
Climate change may alter human physical activity 
patterns

Citation
Obradovich, Nick, and James H. Fowler. 2017. “Climate Change May Alter Human Physical 
Activity Patterns.” Nature Human Behaviour 1 (5) (April 24): 0097. doi:10.1038/s41562-017-0097.

Published Version
doi:10.1038/s41562-017-0097

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:36874928

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:36874928
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Climate%20change%20may%20alter%20human%20physical%20activity%20patterns&community=1/3345933&collection=1/4433990&owningCollection1/4433990&harvardAuthors=49cea4e2aa45ba9ec1c8a25e08d66371&department
https://dash.harvard.edu/pages/accessibility


Climate change may alter human physical activity patterns 

Nick Obradovich1,23 James H. Fowler4 

Regular physical activity undergirds healthy human functioning1–3. Might 

climate change -- by modifying the environmental determinants of human 

physical activity -- alter exercise rates in the future4? Here we conduct an 

empirical investigation of the relationship between meteorological 

conditions, physical activity, and future climate change. Using data on 

reported participation in recreational physical activity from over 1.9 million 

United States survey respondents between 2002 and 2012, coupled with daily 

meteorological data, we show that both cold and acutely hot temperatures as 

well as precipitation days reduce physical activity. We combine our historical 

estimates with output from 21 climate models and project the possible 

physical activity impacts of future climatic changes by 2050 and 2099. Our 

projection indicates that warming over the course of this century may 

increase net recreational physical activity in the United States. Activity may 
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increase most during the winter in northern states and decline most during 

the summer in southern states. 

At a physiological level, too little exercise can produce costly health outcomes like 

obesity1, cardiovascular disease3 and diabetes2, and insufficient physical activity is a 

leading cause of death in the United States5. Sedentary lifestyles are also associated 

with psychological concerns such as impaired cognitive performance6 and a greater 

risk of clinical depression and anxiety7. Human well-being clearly suffers from 

insufficient physical activity. Yet even in spite of its substantial benefits, people in 

many countries participate in below-recommended levels of physical activity8 and 

are becoming increasingly sedentary9. 

Further, external factors like urban and workplace design10, social relations11, and 

environmental characteristics shape behaviors regarding when, where, and the 

extent to which humans are physically active. Of the environmental factors affecting 

physical activity rates, temperature plays a crucial role12. When it is too cold or too 

hot, adults perform less physical activity, resulting in more sedentary lifestyles. In 

large part, this reduction is due to the nature of adult physical activity: the vast 

majority of exercise-related physical activity occurs outdoors13. When it is too cold 

or to hot to go outdoors -- for a walk, a jog, or to garden -- many simply forgo 

physical activity entirely. 

These facts combine to suggest that weather and climate may be significant 

determinants of behavioral patterns that underlie costly public health crises. Here 

we report on the effect of meteorological conditions on participation in recreational 



physical activity of over 1.9 million United States residents between 2002 and 2012. 

Using these data, we examine four questions. First, what weather conditions are 

most conducive to individual participation in physical activities? Second, do the 

effects of temperature on physical activity vary by demographic factors like weight 

and age? Third, how might climate change alter the distribution of physical activity 

throughout the months of the year in the future? Finally, how might the future 

impacts of climatic changes on physical activity vary geographically? 

To investigate whether outside weather conditions alter the propensity to engage in 

physical activity, we constructed a dataset of individuals' reported monthly 

participation in recreational physical activity linked with monthly historical 

meteorological data. Our individual response data come from the Center for Disease 

Control and Prevention's Behavioral Risk Factor Surveillance Survey (BRFSS) 

pooled over the period 2002-2012. Randomly selected respondents answered the 

below question: 

Physical Activity "During the past month, other than your regular job, did you 

participate in any physical activities or exercises such as running, calisthenics, golf, 

gardening, or walking for exercise?" 

