this process is to use the Riemann mapping theorem: Let 
@ : D + unit disk A be the conformal map. Then @ extends homeomorphically 
from to &, provided that boundary curves of D which meet D on both sides 
(e.g., edges ending in crack-tips) are counted twice as boundary curves. By a 
theorem of ordinary Brownian motion, $( t )  on D becomes Brownian motion 
& ( t )  on A run with a new clock 7( r ) :  

7 ( t )  = J'p(P(S))J*ds. 
0 

(See e.g. [ll].) On A ,  define Brownian motion with reflection in the usual way 
and carry it back to D by 

Note that although @' = 0 or 00 at the comers of D, & t )  hits the image of these 
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comers with probability zero; hence there is no difficulty defining T* on almost 
all paths, and F( t )  also hits a comer with probability zero. 

The solution to the boundary value problem is now given by 

f ( x ’ )  = E[/mp2g(p(t))exp{ - p 2 t )  dt( p(0) = x’ . 
0 I 

For details on the construction of F( t ) ,  see [ l l ] ,  especially Sections 3.9, 4.3 and 
4.6, or [ 5 ] ,  Section 1.6. For a proof of the formula, see [5 ] ,  Section 2.5, Theorem 
5.2. 

We need a version of Ito’s lemma to calculate the expected position of F( t): 

ITO’S LEMMA. Let f be a C1”-function on a subdomain Do in 5 such that 

Then 

where b is a one-dimensional Brownian motion. 

Proof: This is Ito’s lemma applied to f( p( t)): cf. [ l l ] ,  Section 2.9 and [5 ] ,  p. 
96 (note: formula C there has a misprint.) 

Using Ito’s lemma, we now prove 

THEOREM 2. Fix the domain D. Then there is an ro > 0 and a constant C, 
such that, for all r 6 ro, all t 2 0 and all P E D ,  

Proof: First of all, we need coordinates adapted to D. Near the A-th edge r, 
of D, let dh( P) equal distance from P to r, and let s,( P) equal arc length along 
FA from the initial point of r, to the nearest point on r, to P (cf. Figure 3, 
Section 1). Note that, since FA is C1*’, S, and d ,  are C’.’. 

Secondly, near each comer Q, of D, let 0, be a diffeomorphism of a 
neighborhood of Q, to a neighborhood of (0,O) as in Appendix 1: carries the 
two edges of D abutting at Q, to two rays in W2, it carries vectors perpendicular 
to these edges to vectors perpendicular to the rays and its differential at Q, is the 
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identity. Choose ro 5 rl as follows: 

(i) (s,, d,) are coordinates on a neighborhood U, of r, defined by d ,  5 rot 
(ii) the (x, y)-metric and the (sA, d,)-metric differ by at most 1.1 on this 

neighborhood, i.e., 

dx2 + dy2 5 1.1 (dsf + dd:) 1.21 (dx2  + d y 2 ) ,  

(iii) U, n U, f 0 only if I?,, I’,meet at avertex Q, and then U, n Up c B,,(Q,), 
(iv) @a is defined in B,,(Q,) and the ( x ,  y)-metric differs from the 

Define y as the max of 

( x ,  = x 0 @,, y, = y 0 @,)-metric by at most 1.1. 

IAsAl, IAdAl, IAdi l  in UA 
and of 

I A d l  in B,.,(Q,), 
2 where p: = x: + y,. 

Now to prove the theorem, we distinguish three cases: 
Case (i). B2r,5(P) C Int D. 
Case (ii). The connected component of (B2r,5 n D )  containing P meets 

Case (iii). The above component meets two edges I?,, r, of D .  
exactly one edge r, of D and no comer. 

In case (i), we have a small square S :  

x ( P )  - +r 5 x 5 x ( P )  + +r ,  

y ( P )  - ) r  5 x $ y ( P )  + i r ,  
with S c B2,,5( P )  c B,( P) and S c Int( D). We estimate the probability that 
P‘((r) leaves S in time t by adding the probabilities of it hitting the four edges 
of s: 

I - 4exp{ - r 2 / 5 0 t } .  
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We use here and below the simple bound (for any a 2 0): 
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dy 5 $ exp{ - + a 2 } .  

