(Article begins on next page)
Abstract

KRAS is one of the most frequently mutated genes across human cancers, including 96% of pancreatic cancers, 40% of colorectal cancers, and 35% of lung cancers. The majority of human cancer cell lines and tumors from genetically engineered mouse models harboring an oncogenic mutant KRAS allele demonstrate a strong dependence on KRAS for proliferation and survival. This KRAS dependency is a type of ‘oncogene addiction,’ a state in which cancer cells depend on signaling from a single oncogene for survival. Unfortunately, the development of clinically effective KRAS-directed cancer therapies has been unsuccessful, and KRAS-mutant cancers are refractory to standard and targeted therapies. Alternative approaches to combatting KRAS-mutant cancers are clearly needed. We postulate that oncogenic KRAS signaling induces changes in cell signaling networks that cause cells to become dependent on certain genes, termed a 'synthetic lethal' interaction. Identifying these selective vulnerabilities would lend insight to the pathways altered in KRAS-mutant cancers and may inform novel strategies to target KRAS-addicted cancers. In this thesis, we systematically identify candidate co-dependencies of oncogenic KRAS by analyzing genetic dependencies revealed by genome-scale RNAi screens across a large panel of cell lines. We highlight methods to facilitate candidate selection/validation and integrate analyses of gene-expression data and genome-scale CRISPR/Cas9 screens to nominate candidate co-dependencies for further study. In addition, we examine CRISPR-Cas9 screens to identify genes that modify sensitivity to small molecule MAPK pathway inhibition (MAPKi) in RAS-mutant cancers. We propose that suppression of the DOCK5-RAC1 pathway demonstrates a drug-conditional lethal interaction with small molecule MAPK pathway inhibitors in RAS-mutant cancers. We believe that these data provide a foundation for further examination of genetic co-dependencies of oncogenic KRAS and the potential synthetic lethal interaction between DOCK5-RAC1 pathway suppression and MAPKi in RAS mutant cancers.
Acknowledgments

I have received invaluable support and guidance from many people. I would like to thank my advisor, Bill Hahn, who has been an exceptional role model. He has been unfailingly supportive of diverse endeavors, granting me the freedom and resources to explore different projects while offering constructive criticism and clear feedback; his positive attitude and reassuring presence has been indispensable to making me a more confident, creative, and resilient scientist. Being a member of the Hahn lab has been a wonderful experience, and I feel lucky to have interacted with and befriended such inspiring, talented, and kind people. In particular, I would like to thank Andy Aguirre, who spent an immense amount of time and energy teaching me experimental techniques and, more importantly, how to think like a scientist. In addition, I would like to thank Elsa Beyer Krall, my partner in screening, for helping me become a more thoughtful and rigorous scientist. I am grateful for the support of all members of the Hahn lab - especially Eejung Kim, David Takeda, William Kim, Mik Rinne, Yaara Zwang, Andy Hong, Sri Raghavan, Francesca Izzo, and Barbara Weir – for always having time to troubleshoot and for innumerable fascinating and enjoyable conversations.

I learned much from members of the Genetic Perturbation Platform, including Glenn Cowley, John Doench, Federica Piccioni, and David Root, whose work and feedback was critical for several of the screens and analyses presented here. I would also like to thank the members of the Broad Cancer Program for their camaraderie, company, and insights.

I would also like to thank the HST and MD/PhD faculty and staff - particularly Matt Frosch, Rick Mitchell, Loren Walensky, Amy Cohen, and Patty Cunningham - for their tireless support and guidance. Last but not least, I must thank my HMS/HST/BBS colleagues, friends, and family for innumerable enriching conversations and lots of fun!
Abbreviations

ATARiS Analysis Technique for Assessment of RNAi by Similarity
BRAFi BRAF inhibition
Cas9 CRISPR associated protein 9
cDNA Complementary DNA
CRISPR Clustered regularly interspaced short palindromic repeats
DOCK5 Deducator of cytokinesis 5
FTase Farnesyltransferase
FTI Farnesyltransferase inhibitor
GAP GTPase activating protein
GeCKO Genome scale CRISPR knockout
GEF Guanine nucleotide exchange factor
GEMM Genetically engineered mouse model
GGTase Geranylgeranyltransferase
GOF Gain-of-function
HRAS Harvey rat sarcoma viral oncogene homolog
ICGC International Cancer Genome Consortium
KO Knockout
KRAS Kirsten rat sarcoma viral oncogene homolog
LOF Loss-of-function
MAPK Mitogen activated protein kinase
MAPKi MAPK pathway inhibition
MEKi MEK1/2 inhibition
NRAS neuroblastoma RAS viral oncogene homolog
NSCLC Non-small cell lung cancer
ORF Open reading frame
p-ERK Phospho-ERK1/2
PI3K Phosphatidylinositol 3-kinase
PIP2 Phosphatidylinositol-4,5-bisphosphate
PIP3 Phosphatidylinositol-3,4,5-triphosphate
RAC1 Ras related botulinum toxin substrate 1
RAL RAS-like GTPase
RALGDS RAL guanine nucleotide dissociation stimulator
RNAi RNA interference
RTK Receptor tyrosine kinase
gRNA Short guide RNA
SH3 Src homology 3
shRNA Short hairpin RNA
siRNA Small interfering RNA
TCGA The Cancer Genome Atlas
WT Wildtype
Introduction

Overview

The RAS family of genes (KRAS, NRAS, and HRAS) are frequently mutated in human cancers, including nearly all pancreatic cancers, ~50% of colorectal cancers, ~30% of lung cancers, and ~30% of melanomas. RAS mutations are associated with poor prognosis, and are used to exclude patients from treatment with some targeted therapies. Most RAS-mutant cancers require RAS signaling for continued proliferation and survival. This phenomenon, termed “RAS addiction,” makes RAS an appealing target for therapeutic intervention. Unfortunately, pharmacologic approaches to directly target RAS proteins have not yet succeeded in clinic.

An alternative strategy of targeted drug development for RAS-mutant cancers is to identify signaling pathways that become essential for cancer cell survival in the context of oncogenic RAS signaling. These ‘synthetic lethal’ interactions provide opportunities for rational drug development to treat RAS-mutant malignancies. Our laboratory and others have performed RNAi screens as an unbiased approach to identify synthetic lethal interactions with oncogenic KRAS1,2. These screens have led to several potential targets - including \textit{TBK1}, \textit{PLK1}, and \textit{WT1} - which are the focus of ongoing investigation3-8. Notably, \textit{TBK1} shows promise as a novel therapeutic target for \textit{KRAS}-driven malignancies. Preclinical studies using a small molecule inhibitor of TBK1 achieved therapeutic responses in \textit{Kras}-mutant GEMMs9. Additionally, studying TBK1 has led to the discovery of a novel effector pathway of oncogenic KRAS, in which TBK1 promotes KRAS-driven tumorigenesis by regulating an autocrine cytokine circuit. Such data support the idea that synthetic lethal genetic interactions can identify valuable therapeutic targets and broaden our understanding of critical mediators of oncogenic KRAS, motivating our interest in identifying further novel candidates.

Prior RNAi screens for synthetic lethal interactions with oncogenic KRAS harbor several limitations: these screens were performed in a limited number of cell lines and lineages, and most were not performed at genetic saturation. We hypothesize that many synthetic lethal partners of oncogenic KRAS remain unidentified. Recent technological
advances have provided the means to perform comprehensive loss-of-function screens in mammalian cells using RNAi10-12 or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13-15 libraries. Our laboratory has performed genome-scale lentivirally-delivered short hairpin RNA (shRNA) screens across \textasciitilde216 independent cancer cell lines12. This effort, termed Project Achilles, is among the most comprehensive genome-scale shRNA screens performed on human cancer cell lines, and provides an opportunity to identify novel pathways essential to the survival of KRAS-mutant cancer cells. Prior studies demonstrated that this data has sufficient power to identify co-dependent genetic interactions in a genotype or lineage-specific manner10,16,17.