This question includes the most common leisure time physical activities engaged in 

by adult residents of the United States13. Questions from the BRFSS have been 

assessed for validity14 and reliability15 and are largely consistent with other health-

related activity measures including on dimensions of physical activity16. Further, 



this specific question is employed in widely cited public health studies relating to 

physical activity17,18. 

We combine individual responses to this question -- marked by interview day and 

geolocated to the city level -- with station-level daily temperature and precipitation 

data from the National Centers for Environmental Information's Global Historical 

Climatology Network - Daily (GHCN-D)19 as well as humidity and cloud cover data 

from the National Centers for Environmental Prediction (NCEP) Reanalysis II 

project20 (see ). Of note, our analysis is robust to the use of gridded daily weather 

data from the PRISM Climate Group instead (see SI: PRISM Data)21. Our theoretical 

relationship of interest is the effect of meteorological conditions on the probability 

of being physically active. We empirically model this relationship as: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� + 𝑍𝑍𝑍𝑍 + 𝛾𝛾𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1) 

In this pooled cross-sectional linear probability model fitted via least squares, 𝑖𝑖 

indexes individuals, 𝑗𝑗 indexes cities, 𝑠𝑠 indexes seasons, and 𝑡𝑡 indexes calendar days. 

Our dependent variable 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is binary and represents whether respondents were 

physically active over the thirty days prior to their interview day. Our main 

independent variable, 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖, represents the thirty-day average of daily maximum 

temperatures over the same thirty day window as respondents' reported physical 

activity. Our relationship of interest is represented by 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖�, which provides 

separate indicator variables for each 1℃ monthly average maximum temperature 

bin, allowing for flexible estimation of a non-linear relationship between 

temperature and physical activity (of note, our results are robust to using one, two, 



and five ℃ bins, see: SI: Varying Bin Sizes)22,23. We omit the 28℃-29℃ indicator 

variable, and thus interpret our estimates as the change in probability of being 

physically active associated with a particular temperature range relative to the 28℃-

29℃ baseline. 

Further, the 𝑍𝑍𝑍𝑍 term in Equation 1 represents an additional set of meteorological 

variables that include number of precipitation days over the thirty-day window, 

average temperature range, average cloud cover, and average relative humidity. We 

include these other meteorological variables as their exclusion might bias our 

estimates of the effect of included meteorological variables (although the magnitude 

of the estimates of 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� are mostly unaffected by the exclusion of these 

variables, see: SI: Main Effect)24,25. 

Unobserved characteristics may influence participation in physical activity. For 

example, people may exercise more in cities with better infrastructure or on days 

when they are more likely to have leisure time. To be sure that geographic and 

temporal factors like these do not interfere with our estimates, we include 𝛾𝛾𝑖𝑖 , and 

𝜈𝜈𝑖𝑖𝑖𝑖 in Equation 1. These terms represent calendar date and city-by-season indicator 

variables that account for unobserved characteristics constant across cities and days 

as well as seasonal factors that might vary differentially by city26. Of note, our 

results are robust to varying the specification of these controls (see SI: Time and 

Location Controls). Our empirical identifying assumption, consistent with the 

literature25,27–29, is that meteorological variables are as good as random after 

conditioning on these fixed effects. The estimated model coefficients can thus be 



interpreted as the effect of meteorological conditions on reports of participation in 

recreational physical activity24,30,31. 

Because our estimation procedure uses exogenous city-level variation in 

temperature to predict individual-level outcomes, we account for within-city and 

within-day correlation32 by employing heteroskedasticity robust standard errors 

clustered on both city and day33,34. Finally, we omit non-climatic control variables 

from Equation 1 because of their potential to generate bias -- a phenomenon known 

as a `bad control'25,31 -- in our parameter of interest (nonetheless, results are robust 

to the inclusion of common demographic covariates; see SI: Demographic Controls). 