In case (ii), we have a curvilinear rectangle S around P: 

Again, in this case, S C B2, /5 (P)  C Br(P) ,  because the furthest point of S from 
P in d,, s,-coordinates has distance \ / z J / 5 ,  and IlVdAll, llVsx1l 6 1.1 in S,  hence 
these points have distance at most 4r from P in x ,  y-coordinates. Now there are 
really two subcases: 

Case (iia). d , (P)  > fr .  
Case (iib). d , (P)  5 i r .  
In case (iia), S is in the interior of D and we estimate the probability of a 

large excursion of d ,  or sA using Ito’s lemma. Since 

(hdxl 5 y in S ,  

and since llvdxll 5 1.1, the lemma tells us that 

m exp{ -x2/2.42t} 
dx . 

d,( F ( S ) )  = d , ( P )  4- f r  
P for som+eO 5 s 5 t ,  I given ~ ( 0 )  = P 

(Note that we are adjusting for a worst case of Brownian clock speed 1.21 times 
normal and a maximum possible drift yt-so that the Brownian faeor must have 
an excursion of at least f r  - yt . )  A similar estimate holds for d , ( P ( s ) )  = dh( P )  
- +r and for s , ( P )  Ifi fr .  Thus 

?(s) 4 s for exp{ -x2/2.42t} P s o m e o s s s t  5 8 1  dx 
r / 5 - y r  I -  given P ( 0 )  = P i 

I - 4exp{ -(r  - 5yt)2/60.5t) 
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Now either r 2 25yt or r 5 25yt. If f r  25yt, then r - 5yt 2 0.8r; hence 

P( ) 5 4exp{ - r 2 / 1 0 0 t } .  

If r 5 25yt, then r2/100t 5 f y r ,  and hence 

P( ) 5 1 s exp{ :yore} exp{ - r 2 / 1 0 0 t } ;  

thus in all cases 

P( ) 5 max(4, exp{ fyr,})exp{ - r 2 / 1 0 0 t } .  

In case (iib), F( t )  can leave S in only 3 out of its 4 sides, and bounces off the 
4-th. We must use d i  instead of d, in order to satisfy d / d n l , ,  = 0. The 
modified calculation shows that 

which follows from the lemma, using lA(d:)l 5 y and 

The right side is estimated by 

- - < 2 exp( - ( 4 r  - 5 ~ t / r ) ~ / 9 . 6 8 t ) .  

As in case (iia), separating the cases r 2  2 125yt and r 2  5 125yt, we deduce that 

P( ) 5 const.exp{ - r 2 / 4 0 0 t } .  

In case (iii), by the choice of r,, the two edges r, and r, meet at a corner Q, 

Case (iiia). Q, B2r/5(P) .  
Case (iiib). Q, E BZr/5(P).  

of D. Again we distinguish two subcases: 
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Figure 29. Neighborhoods of a point P near a comer. 

If the angle at the comer Q, of D is greater than T, we must be in case (iiib). 
We use the diffeomorphism 0, defined near Q, in both cases. Let p ,  = 110,,11. In 
case (iiia), let S be the domain defined by 

see Figure 29. We claim that 

( * I  S c B r ( P ) ,  

so that if F ( t )  leaves B,(P) ,  it must also leave S and therefore p,($((t)) must 
equal p , (P)  f f r  at some point. To check this, use the fact that @a changes 
distances by at most a factor of 1.1 and some elementary geometry for the sector 
@,(S) ,  depicted in Figure 30. In the figure, it is easy to check that the length of 
the dotted line is at most t r ,  so that 

@ A S )  = B&,5(@,(f9* 

Going back, S C B r ( P )  follows. 