The RAS pathway
The three RAS proto-oncogenes (HRAS, KRAS, and NRAS) encode four distinct but highly homologous \textasciitilde21 kDa RAS proteins: HRAS, NRAS, KRAS4A and KRAS4B, where KRAS4A and KRAS4B are alternative splice variants of the KRAS gene18. Here, ‘RAS’ will be used to refer generally to all isoforms. RAS are guanine nucleotide-binding proteins19,20 that cycle between active and inactive conformations conferred by GTP and GDP binding, respectively21,22.

RAS regulators and effectors
RAS proteins function as transducers of mitogenic signaling that link cell surface receptors to intracellular effector pathways (Figure 1). External growth factors induce cell proliferation by binding to receptor tyrosine kinases (RTKs) at the cell surface. Signal transduction between RTKs and RAS is mediated by cytosolic adaptor proteins, such as GRB2, CRKL, and IRS1. This RTK-adaptor protein-GEF interaction promotes RAS activation by recruiting the normally cytosolic guanine exchange factors (GEFs) to the plasma membrane where RAS is located18,23,24.

Under physiologic conditions, the transition between RAS GTP- and GDP-bound states is regulated by GEFs and GTPase-activating proteins (GAPs). GEFs accelerate the release of GDP from RAS, enabling the more abundant GTP to bind in its place. On the other hand, GAPs accelerate RAS GTPase activity over 200-fold18. The most common oncogenic RAS mutations abrogate its interaction with GAPs25,26 and reduce
intrinsic RAS GTPase activity ~10-fold, leading to the accumulation of active GTP-bound RAS.

Active, GTP-bound RAS interacts with numerous downstream effectors to activate signaling pathways important for cell growth and survival18,23,24. The three major effectors of oncogenic RAS signaling are RAF, PI3K, and RALGDS (\textbf{Figure 1}). Several other RAS effectors, such as the RAC-GEF TIAM1, PLC\textepsilon, and pro-apoptotic RASSF family members have been identified, but their functions are not as well studied.

The relative contribution of different RAS effector arms to RAS signaling is still unclear. Genetic suppression of individual effector pathways was shown to be sufficient to prevent RAS-mediated transformation in different model systems27-31. In certain contexts, signaling through a specific effector pathway is sufficient to induce cell transformation. For example, in a mouse model of pancreatic cancer, active BRAF, but not PIK3CA, was sufficient to induce tumorigenesis29. Contrastingly, in immortalized mouse cells, RAF activation induced transformation whereas RALGDS and PI3K activation did not32. Yet, in immortalized human cells, activation of RALGDS, but not RAF or PI3K, induced cell transformation32. Together, these findings demonstrate that the relative importance of each RAS effector arm is context-specific.

\textbf{RAS mutations in cancer}

RAS is the most frequently mutated oncogene in human cancers22,33. RAS mutations occur in nearly all pancreatic cancers, ~50\% of colorectal cancers, and ~30\% of lung cancers33 (\textbf{Table 1}). The involvement of RAS signaling in cancer is evident not only by the high incidence of RAS mutations, but also by the high frequency of mutations in RAS regulators (such as RTKs and NF1) and RAS effectors (such as members of the MAPK and PI3K pathways)34,35.

Over 95\% of oncogenic RAS mutations involve point mutations in codons 12, 13, or 61 (analysis of the Catalog of Somatic Mutations in Cancer (COSMIC) database36). These G12, G13, or Q61 mutations decrease RAS intrinsic GTPase activity, reduce GAP binding affinity, and abrogate the ability of GAPs to stimulate RAS GTPase activity37. This causes RAS to accumulate in the active GTP-bound state, constitutively activating downstream effectors even in the absence of extracellular stimuli.
Oncogene addiction

Cancer cells harboring mutationally activated oncogenes are frequently dependent on continued signaling from the activated signaling pathways. This phenomenon, termed “oncogene addiction,” provides a therapeutic opportunity because it renders cancer cells sensitive to drugs targeting these pathways. Of note, there is often a greater dependency on the oncogenic gene in cancer cells than in normal cells, conferring a large therapeutic window\(^{38,39}\). Targeting oncogene addiction has been successful in chronic myelogenous leukemia with the BCR-ABL fusion oncogene treated with ABL kinase inhibitors, in EGFR-mutant lung cancer with EGFR inhibitors, and in BRAF-mutant melanoma with BRAF inhibitors\(^{40,41}\).

RAS-mutant cells are dependent on continued RAS signaling for sustained survival/proliferation. An analysis of KRAS-mutant cell lines suggested that there is a spectrum of dependency\(^{42}\). However, the majority of human cancer cell lines\(^3,42-44\) and tumors from genetically engineered mouse models (GEMMs) harboring a mutant RAS allele demonstrate RAS addiction\(^{45-51}\). Indeed, removing KRAS from established tumors in mouse models results in dramatic tumor regression\(^{46,48,50}\). As the majority of RAS-mutant cancers are addicted to RAS, there has been much interest in inhibiting RAS for cancer therapy.

Strategies to target mutant RAS for cancer therapy

Several approaches have been taken to therapeutically target RAS-mutant cancers, including: (1) inhibiting upstream RAS activators, (2) directly inhibiting RAS, (3) preventing RAS from associating with the plasma membrane, (4) inhibiting RAS effector pathways, and (5) inhibiting tumor-specific vulnerabilities that are induced by the oncogenic state (non-oncogene addictions or synthetic lethal interactions)\(^{52}\) (Figure 2).

Inhibiting upstream RAS activators

Inhibiting upstream RTKs could be effective in treating RAS-mutant cancers because these cells produce autocrine growth factors, such as EGF\(^{53}\). Indeed, an in vivo study demonstrated that autocrine EGFR activation is important for tumorigenesis in cancers driven by active SOS, which activates RAS\(^{54}\). However, subsequent clinical studies indicated that KRAS mutations predict insensitivity to EGFR inhibitor therapy, and RAS
mutation is currently an exclusionary criterion for EGFR inhibitor treatment for colorectal cancer55,56. Similarly, patients with RAS-mutant NSCLC are likely insensitive to EGFR inhibitor therapy57-61.

Direct RAS inhibition

As the majority of RAS-mutant cancers are addicted to RAS, there has been much interest in developing RAS inhibitors. Unfortunately RAS has proven difficult to target. RAS has a picomolar affinity for GTP/GDP, and the millimolar concentration of guanine nucleotides in the cytosol makes it unlikely that a competitive inhibitory nucleotide analogue will be developed62. Additionally, RAS activation and signaling is mediated by transient protein-protein interactions which are difficult to target via small molecules63. Despite these challenges, several groups have identified compounds that bind to RAS noncovalently and either abrogate RAS-RAF interaction64-69 or inhibit nucleotide exchange70-75. However, these early-stage compounds have low RAS-binding affinity and potency, and will have to be improved before clinical application. More recently, covalent inhibitors targeting KRASG12C have been developed76,77. These mutation-specific electrophilic compounds irreversibly bind to the reactive cysteine in KRASG12C, blocking KRAS nucleotide exchange76,77. While KRASG12C mutations arise in ~15\% of lung adenocarcinomas78, it occurs infrequently in other cancer types. It is possible that other compounds could be identified that specifically target RASG12D and RASG13D, but it will likely be difficult to selectively target other common RAS mutations due to their less reactive side chains. While the advances in efforts to directly target oncogenic RAS are encouraging, these approaches have yet to produce clinically usable agents.

Targeting RAS post-translational modifications

Another approach to inhibiting RAS is to target its post-translational modifications, which are necessary for RAS membrane association and biological activity79. RAS farnesylation by farnesyltransferase (FTase) is the first, irreversible, and rate-limiting step of the RAS post-translational modifications that increase RAS hydrophobicity and enable membrane association. Unfortunately, these FTIs did not demonstrate significant clinical benefit in patients, likely because KRAS4B and NRAS can be alternatively prenylated by geranylgeranyltransferase (GGTase) in the context of FTI treatment80-83;
this addition of a geranylgeranyl modification in place of farnesyl enables KRAS4B and NRAS to remain fully functional.