Figure 1 panel (a), which presents the estimates of 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� from Equation 1, 

indicates the probability of participation in physical activity increases up to 28℃-

29℃ and decreases past 36℃, though effects at higher temperatures are estimated 

with greater error. Average maximum temperatures around 0℃ produce a reduction 

of approximately seven percentage points in the probability of being physically 

active as compared to the 28℃-29℃ baseline (coefficient: -7.249, p: , n:1,941,429)). 

Average maximum temperatures above 40℃ reduce the probability of physical 

activity, though the effect is only about one-half as large as the effect of freezing 

temperatures and is only significant at the p=0.10 level (coefficient: -2.815, p: 0.079, 

n:1,941,429). 

Putting scale to the magnitude of our estimated relationship, a +2℃ shift from an 

average monthly temperature of 26℃-27℃ to an average of 28℃-29℃, if extrapolated 



across the current population of the United States, would produce over six million 

additional person-months of physical activity annually.  

However, temperature alone may not fully capture the effect of heat stress on 

participation in physical activity35–38. Heat stress indices, composites between 

temperature and relative humidity, might indicate that participation in physical 

activity declines in instances of both high temperature and high humidity39. In order 

to investigate whether heat stress metrics provide substantively different results 

than temperature alone, we examine the results of estimating: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�ℎ𝑡𝑡𝑒𝑒𝑡𝑡. 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖� + 𝑍𝑍𝑍𝑍 + 𝛾𝛾𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(2) 

Where we employ the same set of control variables as in Equation 1, but substitute 

the National Weather Service (NWS) Heat Index37,40,41 -- our measure of heat stress -

- for maximum temperature and humidity (of note, the NWS Heat Index mirrors 

temperature values over the lower portion of its distribution). The results of 

estimating this equation, presented in Figure 1 panel (b), closely mirror the results 

of colder maximum temperatures in panel (a) of Figure 1, and we observe no 

significant decline in physical activity participation at high levels of combined heat 

and humidity (see SI: Heat Index for the tables associated with this regression). 

These results, coupled with the insignificance of the marginal effects of relative 

humidity (panel (d) of Figure 1) indicate that the effect we observe is primarily 

driven by ambient temperatures (for results using alternative heat stress indices37, 

see SI: Alternative Heat Stress Indices). Further, we observe a small, mostly linear 

effect of added precipitation days on physical activity participation (panel (c) of 



Figure 1), with greater than 20 days with measurable precipitation in a month 

producing a reduction of approximately one percentage point in the probability of 

participation in physical activity (coefficient: -1.144, p: 0.009, n:1,941,429). We 

observe no significant relationship between average cloud cover and participation 

in physical activity. 

The above estimates represent an average effect of temperatures on physical 

activity over the course of a full year across all respondents in our sample. However, 

because individuals vary in their sensitivity to heat and cold42, we might expect to 

observe heterogeneous responses to changes in temperature. For example, 

individuals with higher Body Mass Index (BMI) may experience greater physical 

stress associated with hot temperatures. Further, older individuals, due to less 

robust thermoregulation ability43, may similarly experience more acute reductions 

in physical activity due to extreme heat. This leads us to our second question: do the 

effects of temperature on physical activity vary along important demographic 

factors like weight and age? 

In order to examine whether heavier respondents are more sensitive to 

temperature, we stratify our sample by BMI and estimate Equation 1 for each sub-

sample28. Figure 2, panel (a), shows that the negative effect of temperatures greater 

than 40℃ on the probability of physical activity is greatest for obese (BMI>=30) 

respondents (coefficient: -6.567, p: 0.002, n:466,754). This is over seven times the 

effect observed among normal weight (BMI<25) adults (coefficient: -0.866, p: 0.549, 

n:711,662) (see SI: Weight Regressions). 



We repeated this procedure to examine whether older respondents are more 

sensitive to temperature. Figure 2, panel (b), shows that the negative effect of 

temperatures greater than 40℃ on the probability of physical activity is greatest for 

those 65 years of age or older (coefficient: -7.026, p: , n:517,700). This is over four 

times the effect observed among those under 40 years of age (coefficient: -1.574, p: 

0.569, n:456,383). Thus, our results suggest that the physical activity rates of both 

obese and elderly individuals may be most susceptible to higher ambient 

temperatures. 