-I !- r/5 

Figure 30. Estimate of certain distances. 
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We now apply the lemma to the function p:. (Since Ap, + 00 at Q,, we use 
p: instead of pa.) Note that 

IA(P:)I 5 Y, 

IlV(P2) 11 = 2PaIlVP,ll 5 2.2(P,(P) + $4- 
Thus 

where 

( p a (  P) + i r ) ’  - pa( P)’ - yt 

pa( P)’ - ( p a (  P) - i r ) ’  - yt 
for the outer boundary, 

for the inner boundary. 
* = (  

We get as above 

But one checks that 

B 41.- 7 for both boundaries, 

so, as in case (iib) 

P( ) 5 const. e-r2/400r. 

Finally, in case (iiib), let S be the domain 

Pa 5 P,(P) + hr. 
Note that p a ( Q )  5 p , ( P )  + &r implies 

IIP - Qll S IIP - Qall  + IlQ, - Qll 

5 3r + l . l(p,(P) + & r )  

I - (+ + 1.1 ‘(1.1 -5 + & ) ) r  < r ;  

hence S C B , ( P ) .  There is only one way to leave S now. Use p: as in case (iiia), 
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and get the estimate 

P(1eaving S) 5 const. exp{ - r2 /1600t } :  

661 

The main result of this appendix can now be proven using Theorem 2 and the 
formula for the solution f of the Neumann Boundary Value Problem: 

Proof: Note that 

hence, by the formula, 

For fixed P and t, let 

h ( r )  = p[( (Z( t )  - F(o)(( 2 r ifF(0) = P I .  
Then 

= i m h ( r )  dr 

6 c C l  exp{ - r2/1600t } dr 

C, exp{ -r:/1600t} dr, 
+ Ldism(D) 

by Theorem 2, 

- - < 1OC,fi + C, &am( D)exp( -r:/1600t}. 
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Therefore, 

J f ( P )  - g ( P )  I s s u p ~ ~ v g ~ ~ C ~ / m ( 1 0 6  + (diam D)exp{ -$/16OOr}) 
0 

*p2 exp{ - p 2 r }  dr. 

Now 

and 

Thus 

Appendix 3 

Boundary Estimates with p Large 

Let 51 be a bounded domain in R 2  with Lipschitz boundary, af2. In 
particular, 51 has no cracks. This is not a serious restriction since we can split 
cracked domains along the cracks and apply the results derived here to each piece 
separately. 

For a curve y c 351, let a y  be the set of end points of y and Iy1 be arc length 
of y. For any point P on y ,  let 

A, = the diameter of the largest circle through P, contained 
in a single component of R~ - as2. 

Let 

A, = minh,. 
PGY 
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If y is connected and contained in another connected curve y*, let 

60 if y* is a closed curve, 
arc distance between y and ay* otherwise. 

If y is C'.', define curvilinear coordinates in a tubular neighborhood of y in GI as 
shown in Figure 3, Section 1: r is the normal distance from y and s is the arc 
length along y. Let n and t denote the unit (inward) normal and tangent vectors 
along y. Let 8 be the angle that t makes with the positive x-axis. If y is C2, the 
curvature K along y is defined by the equation 

-Kt. dn 
ds 
- =  

Let 

where Lip,,( 8) and Lip,( K )  are the Lipschitz constants. For p > 1, let Vy, p ,  c 
Hj(52) denote the subspace of all functions u such that 

(a) v2u - p2u = 0 in 52 (in the weak sense), 
(b) u is bounded on d o ,  
(c) a u / a r  is COT' along y.  
Let 

If y is C2,' and au/dr  is C'.' along y, let 

THEOREM. Let y c y* be Connected C'll-curues c dP such that a y  n dy* is 
empty. Then, there exists a universal constant p such that with 
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for all p satisfying p6 2 6log(pldal) 2 1 and for all u E Vv.,p,F, we have 
along y :  

A. 

where Ieo(s)l is bounded by a universal constant. 
B. If y* is C2,' and a v / a r  is C',' along y*, then 

where I E ~ ( s ) (  and 1e2(s)I are bounded by universal constants. 