Inhibiting RAS effector pathways

Given that targeting RAS proteins or RAS modifier proteins directly has proven difficult, efforts have shifted towards alternative ways of selectively targeting RAS-mutant cells, such as inhibiting RAS effector pathways. While many RAS effector families have been identified, the RAF serine/threonine kinases (ARAF, BRAF, and CRAF) are thought to play a key role in RAS-mediated oncogenesis\(^ {28,29}\). RAF activates the MEK1/MEK2 kinases, for which the only known substrates are the ERK1/ERK2 kinases. However, because the MAPK signaling pathway involves multiple feed-forward and feedback mechanisms that dynamically modulate ERK activity, pharmacological inhibition of the MAPK pathway at the level of RAF and MEK have not demonstrated equivalent outcomes\(^ {33,84,85}\).

The ATP-competitive RAF inhibitors vemurafenib and dabrafenib have been approved for treatment of BRAF-mutant melanoma\(^ {86,87}\). However, in NRAS-mutant melanoma, treatment with these first-generation BRAF inhibitors paradoxically activates the MAPK pathway through induction of RAF dimerization and consequent CRAF activation\(^ {88-91}\). A second generation of ‘paradox-breaking’ BRAF inhibitors that do not promote RAF dimerization\(^ {92}\) or pan-RAF inhibitors that inhibit all three RAF proteins\(^ {93}\) have been generated and may have improved efficacy in treating RAS-mutant cancers.

Several MEK inhibitors are currently being tested in clinical trials for RAS-mutant pancreatic cancer, colorectal cancer, lung cancer, and melanoma. While MEKi has been successful in treating BRAF-mutant melanoma\(^ {87,94}\), success has been limited in RAS-mutant NSCLC\(^ {95-97}\), pancreatic cancer\(^ {96}\), and melanoma\(^ {98}\). A major mode of intrinsic or acquired resistance to MEK inhibitor monotherapy in RAS-mutant cancers is the reactivation of the RTK-RAS-MAPK pathway\(^ {84}\). It was thought that ERK inhibition would overcome this mode of resistance. Unexpectedly, ERK inhibition was found to alleviate feedback inhibition of RAF, resulting in enhanced MEK activation\(^ {99}\). Combined inhibition of RAF, MEK, and ERK may be necessary for more effective MAPKi, though overlapping toxicities could be limiting in patients.
The p110 catalytic subunits (α-γ- and δ-subunits) of class I PI3Ks are also important effectors of oncogenic RAS27,100,101. A \textit{Kras}-driven mouse model of lung cancer suggested that PI3K signaling was essential for tumorigenesis and tumor maintenance102. However, small molecule inhibition of the PI3K pathway in a mouse model of lung cancer had little effect on \textit{Kras}-driven tumor growth103, and subsequent \textit{in vitro} studies suggested that oncogenic RAS confers resistance to PI3K inhibition104. It is unclear whether RAS-mutant cancers demonstrate greater dependence on PI3K signaling than cells driven by other oncogenes105, and several inhibitors of the PI3K-AKT-mTOR signaling pathway are currently under clinical evaluation in RAS-mutant cancers.

Oncogenic RAS signals through multiple signaling pathways, and it is possible that inhibition of a single effector arm will not be sufficient to induce tumor regression. In pre-clinical studies, combined MAPK and PI3K inhibition effectively induced regression of \textit{KRAS}-mutant tumors103. There are several clinical trials assessing the efficacy of combined MAPK (MEK or ERK) and PI3K pathway (PI3K, AKT, or mTOR) inhibition in RAS-mutant cancers. The results of most of these trials are not yet available. However, while this dual-targeting strategy has the potential of being more effective than inhibition of either pathway alone, there may not be a wide enough therapeutic window to effectively suppress both pathways in human cancers106. In a recent trial that combined MK-2206 (AKT inhibitor) with selumetinib (MEK inhibitor), no patient achieved over 70% inhibition of both targets at the maximum tolerated drug dose107.

In summary, while RAS effector inhibition is a promising strategy to target oncogenic RAS, several challenges endure. Inhibition of effector pathways are complicated by compensatory feedback mechanisms, which necessitate inhibition at multiple levels of the pathway. In addition, as several effectors pathways are important in oncogenic RAS signaling, concurrent inhibition of multiple pathways may be important. However, while combination inhibition of more than one effector pathway (such as RAF and PI3K) may be more effective in inducing tumor regression, the resulting increase in toxicity to normal cells may reduce the therapeutic window. Nevertheless, it remains possible that combined inhibition of different nodes of these
effector pathways (RAF, MEK, or ERK and PI3K, AKT, or mTOR) will yield different toxicities, with greater therapeutic windows in specific combination strategies.

Synthetic lethality

Synthetic lethal interactions for cancer therapy

A synthetic lethal interaction (also known as induced essentiality, non-oncogene addiction, or co-dependency) refers to a genetic principle in which the combination of two genetic perturbations is lethal, whereas each individually is not. The concept of synthetic lethality emerged from genetic studies in model organisms. Genotype-selective synthetic lethality is based on the concept that genetic alterations in cancer cells confer vulnerabilities that can be therapeutically targeted. Such vulnerabilities may be secondary to the inability to respond appropriately to a specific signal (such as DNA damage or cell cycle arrest) or the inability to maintain cellular homeostasis. It was first proposed over 20 years ago that synthetic lethal interactions could be used to identify new anticancer drug targets.

There are several theoretical benefits to a therapeutic strategy based on synthetic lethal interactions. If the targeted synthetic lethal interaction is selective for a cancer-specific mutation, this mutation could be used as a biomarker to stratify patients for treatment. In addition, targeting a synthetic lethal interaction should provide a large therapeutic window, as only tumor cells that harbor the mutation should be sensitive. Lastly, the synthetic lethal strategy enables indirect targeting of “undruggable” mutations (such as loss of tumor suppressors and RAS) through the identification of an alternative synthetic lethal target.

Exploiting synthetic lethal interactions may provide opportunities for rational drug development to treat RAS mutant malignancies. Breast and ovarian cancers with mutations in the tumor suppressor genes BRCA1 or BRCA2 are a paradigm for exploiting genotype-selective synthetic lethal interactions in targeted cancer therapy. These tumors are dependent on the DNA repair enzyme PARP1 and respond to treatment with PARP inhibitors. An attractive strategy for targeted drug development for RAS-mutant cancers involves identifying signaling pathways that become essential for cancer cell survival in the context of oncogenic RAS signaling.
Screening approaches to identify synthetic lethal interactions

Screening approaches to identify clinically relevant synthetic lethal interactions face several hurdles. \(^1^{15,16}\) (1) Systematic identification of synthetic lethal interactions requires interrogation of large numbers of gene-pair combinations; (2) synthetic lethal interactions result in lethality, making mutant recovery and identification challenging; and (3) many synthetic lethal interactions are context-dependent, and may not be observed in all genetic backgrounds or cellular conditions. These challenges can be partly addressed through the use of high-throughput screening approaches.

Two commonly used tools for genetic interrogation in human cells are RNA interference (RNAi) and CRISPR/Cas9. RNAi takes advantage of a conserved endogenous pathway that regulates gene expression via small RNAs. Endogenous RNAi machinery can be appropriated by introducing synthetic small RNAs into cells. The introduced short interfering RNA (siRNA) or short hairpin RNA (shRNA) is loaded into the RNA-induced silencing complex (RISC), which in turn promotes the degradation of complementary target mRNA.

The CRISPR/Cas9 genome editing technique uses a guide RNA (gRNA) that targets the Cas9 endonuclease to specific sequences in the genome, and Cas9 introduces a blunt-ended double-strand break (DSB). Repair can occur through the homologous recombination repair pathway or end-joining pathways such as non-homologous end-joining (NHEJ) and alternative end-joining (AltEJ). The end-joining pathways are error-prone, and typically result in small insertions and/or deletions (indels). Indels are selected for in CRISPR screens, as error-free repair re-establishes the wildtype sequence, which is targeted again by the gRNA-guided Cas9. Indels in the gene can result in either a frameshift mutation that generates knockout through protein truncation or mRNA nonsense-mediated decay, or an in-frame mutation that may have a phenotypic effect depending on the structural or functional importance of the altered region.