Our historical data indicate that past temperatures have altered historical physical 

activity patterns in meaningful ways. Further, climate change is likely to produce 

positive shifts in monthly temperature distributions in the future44 (see Figure 3, 

panel (b)). As can be seen in panel (a) of Figure 3, most historical temperatures fall 

below 28℃-29℃, the temperature range associated w ith peak physical activity in our 

sample. Positive shifts in temperatures below 28℃-29℃ might increase physical 

activity while shifts that amplify the incidence of markedly hot temperatures may 

reduce physical activity. Combining these insights leads us to our third question: 

how might climate change alter the distribution of physical activity in the United 

States throughout the months of the year in the future? 

To examine this question, we calculate projected average monthly maximum 

temperatures for 2050 and 2099 from NASA Earth Exchange's (NEX) bias-corrected, 

statistically downscaled daily maximum temperature projections45 drawn from 21 

of the CMIP-5 ensemble models46 run on the RCP8.5 high emissions or 'business as 



usual' scenario47. We couple these predicted temperatures with our historical 

estimate of the relationship between average maximum temperatures and 

participation in physical activity -- employing a spline regression model that closely 

matches the results from Equation 1 -- to calculate a forecast of possible physical 

activity alterations due to climate change for each month of the year for each city 

across each downscaled climate model (see SI: Forecast Details). 

We define our monthly forecast of the predicted change in physical activity due to 

climate change by 2050 (𝛥𝛥𝑌𝑌𝑚𝑚2050) as: 

𝛥𝛥𝑌𝑌𝑚𝑚2050 = 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖2050� − 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖,2010�(3) 

and for the effect from 2010 to 2099 (𝛥𝛥𝑌𝑌𝑚𝑚2099) as: 

𝛥𝛥𝑌𝑌𝑚𝑚2099 = 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖2099� − 𝑓𝑓�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖,2010�(4) 

Where 𝑡𝑡 indexes the month of year, 𝑘𝑘 indexes the 21 specific climate models, 𝑗𝑗 

indexes the city, and 𝑡𝑡 indexes the day of year. Further, 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖 is our measure of 

thirty-day average maximum temperatures, as calculated in Equation 1 and 𝑓𝑓( ) 

represents the fitted spline function from our main forecast model (see SI: Forecast 

Models). Importantly, this estimation procedure allows us to incorporate 

uncertainty regarding the underlying climatic forecasts into our physical activity 

predictions27. It also allows us to account for estimation uncertainty in our model of 

physical activity. 

Figure 3 panels (c) and (d) plot our monthly forecast results for 2050 and 2099, 

respectively. The bar for each month represents an average prediction across each 



of the 21 climate models, across each of the cities in our analysis, and across the 

days in that month. The error lines on these bars represent the full range of these 

monthly estimates across the 21 downscaled climate models and incorporate the 

95% confidence interval of the estimated historical relationship between 

temperature and physical activity. As can be seen in these figures, the likely 

temperature changes produced by climate change may most increase physical 

activity in traditionally cooler months of the year. In the months of June, July, and 

August, climate change by 2099 may reduce physical activity on net. Taking a yearly 

sum of our monthly average predictions across the United States, we project that 

climate change may cause approximately 40 additional physically active person-

months per 1,000 individuals on net by 2050 and approximately 70 additional 

person-months per 1,000 individuals on net by 2099. 

Additionally, temperature alterations associated with climate change -- and thus the 

potential impacts of climate change on physical activity -- are likely to vary spatially 

across the United States. To investigate the geographic distribution of potential 

modifications in physical activity due to climate change, we take the ensemble 

average of the 21 NEX downscaled climate models for each of 2010, 2050, and 2099. 