constant A depending only on 6 ,  laQl and I I K I J ~ , ~ , ~ .  such that, for all r < 6 ,  
C. Suppose that y* is C3*' and a v / d r  is C'" along y* .  Then there exists a 

where, for 1 4 i 5 3, 

In order to make the proof more readable we give a proof only for Part B of 
the theorem. The proof of Part A is essentially contained in the proof of Part B 
except that we have to replace all the C2"-estimates of y* by C'.'-estimates and 
develop the error terms up to one order of l /p  less. Part C is not needed in our 
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application of the theorem in this paper. Its proof is analogous to the proof of 
Part B involving a few more calculations of the same type. 

The theorem is proved by estimating the integrals in Green's integral repre- 
sentation formula which we now recall. By Sobolev imbedding theorem, 

u E Hi(Q2) where q > 2, 

and by the trace theorems (see [7]), 

The assumption that (- v 2  + p2)u  = 0 in the weak sense means that 

1 1  
- + 7 = 1. 
4 4  

where 

Fix a point P E W 2  and let + = Ko(plPQl), where KO is the zeroth-order 
modified Bessel function of the second kind and Q E W 2 .  We get 

aU J (vQu V Q K O  + P2'QKO) + in = 0. 
Qe @ 

KO satisfies the equation 

in the weak sense, where up is the delta function concentrated at P. Therefore, 
for all u E Vy,p ,c ,  

If P 4 a Q  or if P E a Q  where it is at least C1*', then aKo/anQ is bounded in 
a neighborhood of P and hence, by applying the Green's formula to Q - 
(&-neighborhood of P) and then taking the limit as E + 0, we get 

for all u E Va,p,c and all P in whose neighborhood aQ is C'.'. Subtracting (1) 
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from (2), we get 

where 

since u is continuous at P.  
We have 

( 3 )  m p u ( P )  = %/ 1 (-KO% a U  + a K " u ( Q ) )  where rnp = b;,. 
an, a n ,  

Our task is to estimate the integrals in the integral equation above and solve 
explicitly for u in terms of a u / a n .  The key point is that KO and its derivatives 
decrease exponentially with increasing plPQl and hence the values of the inte- 
grals when p is large depend essentially on a small segment of aSl near P which 
may be approximated by a circle. 

We prove a series of lemmas first. In Lemma 1, we derive geometric estimates 
which depend only on Q. We use these estimates in Lemma 2 to specify 6. In 
Lemma 3, we derive some basic formulae for KO,  Lemma 4 lists estimates for the 
basic integrals that arise when we try to estimate the integrals in the Green's 
formula and their derivatives. 

Define R : R 2  x as2 + W L o  by setting R ( P ,  Q )  = distance between P E Q 
and Q E 80. If P and Q lie in a tubular neighborhood of a connected curve 
y C a Q so that P and Q have coordinates ( r ,  s p )  and (0, sQ),  respectively, then 
R becomes a function of r ,  sp and so. Define u : y X y + R,, by setting 
u ( P ,  Q )  = IsQ - spl. Let a, denote the symmetric operator a / a s ,  + a /asQ.  Let 
n t ,  and K~ denote the normal vector, tangent vector and the curvature at the 
point (0, s,). Let nQ, tQ and K Q  be the corresponding quantities at Q.  In what 
follows, if an estimate contains an order term O(E") in variable E, then ~O(E")/E"I 
is bounded by a universal constant. 

p :  

LEMMA 1. I. Let x l ,  x 2  be the coordinates in R 2  and let D, denote the 
operatord/axi. Let q E as2 besuch that nQ isde$ned. Then forall P E R 2  - { Q } ,  
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i = 1 ,2  andj  = 1,2, 

IDipRI s 1, 

1 loip aR/anQl s z. 
11. Suppose that P belongs to a tubular neighborhood of a connected C2-l-curve 

y c a Q  and Q E y.  Then, for all r ,  u l/ky, we have the following estimates: 

(i> ~2 = r2 + a2(1 - Kpr) + k : [ r 0 ( u 3 )  + o ( u ~ ) ] ,  

aR 
(ii) R- ar = r - + K ~ u ~  + k , 2 0 ( ~ ~ ) ,  

aR 
(iii) R- = - ( 1  - Kpr)(SQ - s p )  + k $ O ( u 3 ) ,  a s ,  

(If y is only C1gl, the corresponding estimates may be obtained by dropping 
the terms containing K,, and replacing k$O(a"') by k,O(u"-'). We leave it to 
the reader to verify this.) 