Recent advances in RNAi and CRISPR technology have enabled massively parallel screens for synthetic lethal interactions in human cells. These screens are typically performed on either pairs of isogenic cell lines that differ only on the status of the gene of interest (Figure 4 Ai), or a panel of genetically diverse cell lines that are split
into two groups depending on the status of the gene of interest (Figure 4Aii). Large-scale perturbation of the expression of individual genes can be achieved using libraries of siRNAs, shRNAs, or gRNAs for CRISPR/Cas9 genome editing115,122. These reagents can be applied in an arrayed format (Figure 4B), in which the effect of each siRNA or shRNA is analyzed in individual wells, or in a pooled format, in which shRNA or gRNA vectors are combined in a pool and the change in relative abundance of individual shRNAs or gRNAs in the population is quantified (Figure 4C). A major advantage of the pooled screening approach is that large collections of shRNAs or gRNAs can be efficiently interrogated.

RNAi-based targeted gene suppression provided the first opportunity to perform scalable genetic screens in human cells10,123-125. These systematic synthetic lethality screens have contributed much knowledge to human functional genomics. However, the lack of overlap in findings among independent RNAi screens have raised concern regarding RNAi reagent specificity116. More recently, large scale CRISPR/Cas9 screens have proven to be a powerful method to identify gene dependencies14.

RNAi and CRISPR/Cas9 based screens have different technical and methodical advantages126. The major differences between the two technologies are in kinetics, penetrance, nature of phenotype, and specificity. (1) RNAi-mediated attenuation of gene expression is rapid, typically achieved in a matter of 1-2 days. Conversely, the CRISPR/Cas9 system usually requires at least a week to achieve maximum gene knockout120. (2) RNAi-mediated gene depletion is highly penetrant, with fairly uniform effects across individual cells. Contrastingly, to achieve complete gene knockout with the CRISPR/Cas9 system, every functional copy of the target gene must be disrupted; however, editing efficiencies of Cas9-expressing cells vary and can be below 50\%120,121,127,128, suggesting that many cells have incomplete gene knockout. Moreover, approximately 1/3 of indels are expected to be in-frame, and may not disrupt the ORF. Individual cells within a population may express the same gRNA, but acquire different mutations in the targeted gene, leading to phenotypic heterogeneity that contribute noise to large-scale screens126,129. (3) RNAi approaches typically result in incomplete knockdown phenotypes; for applications such as drug target discovery, phenotypic hypomorphs achieved by RNAi may better mimic the effect of chemical inhibition during
therapeutic application. CRISPR/Cas9 can achieve full genetic knockout, which may demonstrate a stronger phenotype and unveil additional genetic interactions. (4) Lastly, a major disadvantage of RNAi based approached is lack of specificity due to off-target effects, in which siRNAs can silence non-target mRNAs with limited sequence complementarity, often through interactions with the 3'-UTR130-132. The minimal overlap reported among independent RNAi screens have raised concern over the ability of RNAi to annotate gene function133. The CRISPR/Cas9 system is thought to be highly specific129, though off-target effects of the CRISPR/Cas9 system are likely not yet fully appreciated. Notably, genome editing by the CRISPR/Cas9 system has toxic effects, and in the setting of genome-scale screens in aneuploid cancer cells may result in the identification of false positive gene dependencies15,134.

Challenges in screening for synthetic lethal interactions

For large scale RNAi and CRISPR/Cas9 screens for synthetic lethal interactions, the two greatest remaining challenges are in reagent specificity and context dependence. For both RNAi and CRISPR/Cas9 screens, the efficiency of gene inactivation varies among individual shRNAs or gRNAs targeting the same gene. In addition, off-target effects associated with specific sequences contribute to false positive and false negative findings. Extensive efforts have been made to improve the specificity of RNAi libraries. RNAi design principles have emerged to increase on-target robustness and reduce off-target effects130,132,135,136, and library generation has improved through the incorporation of bioinformatics algorithms135,137,138. In addition, the analysis of large-scale RNAi screens have emphasized the importance of reducing false positives by observing consistent phenotypes in multiple RNAi reagents that target the same gene3,11,125,139. The CRISPR/Cas9 system was more recently discovered, and efforts are ongoing to improve on-target robustness and to define off-target effects129. However, early discoveries have been incorporated into the design of new gRNA libraries140-143. Loss-of-function screens for essential genes using these improved gRNA libraries have uncovered many common as well as cell line-specific fitness genes14,15,127,134. Ultimately, using the orthogonal RNAi and CRISPR/Cas9 systems in parallel will facilitate the identification of high-confidence synthetic lethal interactions.
An enduring challenge to identifying reproducible synthetic lethal interactions is context-dependence. Cell intrinsic (such as genetic background) and cell extrinsic (such as microenvironment) factors can modify synthetic lethal interactions. In yeast, it has been shown that certain genetic interactions are revealed only with the disruption of three or more genes \(^{144}\). This suggests that the genetic background of a cell line (such as loss of a tumor suppressor gene and nearby genes, oncogene activation, or even passenger mutations) could uncover or suppress synthetic lethal interactions. A major complication in screening for synthetic lethal interactions in isogenic cell lines is that the interactions identified may be context-dependent, occurring only in combination with other mutations or in a specific cell type or lineage (Figure 4Ai). Hence, a synthetic lethal interaction identified in any given cell pair may not be broadly valid. Issues of context dependency can be overcome by performing genetic screens in panels of diverse cell lines that are split during analysis based on the status of the gene of interest (Figure 4Aii,C). This thorough approach enables the identification of genes that are universally lethal in cells of diverse genotypes and lineages that harbor a specific mutation, circumventing the problem of context-dependence. However, this approach requires screening large numbers of cell lines, and could preclude the identification of strong synthetic lethal interactions that would be of clinical interest, but are conditional on specific genetic contexts.

Genotype-selective synthetic lethal interactions with oncogenic RAS

Several systematic genetic screens have been performed in human cancer cell lines to identify synthetic lethal interactions with mutant RAS. These studies have employed different screening modalities (cell line selection, time frame, pooled versus arrayed screening) and reagents (siRNA, shRNA, or CRISPR/Cas9) \(^{14,116,122,145}\). Screens were typically performed with pairs of isogenic cell lines, or with a panel of cancer cell lines that differ in RAS mutation status. These screens have confirmed that many KRAS-mutant cell lines are addicted to RAS, and identified many genes that may be synthetic lethal with oncogenic RAS (Table 2). These genes are involved in diverse processes, including cell cycle (BIRK5, PLK1, and APC/C), cell survival (BCL2L1 and WT1), transcription (GATA2 and SNAIL1), and parallel pro-proliferative pathways (TAK1 and TBK1) (Table 2).
Thus far, none of the proposed synthetic lethal interactors have been able to discriminate between RAS-mutant and RAS-wildtype cells as well as KRAS itself145. In addition, there has been a striking lack of overlap in RAS synthetic lethal genes identified from different screens. The only genes to score across multiple screens have been proteasome complex members3,4,146,147. Oncogenic RAS has been reported to increase rates of protein synthesis, which may render cells more dependent on the proteasomal degradation of mutated or misfolded proteins148. However, it remains unclear whether RAS mutation status predicts response to proteasome inhibitor therapy in the clinic149.

The first generation of RAS synthetic lethal screens have uncovered interesting biology in RAS-mutant cancers. However, the lack of overlap in identified synthetic lethal interactors with oncogenic RAS have raised concerns about the applicability of these findings116. There are multiple possible explanations for the low overlap across different screens. Studies have employed different reagents (siRNA or shRNA), screening modalities (time frame, pooled versus arrayed, and \textit{in vitro} versus \textit{in vivo} screening), and contexts (cell lineage, isogenic cell lines versus cell line panel)33,145. Each of these factors has unique limitations and likely contributes to false-negative and false-positive rates. It is likely that many synthetic lethal partners of oncogenic KRAS remain unidentified.