We then take the monthly average of maximum temperatures for each 

approximately 25km x 25km grid cell in the continental U.S. in each year. For the 

2050 forecast, we assign to each grid cell the predicted net monthly difference in 

physical activity between 2010 and 2050. For the 2099 forecast we assign to each 

grid cell the predicted net monthly difference in physical activity between 2010 and 

2099. Figure 4 shows that most areas of the United States may see net increases in 



physical activity as a result of climate change this century, while southernmost areas 

may experience some net decreases in physical activity (see SI: Grid Cell Forecast). 

Finally, smoothing geographic forecasts across the full year (as in Figure 4) masks 

the temporal heterogeneity associated with our physical activity forecasts. Figure 5 

plots the geographic forecasts for each month in the years 2050 and 2099 

respectively. Future winter months, especially in northern areas of the US may see 

the greatest increases in physical activity rates, while future summer months, 

particularly in southern areas of the US may see net decreases in physical activity 

rates. 

Historical data demonstrates a robust link between temperature and human 

physical activity. The effects of cold historical temperatures on reduced 

participation in physical activity are highly statistically significant and substantively 

large in magnitude. Moreover, in both our city-level and geographic forecasts, we 

predict that much of the United States will experience increased physical activity 

due to future climatic changes. These increases occur primarily during cooler 

months of the year, with summer months -- especially in southern areas of the US -- 

likely seeing potential declines in future physical activity. 

There are several considerations important to the interpretation of these results. 

First, while we have data on millions of individuals' reported monthly participation 

in physical activity, optimal data would also contain measurements of each 

individual's participation in daily physical activity and the intensity of such activity. 

Second, because respondents are geolocated to the city-level, measurement error 



may exist between the temperatures observed at weather stations and the 

temperatures respondents actually experienced, possibly attenuating the magnitude 

of our estimates48. Third, our analysis is conducted on a randomly sampled, pooled 

cross section of respondents. An ideal source of data would track the same 

individuals over time to enable controlling for individual-specific characteristics. 

Fourth, our data are restricted to observations from one country with a temperate 

climate. It is critical to repeat this analysis where possible in countries with warmer 

average climates49 and lower prevalence of air conditioning50, as they may see net 

reductions in physical activity due to climate change. Fifth, in this analysis we focus 

on recreational physical activities. However, because occupational physical activity 

may be less discretionary, the effects of climate change on occupational physical 

activity deserve further scrutiny38,51. Sixth, because the hottest historical regions in 

our data also tend to have lower humidity, our analysis may understate the 

potential for amplified future levels of heat stress to reduce physical activity. Future 

studies should investigate this question. Finally, it is possible that humans may 

adapt technologically and physiologically to warmer climates with behaviors not 

seen in the historical data42,52,53. 

Ultimately, most of climate change's social impacts are likely to be negative30. 

Climate change may reduce economic output24, amplify rates of conflict31, produce 

psychological distress54, increase exposure to the social effects of drought55, and 

increase heat-related mortality and morbidity56–61, among other ills. However, 

climatic changes are unlikely to be uniformly costly to society, and it is important to 

investigate both costs and benefits. Here we uncover a possible beneficial impact of 



climate change for the United States. If observed temperature-activity relationships 

from the recent past persist, further climate change may increase nationwide net 

participation in recreational physical activity during many months of the year, in 

turn magnifying many of the physiological and psychological benefits of exercise. 