Proof: Part I may be proved directly by differentiating R. (It is convenient 
to let the x,-axis coincide with nQ.) 
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Consider now Part 11. Let Po be the point with coordinates (0, sp) and let m 
be the point on y with coordinates (0, f(sp + sQ)).. From the error formulae for 
divided differences, we obtain the following estimates in which k;O(u“) is 
abbreviated as 01( u ,): 

___+ 

where t ,  is the tangent vector at m and Ol(u2) is a vector of magnitude Ol(u2), 

From these estimates, we obtain, in turn, the following: 

1 - n p  nQ = + K $ J ~  + k,0 , (a3) .  
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The estimates in Part I1 now follow by substituting the above estimates into 
the following formulae for R2 and its derivatives: 

4 + 
R2 = ( - rnp  + P,Q) - (  - r n p  + P,Q), 

aR R- = - (1  - K p r ) m 0  t,, 
as, 

aR 
R- = - rnp  tQ + tQ,  as, 

LEMMA 2. There exists a universal constant p 5 f such that if y is a connected 

(a) for all points P in a tubular neighborhood of y for which r 5 6 and 
C'yl-curve c as2 and i f  we choose 6 6 P / k , , ,  then 

{ Q  E a q a  5 46)  c y,  we have 

r2 + 4a2 2 R2 2 r2  + $a2, 

(b) I f ,  furthermore, 6 5 :Ay, then R 2 26 whenever u 2 46 or Q 4 y. 

Proof: The estimates for R2 and R aR/asQ in Lemma 1 imply the existence 
of p such that the inequalities in part (a) are satisfied. Suppose now that 
6 5 an,. Let S be the circle with radius 26 and center at P. Let Q1, Q2, ql, q2 
be the points as shown in Figure 31. Since R 2 26 when u = 46, IsQi - spl 5 46 
for i = 1,2. Therefore, Q, and Q2 lie on y. For i = 1,2,  the arc Qiqi must lie 
inside the circle of diameter A,,,, tangent to y at Qi, since 46 < A,. The rest of 
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Y / 

Figure 31. Definition of Q, and q,, i = 1 and 2. 

the circle S must cut any normal to a point on y between Q, and Q2 at a 
distance at most 46 < A,. It follows that d Q  n S = {Q,, QZ). Any ray from P 
to a point on d Q  with u 2 46 must intersect S first and hence, has length at 
least 26. 

LEMMA 3. Let KO( z )  be the zeroth-order modrJed Bessel function of the second 
kind. Let L denote the operator - ( l /z )  d/dz .  Then: 

(i) L ~ * L K , ( ~ )  = K,(z). 
(ii) There exists a constant c such that, for 0 z < 00, 

(iii) For any integers m, n 2 0, there exist constants c, and dm," such that, 
for all z 2 1, 

~ m z m L " K o (  z )  dz d m ,  , , z " - " - ~ / ~  e .  -' 

Part (i) follows from the identities Proof: 

d 
z K o ( z )  = - K d 4  
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where K , ( z )  is the first-order modified Bessel function of the second kind. (For a 
collection of formulae involving Bessel functions, see the Handbook of Mathe- 
matical Functions, [2], vol. 55.)  For proving part (ii), use the polynomial 
approximations for z1l2K0( z)  and zK,(z)  in the range 0 z 2 and 2 4 z < 00. 

The last part follows from (i) and (ii) by differentiation and integration by parts. 