While the first-generation RAS synthetic lethal screens have numerous limitations, they have led to several interesting targets, including TBK1 and WT1, which continue to be the focus of ongoing investigation3,5. Notably, TBK1 shows promise as a novel therapeutic target for KRAS-driven malignancies. Preclinical studies using a small molecule inhibitor of TBK1 achieved clear therapeutic responses in Kras-mutant GEMMs9. Additionally, studying TBK1 has led to the discovery of a novel effector pathway of oncogenic RAS, in which TBK1 promotes RAS-driven tumorigenesis by regulating an autocrine cytokine circuit. Such data support the idea that synthetic lethal genetic interactions can identify valuable therapeutic targets and broaden our understanding of critical mediators of oncogenic RAS, motivating our interest in identifying further novel candidates. Improvements in genome-scale screening technology, such as improved RNAi libraries and CRISPR/Cas9 knockout libraries, and
the use of expanded collections of cancer cell lines are promising for the discovery of novel synthetic lethal targets.

Drug-conditional synthetic lethal interactions

Single-agent targeted therapies have achieved impressive clinical responses in a variety of oncogene-addicted cancers\(^{87,150-154}\). However, the rapid development of drug resistance limits therapeutic efficacy, and single-agent targeted therapies are rarely curative\(^{155,156}\). The highly interconnected nature of signaling pathways limits the benefits of inhibiting a single signaling pathway\(^{156-158}\). Feedback mechanisms among signaling pathways enable cells to maintain pathway activity despite the presence of a small molecule inhibitor. A better understanding of the alternative pathways that become essential to maintain viability when a major signaling pathway is pharmacologically inhibited (termed ‘drug-conditional synthetic lethal interactions’) would facilitate the design of rational combination therapeutic regimens (**Figure 5**). For example, a drug-conditional synthetic lethal interaction was recently identified in *BRAF*-mutant colon cancers: shRNA screens demonstrated that depletion of EGFR is synthetic lethal with small molecule BRAF inhibition, suggesting a that combined BRAF and EGFR inhibition could be of clinical utility\(^{159,160}\). Several clinical trials assessing the clinical utility of this combination of inhibitors are currently ongoing, and early phase clinical trials have reported promising results\(^{161}\). This suggests that pharmacologically targeting drug-conditional synthetic lethal interactions may increase the efficacy of existing therapeutic agents.

Given that RAS has proven difficult to target directly, therapeutic efforts in *RAS*-mutant cancers have focused on inhibiting downstream RAS effector pathways, such as the MAPK and PI3K pathways. As discussed previously, the strategy of inhibiting downstream RAS effectors (such as the MAPK and PI3K pathways) has had limited therapeutic efficacy. There has been much interest in conducting drug-conditional synthetic lethality screens to identify enhancers of MEK inhibition in *KRAS*-mutant tumors. shRNA screens have identified BCL-XL\(^{162}\) and HER3\(^{163}\) as synthetic lethal interactors with MEKi in *KRAS*-mutant cancers. Clinical trials combining MEK inhibitors with pan-HER inhibitors or BCL-XL inhibitors are currently in progress. Such data support the idea that drug-specific synthetic lethal interactions can be leveraged to
increase the cytotoxicity of existing therapies and deepen our understanding of oncogenic RAS signaling.
Results

Candidate synthetic lethal interactions with oncogenic KRAS

We analyzed the data from Project Achilles v2.4, which consists of 216 cell lines screened with a genome scale shRNA library\(^{12}\), to identify synthetic lethal target genes with specific essentiality in KRAS-mutant cells (Figure 2-1). To reduce the likelihood of identifying lineage-specific rather than KRAS-mutant-specific essential genes, we focused our analyses on carcinoma cell lines (133 of 216 cell lines).

To address potential off-target effects, we used a computational method developed in our laboratory, ATARiS (Analytic Technique for Assessment of RNAi by Similarity) to generate a gene-level essentiality score based on RNAi reagents whose phenotypic effects are most likely related to suppression of their intended targets\(^{139}\). The underlying assumption is that shRNAs designed to interrogate the same gene should have similar on-target effects in addition to individual off-target effects from perturbation of unintended transcripts. Hence, the on-target effects of shRNAs targeting the same gene can be estimated by quantifying the similarity in the pattern of phenotypic effect across multiple cell lines.

A two-class comparison was performed by classifying cell lines as KRAS-mutant (37 cell lines) or KRAS-WT (96 cell lines) using KRAS mutation status reported in the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) database\(^{164}\) and using a mutual information based metric\(^{12}\) to rank dependency data (shRNA- or gene- level) based on the degree of correlation with KRAS mutation status. In this analysis, KRAS itself was identified as the top candidate whose expression is selectively essential for the survival/proliferation of KRAS-mutant cells (Table 3). As KRAS depletion is known to induce cell death in KRAS-mutant cells (KRAS addiction), the identification of KRAS as a genetic dependency of KRAS-mutant cell lines serves as a positive control for this analysis. Aside from KRAS, 8 genes scored as significantly essential (FDR < 0.25) for the proliferation/survival of KRAS-mutant cells (Table 3).

Prior studies indicate that a subset of KRAS-mutant cell lines are insensitive to KRAS depletion\(^{3,42}\). Conversely, while the majority of KRAS-WT cell lines are KRAS-independent, some are sensitive to KRAS depletion. Indeed, we found that KRAS
mutation status did not always predict KRAS dependency (Figure 7). To identify genes whose expression is essential in cell lines that are both KRAS-mutant and KRAS dependent, two-class comparisons were performed in which cell lines were classified by (1) KRAS mutation status and sensitivity to KRAS depletion as measured by the KRAS ATARiS score\(^{139}\), a value that reflects the aggregate effects of 10 KRAS shRNAs screened in Project Achilles; or (2) KRAS mutation and sensitivity to KRAS depletion by shKRAS-1, a KRAS-targeting shRNA that effectively depletes KRAS expression at a protein level\(^3\) (Figure 8, Table 4). Two-class comparisons were performed on shRNA level and ATARiS (gene) level data (Figure 6). In all two-class comparisons, KRAS was identified as the most statistically significant candidate. In total, 59 candidate oncogenic KRAS co-dependencies were identified for further study (Table 5).

There is little overlap between the previously identified co-dependencies of oncogenic KRAS (Table 2) and candidates from this analysis (Table 5, highlighted in gray). Of the previously identified co-dependencies, only TAK1\(^{42}\), WT1\(^{5}\), CDK2 and CDK6\(^{165}\) score in any of the analyses. This could be attributable to a variety of factors: some of the previously identified genes may be cell line or lineage specific dependencies. Several candidates identified in these analyses were not screened in prior studies. Additionally, some of the previously identified candidates that were not identified as significant co-dependencies in these analyses (GATA2 and STK33) may have been false positives secondary to shRNA off-target effects\(^{11}\). Lastly, genes involved in autocrine pro-survival cytokine signaling pathways, such as TBK1\(^3\), are unlikely to be identified from pooled screens such as Project Achilles due to compensatory cytokine signaling from neighboring cells.

Off-target effects complicate the interpretation of RNAi screens

In the two-class-comparison analysis in which cell lines were classified by KRAS mutation status, COG2 was the most statistically significant gene, and its depletion had the greatest magnitude of differential effect between KRAS-mutant and KRAS-WT cell lines, with the exception of KRAS itself. COG2 remained a significant candidate gene in the analyses in which cell lines were classified by KRAS mutation status and dependency (Table 5). Moreover, when the analogous analyses were performed on an
independently derived dataset166, in which genome-scale pooled shRNA screens were performed across 72 cancer cell lines (59 with known KRAS mutation status, including 26 KRAS-mutant and 33 KRAS-WT), COG2 was again identified as a co-dependency of KRAS-mutant cell lines (Table 3 and 5). Hence, COG2 was prioritized for validation as a selective dependency of KRAS-mutant cells.

All five COG2-targeting shRNAs screened in Project Achilles deplete COG2 expression at the mRNA and protein level (Figure 9). The two shRNAs (shCOG2-4 and shCOG2-5) that best distinguished between KRAS-mutant and KRAS-WT cell lines in Project Achilles were selected to be assessed in a cell proliferation assay. One KRAS-WT cell line (BXPC3) and three KRAS-mutant cell lines (HPAC, HPAFII, and YAPC) were infected with two shCOG2, two shKRAS, and two control shRNAs. In this initial assay, both KRAS-WT and KRAS-mutant cell lines appear sensitive to COG2 depletion (10A).