However, adaptations to changing temperature distributions or interactions with 

potential pernicious effects of climate change30 -- like increased stress and anxiety54 

-- may counteract these effects. The more we know about the full range of potential 

climate impacts, the better we will be able to prepare for what is likely to be 

humanity's greatest challenge in the 21st Century. 
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Figure 1 Recreational physical activity peaks at higher temperatures and heat 

index values and declines with higher numbers of precipitation days. Panel (a) 

draws from the estimation of the linear probability model in Equation 1 on over 1.9 

million respondents' reported monthly participation in physical activities between 

2002 and 2012. It plots the predicted probability of physical activity associated with 

each maximum temperature bin. Participation in physical activities increases up to 

28℃-29℃ (82-84F) and begins to decline past that point, though the effects of hotter 

temperatures are estimated with higher uncertainty. Panel (b) plots the marginal 

effects of the National Weather Service Heat Index on the probability of physical 

activity participation. The effects of colder values of the Heat Index closely mirrors the 

effects of colder maximum temperatures. Panel (c) plots the effect of monthly days 

with measurable precipitation on physical activity. Added precipitation days linearly 

decrease the probability of participation in physical activity, though the marginal 

effects are notably smaller than they are for temperature or heat stress. Panel (d) 

indicates there is no independent effect of relative humidity on engagement in physical 

activities. Points in each panel represent the mean percentage of respondents who 

were physically active in the past month for each bin of the respective meteorological 

variable. Shaded error bounds represent 95% confidence intervals.  



Figure 2 Heat most reduces participation in physical activity among the obese 

and the elderly. Panel (a) depicts the marginal effects from Equation 1 run on 

samples stratified by Body Mass Index (BMI). The observed effects of temperature are 

similar in normal weight and overweight individuals. Excessive heat (above 40℃) most 

reduces physical activity in obese individuals. Panel (b) displays the marginal effects 

associated with splitting the sample by age. Younger and middle aged adults have 

similar responses to hot temperatures, while elderly individuals most reduce their 

participation in physical activity in response to excessive heat (see SI: Weight 

Regressions and SI: Age Regressions).  



Figure 3 Climate change may alter temporal patterns of physical activity. Panel 

(a) plots the historical the distribution of 2002-2012 average monthly maximum 

temperatures from our sample. Approximately 80% of this distribution falls below 

28℃-29℃, the temperature range associated with peak historical physical activity. 

Panel (b) presents monthly average maximum temperatures calculated from 21 

downscaled CMIP5 climate models for the cities in our sample in 2010, 2050, and 2099. 

Maximum temperatures increase by 2050 and 2099 as compared to the baseline of 

2010. Bars in panel (c) depict the mean city-level forecast for the impact of climate 

change by 2050 on monthly physical activity per 1,000 individuals. Bars in panel (d) 

display the same forecast for 2099. In both panels (c) and (d), physical activity is 

predicted to increase most in cooler months of the year and decline in summer months. 

To incorporate downscaled climate model uncertainty, error bars in panels (c) and (d) 

represent the range of monthly predictions across the ensemble of climate models and 

incorporate estimation uncertainty from our model of physical activity27.  



Figure 4 Climate change may alter physical activity rates spatially throughout 

the US This figure presents the 25km x 25km grid cell forecasts of the potential impact 

of climate change on annual person-months of physical activity per 1,000 individuals. 

In this figure, downscaled climatic model data are averaged across the 21 models in 

the ensemble and then coupled with our historical model parameters to produce an 

estimated change in physically active person-months in each geographic location for 

the periods of 2050 and 2099. Areas of northern United States -- where non-summer 

temperatures are currently coldest -- may experience the largest future increase in net 

physical activity. The southernmost extremes of the US, cities like Phoenix, Arizona, 

may experience net reductions in physical activity in the future. 

  



Figure 5 Climate change may increase physical activity most in cooler months in 

the northern U.S. and reduce it most in summer months in the southern U.S. This 

figure presents the 25km x 25km grid cell forecasts of the potential impact of climate 

change on monthly person-months of physical activity per 1,000 individuals. In this 

figure, downscaled climatic model data are averaged across the 21 models in the 

ensemble and then coupled with our historical model parameters to produce an 

estimated change in physically active person-months in each geographic location for 

the months of 2050 and 2099. Areas of northern United States -- where non-summer 

temperatures are currently coldest -- may experience the largest future increase in net 

physical activity, especially in cooler months of the year. The southern US may 

experience net reductions in physical activity, especially during future summer months. 
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