LEMMA 4. Let y be a connected C2”-curve C 80.  Let j be an integer, 
0 s j 5 2. Choose 6 5 @/ky where p is the constant as in Lemma 2. Let P with 
coordinates ( r ,  s p )  be a point in a tubular neighborhood of y with r < 6. Let 
Np = { Q E a0lo < 46) and assume that Np c y. Let @ E L,( d 0 )  be a function 
on 80 which is CJ-l*l in y. Let 

and 

Let Y denote the operator - ( l / R )  d/dR. Then, there exist universal constants 
C,, C2; . *, Ci ,  C;; . -, C”, C;l, C;’,. . ., ao, and polynomials al (pr)  and a3(pr )  
of degrees 1 and 3 in variable &, respectively, with universal coeflcients such that 
the following estimates hold for all p satisfying p6 2 6 log(p1aQI) 2 1: 
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(4 .2 )  
with absolute error g 

if j = 2 ,  

1 @pe-p' 
% lNTKO( ) a2@ dsQ 2/41 - Kp')3'2 

( 4 .3 )  if j = 1, 
with absolute error 5 

If r = 0, then for m ,  n 2 0, j = 0, 
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For m,  n 2 0 and j = 1, 
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I f ,  additionally, S 5 $A,, then for n 2 0 andj = 0, 

Proof: Estimate (4.11) follows from the estimate for ( d " / d z " ) K o ( z )  and 
L"K,(z) in Lemma 3. For the rest, first consider the special case where is the 
upper half-plane in W 2, N, = aQ is the y-axis in W 2, r is measured along the 
x-axis and cf, = 1. 

Let 

Then, u satisfies the equation -v2u + p2u = I, where I is the line potential of 
unit density along the y-axis; i.e., 

m 
= 1. 

The equation is solved easily by reducing to the one-dimensional case: 

1 
u ( r )  = G e - p ' .  

Therefore, 

Differentiation of this formula and integration by parts show that estimates 
(4.1) through (4.8) hold such that the error terms in the first five estimates are 
actually zero. To obtain (4.9), just note that R = u = - ypl and 

which does not depend on p and the integrand, at worst, has only logarithmic 
pole at ye = y,. The integrand in (4.10) has a pole of the order 1 / ( y Q  - y p )  
when m = r = 0 and hence the integral is defined only as a limit as indicated. 
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The numerator is an even function of yQ while the denominator is odd. There- 
fore, the integral is zero for all r > 0. 

Consider now the general case. The estimates in the lemma follow by 
performing a change of variables as follows. We let 

As before, we abbreviate ky” O(um)  and ky” O(qm) as O,(um) and Ol(qm), 
respectively. By Lemma 1, 

and 

-- - /(I - K p T )  + T O , ( U )  -k 0 , ( U 2 ) .  
sQ - sP 

By Lemma 2, a 6 q2/a2 5 4 and 5 6 q / ( s Q  - s p )  
ible function of sQ: 

2. Hence, qQ is an invert- 

Note also that, if 1171 2 26, 

and 
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We also need three more integral estimates: 

6) 

Finally, note that if j = 1, 

Q, = Q,P + Cpl,O(q) 

and if j = 2, 

Consider now the first estimate in the lemma with j = 2. Perform the change 
of variables and substitute the above estimates for drQ/dqQ and 0. Let q -  and 
TJ+ be the limits of qQ corresponding to the limits of sQ in Np.  We get 
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Putting all of the above estimates together, we get the first estimate in the lemma. 
The other estimates are obtained in the same way. 

Proof of the Theorem (Part B): For 1 5 k 5 4, define 
yk = { P E y*larc distance( P, y )  5 4k8) c y * .  

For a point P E y3, define its 48-neighborhood Np in asl as in Lemma 4. We 

We begin with the Green’s formula: 
keep N p  fixed when we differentiate with respect to sp.  