The possible off-target effects of shCOG2 shRNAs were assessed in four ways: 1) performing a rescue experiment; 2) assessing the effect of three additional COG2-targeting shRNAs on cell viability; 3) evaluating sh911 seed-control shRNAs167 for individual shCOG2 shRNAs; and 4) using the CRISPR/Cas9 system to evaluate the effect of COG2 knockout. In the rescue experiment, a KRAS-mutant cell line (HPAC) was infected with either LacZ (control) or COG2 cDNA. Subsequently, COG2 expression was suppressed using two shRNAs, one (shCOG2-6) of which targets the 3'-untranslated region (UTR) of COG2 (Figure 11A). Overexpressing COG2 did not restore cell viability/proliferation (Figure 11B). However, it is possible that the exogenously expressed COG2 was not functionally active, as it contains a N-terminal V5 tag.

COG2 was evaluated as a putative co-dependency of oncogenic KRAS by testing additional shCOG2 shRNAs tested in a cell proliferation assay. Three shCOG2 shRNAs, which were not screened in Project Achilles and which effectively reduce COG2 expression were selected (Figure 12A). In two KRAS-mutant and two KRAS-WT cell lines, the effect of the two shCOG2 shRNAs that were screened in Project Achilles (shCOG2-5 and shCOG2-6) mirror the effects of the two shKRAS shRNAs (Figure 12B). However, the effects of the three novel shCOG2 shRNAs (shCOG2-7, shCOG2-8,
and shCOG2-9) did not correlate with KRAS mutation or KRAS dependency (Figure 12B). This suggested that COG2 might not be a true co-dependency of KRAS-mutant cells.

C911 seed-control shRNAs167, in which bases 9 through 11 of the shRNA targeting sequence are replaced with their complement (Figure 13A), were used to assess off-target effects of two shKRAS shRNAs and the two shCOG2 shRNAs that were found to correlate with KRAS dependency. These shRNAs were evaluated in a cell proliferation assay in one KRAS-WT cell line (NCIH1437) and two KRAS-mutant cell lines (PANC0203 and YAPC) (Figure 13B). Results indicate that one of the shRNAs targeting KRAS, shKRAS-2, has off-target effects that decrease cell viability (Figure 13B, both C911 shKRAS-2 and shKRAS-2 decrease the viability of KRAS-WT NCIH1437). shKRAS-1, on the other hand, does not demonstrate such off-target effects (Figure 13B, neither C911 shKRAS-1 nor shKRAS-1 decrease the viability of KRAS-WT NCIH1437). shCOG2-4 and shCOG2-5 do not appear to have strong off-target effects that decrease cell viability (cell viability is decreased by both shCOG2 shRNAs but not the C911 seed-control shRNAs, Figure 13B). As COG2 depletion decreased viability of all cell lines assessed, one of which was KRAS-WT and KRAS-independent (NCIH1437), COG2 is not a selective co-dependency of KRAS-mutant or KRAS-dependent cell lines.

The CRISPR/Cas9 gene knockout system120 provides an orthogonal method to assess the effect of COG2 loss. We assessed the effect of COG2 (gCOG2) or KRAS (gKRAS) knockout in a KRAS-WT cell line (NCIH1437) and a KRAS-mutant cell line (YAPC) in a crystal violet cell proliferation assay. We found that KRAS knockout reduced viability in KRAS-mutant cells, but had no effect in NCIH1437. COG2 knockout did not affect viability in KRAS-WT or KRAS-mutant cells (Figure 14).

In summary, our experiments demonstrate that COG2 suppression result in no differences in viability between KRAS-WT and KRAS-mutant cells, indicating that COG2 is not a co-dependency of KRAS-mutant cells. Off-target effects can be a significant source of false-positives in shRNA-based experiments. Additionally, the KRAS-mutant cell lines screened in Project Achilles are predominantly of pancreatic, lung, and colon lineages; the candidate genes identified from the two-class comparisons described
above (Table 5) could be confounded by lineage-specific (rather than KRAS-mutant-specific) dependencies. The fact that COG2, the highest priority candidate from the analyses described above, failed to validate as a co-dependency of KRAS-mutant cells highlights the importance of incorporating additional filters to prioritize candidate genes and the use of efficient and unambiguous assays to validate candidate co-dependencies of oncogenic KRAS.

Prioritized candidate co-dependencies of oncogenic KRAS

We have considered three approaches to refining the list of candidate synthetic lethal interactors with oncogenic KRAS identified through analyzing Project Achilles shRNA screens (Table 5): (1) prioritize genes that are more highly expressed in KRAS-mutant cells; (2) analyze genome scale CRISPR/Cas9 knockout screens and prioritize genes that are confirmed to be selectively essential in KRAS-mutant cells using this orthogonal approach to genetic perturbation; and (3) exclude candidate genes that likely score secondary to off-target effects by computationally estimating the seed effects of the shRNAs used in the Project Achilles screens.

The list of the candidate genes (Table 5) can be refined by prioritizing genes that are more highly expressed in KRAS-mutant cells. This selection criterion assumes that genes that promote cell proliferation/survival selectively in the context of oncogenic KRAS are likely to be overexpressed in KRAS-mutant cells than in KRAS-WT cells. We analyzed RNA-sequencing data of cell lines in the Cancer Cell Line Encyclopedia (CCLE)164 to identify genes that were significantly upregulated in 130 KRAS-mutant carcinoma cell lines compared to 769 KRAS-WT carcinoma cell lines (t-test, FDR < 0.05). Of the 59 candidate genes, 6 were overexpressed in KRAS-mutant cell lines (ABP1, BCL2L1, CXCL6, DOCK5, FERMT1, and NCOR2) (Figure 15A). Of note, not all genes that are selectively essential in KRAS-mutant cell lines are expected to be upregulated – indeed, KRAS itself is not significantly overexpressed in KRAS-mutant cells.

As an orthogonal approach to identify KRAS synthetic lethal interactions, our laboratory has performed genome-scale CRISPR/Cas9 loss-of-function genetic screens. The screens have performed in 53 cancer cell lines (32 KRAS-mutant and 21...
KRAS-WT). In this screen, candidate genes are knocked out through genome editing by the CRISPR/Cas9 system using the genome-scale CRISPR/Cas9 knockout version 2 (GeCKOv2)168 or Avana141 library. Conceptually, this screen is analogous to the shRNA-mediated Project Achilles screen described above (Figure 6). However, there are several advantages to a knockout (versus knockdown) approach. The CRISPR/Cas9 system is a highly specific and efficient tool for genetic ablation, with greater consistency of effect among gRNAs targeting the same gene than is typically observed with shRNAs. This specificity likely improves the signal-to-noise ratio and decreases the false-positive rate of the screen. Additionally, CRISPR-mediated genome editing completely eliminates target gene expression, and may induce stronger phenotypes than shRNA-mediated gene suppression, which only partially depletes target genes. Lastly, shRNAs and gRNAs presumably have non-overlapping off-target effects, making data from the CRISPR/Cas9 screen useful for prioritizing the candidate co-dependencies of oncogenic KRAS identified from the shRNA screens.

We performed a two class comparison on the Project Achilles CRISPR/Cas9 knockout v3.6.2 dataset to identify genes that were selectively essential in KRAS-mutant carcinoma cell lines. We identified 360 significant (FDR < 0.25) candidate genes, but only 4 (ATP2B4, DOCK5, KRAS, and RAF1) overlapped with the 59 candidates nominated from analyses of the Project Achilles shRNA dataset (Figure 15B). KRAS and RAF1 (CRAF) were anticipated co-dependencies of KRAS-mutant cells. However, DOCK5 and ATP2B4 have not been implicated in RAS signaling, and are high-priority candidates for follow-up studies.

Lastly, DEMETER is an algorithm that models the effects produced by individual shRNA as a linear combination of gene-related effects and seed-related effects11. In the shRNA library used in project Achilles, each gene is targeted by ~6 shRNAs. Each of these shRNAs have “seedalogs,” which are shRNAs that share the same seed sequence (residues 1-8 at the 5’ end of the guide strand) but that are designed target different genes. Similar to ATARiS, DEMETER estimates the on-target effect of shRNAs targeting the same gene by quantifying the similarity in their phenotypic effects across multiple samples. DEMETER also quantifies the off-target “seed” effect of individual shRNAs by quantifying the similarity in its phenotypic effect across multiple samples to
the effect of its seedalogs. If the effect of a given shRNA across multiple cell lines appears to be more similar to its seedalogs than to other shRNAs targeting the same gene, the primary effect of this shRNA is likely off-target. We used DEMETER on the Project Achilles v2.4 dataset to quantify the on- and off-target effects of individual shRNAs. We found that only 14 of the 59 candidate genes were identified by at least 2 shRNAs that had an estimated on-target effect of >50% (Figure 15C). These candidate genes are less likely to have been identified as a candidate co-dependency of KRAS-mutant cells due to off-target shRNA effects.

Potential dependency of KRAS-mutant cancer cells on DOCK5

DOCK5 is a guanine exchange factor (GEF) that is known to activate RAC1, a member of the Rho GTPase family. We selected DOCK5 for further study because it was more highly expressed in KRAS-mutant than KRAS-WT cell lines (Figures 15A and 16). Moreover, analyses of both Project Achilles shRNA and CRISPR/Cas9 screens identified DOCK5 as being specifically essential in KRAS-mutant cells (Figure 15B).

We assessed the effect of DOCK5 depletion in a KRAS-WT cell line (NCIH1437) and a KRAS-mutant cell line (PATU8902). We found that DOCK5 depletion reduced viability of KRAS-mutant cells, but had no effect on KRAS-WT cells (Figure 7A). Interestingly, we noticed that shRNAs targeting DOCK5 not only reduced DOCK5 expression, but also reduced KRAS expression (Figure 7B). We generated C911 seed-control shRNAs to assess the potential off-target effects of the DOCK5-targeting shRNAs. We found that both C911 shDOCK5-2 and shDOCK5-2 reduce KRAS expression, though only shDOCK5-2 reduces DOCK5 expression (Figure 18A-C). Notably, both C911 shDOCK5-2 and shDOCK5-2 reduce viability of KRAS-mutant cells, suggesting that shDOCK5-2 reduces viability of KRAS-mutant cells due to off-target suppression of KRAS expression rather than its suppression of DOCK5 expression (Figure 18D). In line with this hypothesis, a different DOCK5-targeting shRNA (shDOCK5-3) and its seed control (C911 DOCK5-3) do not reduce KRAS expression have no effect on cell viability (Figure 18).

To further assess the effect of DOCK5 loss on KRAS expression and cell viability, we reduced DOCK5 expression using two tools: siRNAs and CRISPR/Cas9.
We assessed the effect of siRNA-mediated DOCK5 depletion in two KRAS-mutant cell lines (HCT116 and PATU8902). We utilized a pool of four siRNA duplexes designed to target distinct sites within DOCK5 (Dharmacon SMARTpool). We found that siRNAs targeting DOCK5 effectively reduced DOCK5 expression without decreasing KRAS expression at the mRNA or protein level (Figure 19A-C). However, DOCK5 depletion had no effect on cell viability (Figure 19D).

Subsequently, we used the CRISPR/Cas9 system to knockout DOCK5 in the KRAS-mutant cell line PATU8902. We tested 4 gRNAs targeting DOCK5, and found 3 that effectively knocked out DOCK5 as indicated by reduced DOCK5 mRNA expression (Figure 20A). We found that DOCK5 deletion had no effect on KRAS expression or on downstream MAPK or PI3K pathway activity (Figure 20B,C). In addition, we found that DOCK5 deletion had no effect on cell viability (Figure 20D,E). Overall, our findings suggest that DOCK5 does not regulate KRAS expression, and that DOCK5 depletion does not affect viability in KRAS-mutant cells.

DOCK5 modifies sensitivity to MAPKi in RAS-mutant cancers

Drug-conditional synthetic lethal interactions may be leveraged to increase the efficacy of existing therapeutic agents. As discussed above, one of the most promising methods of targeting RAS-mutant cancers is to inhibit downstream effector pathways, such as the MAPK pathway. Unfortunately, many RAS-mutant cancers demonstrate intrinsic or acquired resistance to MAPKi\(^{96,97}\). The development of genome-scale RNAi\(^{170}\) and CRISPR/Cas9\(^{141,168,171}\) libraries enable the systematic identification of loss-or-function events that increase drug sensitivity. These drug-conditional synthetic lethal interactions could inform the rational design of combined chemotherapy regimens.

Our laboratory has previously performed 6 genome-scale CRISPR/Cas9 screens to identify modifiers of sensitivity to MAPKi in 5 cancer cell lines harboring KRAS, NRAS, or BRAF mutations\(^{172,173}\) (Figure 21A). In PATU8902 (KRAS-mutant, pancreas) cells treated with the MEK inhibitor trametinib, 4 of the 6 gRNAs targeting DOCK5 became strongly enriched; strikingly, out of ~200,000 screened gRNAs, there were 3 gRNAs targeting DOCK5 among the 15 most enriched gRNAs (Figure 21B). This suggests that DOCK5 knockout might confer resistance to MAPKi. The major known
function of DOCK5 is to activate the small GTPase RAC1174,175. However, the majority of gRNAs targeting RAC1 were depleted in this screen, suggesting that RAC1 knockout sensitizes cells to MAPKi (Figure 21Bi). When we examined the sequences of the gDOCK5 gRNAs, we found that the 4 DOCK5-targeting gRNAs that were enriched in the PATU8902 screen clustered around amino acids 31-56, which maps to the middle of the SH3 domain of DOCK5 (Figure 21C). DOCK5 activity is thought to be autoinhibited through interactions between its N-terminal SH3 domain and the C-terminal DHR2 domain176. In the process of gene editing, the CRISPR/Cas9 system may generate in-frame insertion/deletions or point mutations177, a property that has been capitalized on to rapidly generate diverse variants for gain-of-function screens178,179 Notably, an I32K point mutation in the SH3 domain of the closely related protein DOCK1 abrogates autoinhibition and results in constitutively active DOCK1176. It is possible that the enriched DOCK5-targeting gRNAs introduced gain-of-function mutations in the SH3 domain of DOCK5 that abrogate its autoinhibition. Consistent with this vein of thought, a gRNA targeting MAP2K1 (MEK1) was the fourth most enriched gRNA in this screen (Figure 21Bii); as trametinib is a MEK1 inhibitor, this particular gRNA likely induced a gain-of-function mutation in MEK1.

We analyzed screening data172,173 from 4 other cell lines (RAS- or BRAF-mutant lung or pancreatic cancer cells) treated with MAPK pathway inhibitors (MEK inhibitor trametinib or BRAF inhibitor vemurafenib) to assess how gRNAs targeting DOCK5 and RAC1 modulated sensitivity. We found that in most cell lines, gRNAs targeting DOCK5 and RAC1 were significantly depleted, suggesting that reduction in DOCK5-RAC1 pathway activity increases sensitivity to MAPKi in RAS- and BRAF-mutant cells.