First, consider these integrals over asl - Np,  where P is a point in y3. R 2  and 
R a R / a n Q  are CZs1-functions of sp .  Moreover, by Lemma 2, R 2 26 over 
as2 - Np.  Therefore, R and d R / a n Q  are C*”-functions of s p .  K o ( p R )  is an 
analytic function of R if R # 0. Therefore, K o ( p R )  and a K o ( p R ) / a n Q  are 
C2*’-functions of s p  over asl - Np. We may compute their derivatives by 
differentiating inside the integral sign. Let + denote d u / a n .  Let 

By estimate (4.11) in Lemma 4, 

where laR/dspl  5 1 by Lemma 1. Therefore, 

Let 

w2 = 

Consequently, 
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By Lemma 2, 

Therefore, 

Consider now the same integrals over Np. Since KO(@) has a logarithmic 
pole, differentiation inside the integral sign produces divergent integrals in most 
cases. Hence we proceed as follows. Let TP,& = [0, S ]  X Np.  If an integral has the 
form 

where G is a function on TP,8 X Np and @ is a function on Np,  then 

d @  
= - [ G ( P ,  Q ) @ ( Q ) ] $ ' +  Q) ,p  

where Q * are the end points of the arc Np. aaG( P, Q) will turn out to have 
singularity no worse than the singularity of G( P, Q). Therefore, everything in the 
last step is convergent if the original integral is. If any of the integrals in any of 
the steps above turn out to be divergent we consider the integral 

where P* is a point in Tp, 8 with coordinates ( r ,  sp ) ,  carry out the above steps 
and then take the limit as r + 0. 
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Let u l ( P )  = - ( l / n ) j N p K o ( p R ) + ( Q )  ds,. By (4.1) in Lemma 4, 

Consider u , ( P # )  = - ( l / a ) f N p K o ( p R " ) + ( Q )  hQ where R" = 1P"Ql 
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Then, 

where O= - ( l / R )  d / d R .  
By Lemma 1, 

Since 9 K o ( p R )  has singularity like l/a2 at R = 0, the last integral is conver- 
gent when r = 0. Therefore, 

By Lemma 3, the first term equals 

Consider now the second term. Since aaR2 = k$0(a3) ,  the term equals 
k$)l+)lO,oo, Np  O(l/p2) by (4.9) in Lemma 4. By (4.1) again, 
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Putting all the pieces together, we get 

Consider 

Let 

Since u appears on both sides of the equation, we have to bootstrap the result, 
successively shrinking the neighborhood of y, from y4 to yl, during the process. 

Start with P E y3. Since R a R / a n ,  = ky.0(a2),  

U2(p) = 11U110,m,y*ky* O(  $ ) *  
Hence, for all P E y3, 

d p )  = WAP) + w2(p)  + 0) + u2(P) 

Restrict P now to y2 so that N p  c y3. Then, 

= III~lllo,y* o( i ). 
Next, restrict P to y1 so that N p  c y2.  Then, 

and 

u ( P ) =  -- + ( P I  + lllullll,y* .( +). 
P 



OPTIMAL APPROXIMATIONS 681 

which essentially proves Part A of the theorem. Finally, restrict P to y. Let 
u = u + + /p .  Then, 

= - GlNP 1 PK,(pR)[  - + K ~ u ~  + k : . 0 ( u 3 ) ] [  - P + u ( Q ) ]  ds, 

BY (4.3), 

thefirstintegral = --+(P) + k,*C,Jy.O 
2P2 

and 

the third integral = ky.llullo,w, Np 

Therefore, 

and 



By Lemmas 1 and 2, 

and 

a, R -  = k : . 0 ( a 2 ) .  ( '"PI 
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Therefore, by (4.3) and (4.6), 

O( u)k , .  O( u') 

R' 
= k,. O( a),  

683 
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In the second integral, 

1 
R 2  

= - ( [ U 2 +  k 7 . 0 ( U 4 ) ] [ K p ( S Q  - S p )  + K $ 0 ( U 2 ) ]  

Therefore, 

the second integral = ~ $ ( ~ u I J ~ , ~ ,  Np O( i) 

Adding up all the estimates, we get 

and 

+' + 1114112,7* o( ;) - ( p ) =  du -2 
ds CL 
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