To determine whether DOCK5 knockout altered sensitivity to MEKi in PATU8902 cells, we performed a competition assay to determine whether DOCK5 knockout altered sensitivity to MEKi. PATU8902 cells that were DOCK5-WT (gGFP) were mixed with PATU8902 cells that were DOCK5-KO (gDOCK5) in a 1:1 ratio, and the change in proportion of DOCK5-WT vs. DOCK5-KO cells was monitored over time. We found that DOCK5 deletion reduced cell proliferation/viability only when cells were exposed to the MEK inhibitor trametinib (Figure 22B). This suggests that loss of DOCK5 increases sensitivity to MEKi in RAS-mutant cells.
Given our observation that *DOCK5* deletion increases sensitivity to MAPKi in *RAS*- and *BRAF*-mutant cells, we hypothesized that *DOCK5* deletion might perturb *RAS* effector pathways such as the MAPK or PI3K pathways. We found that *DOCK5* deletion reduces PI3K pathway activity but has no effect on MAPK pathway activity (Figures 23, 24).
Discussion

Candidate synthetic lethal interactions with oncogenic KRAS

Targeting genes that are selectively essential in the context of oncogenic RAS signaling is an attractive approach to targeted therapy for RAS-mutant cancers. We analyzed data from Project Achilles v2.4, in which a comprehensive genome-scale shRNA screen was performed across 216 human cancer cell lines, and identified 59 candidate genes that may be selectively essential in KRAS-mutant cancer cells. We found that the most statistically significant candidate gene, COG2, failed to validate and was likely identified as a consequence of shRNA off-target effects. Our experience with COG2 highlights the need to unambiguously determine whether a putative co-dependency identified from shRNA screening data scored due to on- or off-target shRNA effects. This can be achieved in a variety of ways, including (1) testing additional RNAi reagents, (2) using C911 seed-control shRNAs to evaluate off-target effects, (3) performing a rescue experiment, and (4) utilizing the orthogonal CRISPR/Cas9 system to knockout or inhibit gene expression.

We propose three ways to filter candidate genes in order to enrich for bona fide KRAS-mutant co-dependencies: (1) prioritize genes that are overexpressed in KRAS-mutant cells (6 genes), (2) exclude genes that likely scored due to off-target seed effects as estimated using the recently developed bioinformatics algorithm DEMETER (14 genes), and (3) prioritize genes that also scored in our analyses of Project Achilles v3.6.2, in which 53 cancer cell lines were screened using a genome scale CRISPR/Cas9 library (4 genes).

It is increasingly appreciated that shRNA off-target effects confound the interpretation of RNAi-based screens. For the majority of this work, we endeavor to minimize the identification of false positive candidates through using multiple shRNA constructs to target each gene and inferring on-target reagents by using the algorithm ATARiS to identify the shRNA constructs that have strongly concordant effects across cell lines. However, residual RNAi off-target effects persisted, and the most statistically significant gene (COG2) failed to validate experimentally.
Analysis of shRNA screening data across a panel of >500 cancer cell lines demonstrated that the viability phenotype across cell lines for pairs of shRNAs that share 7-mer seed sequences (which are responsible for the miRNA-like off-target effects) were significantly more correlated than that of shRNAs targeting the same gene11, highlighting the prevalence and robustness of miRNA-like seed effects. DEMETER11 is a recently developed analytical approach that takes advantage of the fact that both the on-target and seed-based effects of RNAi are sequence specific130,167. DEMETER deconvolutes the effects of each shRNA into a linear combination of the effects due to target gene depletion and the effects associated with the seed sequences, outperforming algorithms that are based solely on correlation (such as ATARiS, which was used to identify genes in this work) in identifying on-target biologically meaningful genetic dependencies11. Using DEMETER, we found that 14 of the 59 proposed candidate genes have at least 2 shRNAs with an estimated on-target effect >50%. These 14 genes are likely enriched for genuine co-dependencies of oncogenic KRAS, and are of high priority for further investigation.

An alternative approach to address shRNA off-target effects is to use an orthogonal system, such as CRISPR-Cas9, and investigating genes that are identified from both screening approaches. Analysis of the Project Achilles shRNA and CRISPR/Cas9 screens identified 59 and 360 candidate synthetic lethal interactions with mutant KRAS, respectively, with only 4 genes identified in both. The low overlap between KRAS-mutant synthetic lethal candidate genes nominated from analyses of Project Achilles shRNA and CRISPR/Cas9 data is likely attributable to a combination of technical artifacts and biologic factors.

As discussed previously, RNAi reagents are associated with off-target miRNA-like seed effects. While the CRISPR/Cas9 system demonstrates high specificity in gene targeting129,177, off-target effects are likely not yet fully appreciated. Indeed, our laboratory and others have recently identified target gene-independent induction of cell-cycle arrest mediated by Cas9 endonuclease activity, likely secondary to DNA damage15,134. shRNA or CRISPR/Cas9 off-target effects may result in the identification of false-positive candidates or the exclusion of bona fide candidates due to false-
negative results, contributing to the low overlap in candidate genes nominated from analysis of the shRNA and CRISPR/Cas9 screens.

Technical artifacts, such as reagent off-target effects or incomplete penetrance of CRISPR/Cas9-mediated gene knockout, limit the degree of saturation achieved in the shRNA and CRISPR/Cas9 screens. If a particular pathway or complex is essential in the context of a genetic alteration, genes encoding all the important components of that pathway or complex should be identified in a saturated synthetic lethal screen. In large-scale screens for synthetic lethal genetic interactions in *Saccharomyces cerevisiae*, a microorganism in which high fidelity gene disruption is readily achieved \(^{181}\), the set of synthetic lethal interactions associated with a particular gene is typically enriched for all of the genes encoding the components of a functionally related pathway or complex \(^{182-185}\). The paucity of relationships (such as pathway or complex membership) observed among the candidate synthetic lethal interactors with oncogenic KRAS nominated here suggests that our screens have not reached genetic saturation.

In addition, several biologic factors contribute to the low overlap in candidate genes nominated from the shRNA and CRISPR/Cas9 screens. Certain candidates (such as cell essential genes) may only have a differential effect as hypomorphs, and would score only in the shRNA screen \(^{186}\). Conversely, genes with large functional reserve that are not effectively depleted in the shRNA-based screen may only score in the CRISPR-meditated screen. Moreover, the cell line panels used in the shRNA versus CRISPR/Cas9 screens differed in number (216 versus 53 cell lines) and proportion of particular cell lineages (such as lung, pancreas, or colorectal). As synthetic lethal interactions are highly context dependent, the differences in composition of cell line panels likely reduced the overlap in candidate genes identified from the shRNA and CRISPR/Cas9 screens.

In both RNAi and CRISPR/Cas9 screens, KRAS depletion appears to be the most robust and consistent mode of reducing proliferation/viability of KRAS-mutant cancer cells. There may be no universal synthetic lethal interaction with mutant KRAS that has equivalent potency to targeting KRAS itself across the spectrum of KRAS-mutant cancers. Nevertheless, while KRAS itself appears to be the strongest genetic dependency in KRAS-mutant cells, the identification of weaker but consistent co-
dependencies across KRAS-mutant cancers could provide valuable insight into oncogenic KRAS signaling and function. It is likely that strong synthetic lethal interactions with mutant KRAS exist within specific combinations of tissue type and mutational background; these context-specific synthetic lethal interactors are attractive candidates for targeted therapy3,9.

Overall, our findings suggest that screening large numbers of cell lines will be necessary for sufficient power to overcome the genetic heterogeneity of cancer cell lines to identify co-dependencies of KRAS-mutant cells that are widely applicable, and which may enhance our understanding of oncogenic KRAS signaling. Focusing screening efforts on specific cell lineages would reduce the number of cell lines required, and may unveil robust context-specific dependencies that are clinically valuable. The information derived from shRNA and CRISPR/Cas9 screens are complementary, and may identify non-overlapping co-dependencies for a variety of technical and biologic reasons. Secondary screens (such as an arrayed shRNA screen with appropriate C911 control shRNAs or a candidate mini-pool CRISPR/Cas9 screen) that enable head-to-head comparison of the union of candidate genes nominated by analyses of shRNA and CRISPR/Cas9 screens across large panels of cell lines could be an effective method of initial candidate gene validation and prioritization.

DOCK5-RAC1 pathway in RAS-mutant cells

Further exploration is warranted to determine if DOCK5 suppression is synthetic lethal to oncogenic KRAS

We initially identified DOCK5, which is overexpressed in KRAS-mutant cells and scores in both Project Achilles shRNA and CRISPR/Cas9 screens, as a candidate co-dependency of oncogenic KRAS. Our validation experiments suggested that DOCK5 depletion is not synthetic lethal in the context of mutant RAS. However, this could be definitively concluded as there were weaknesses in our validation experiments: (1) the shDOCK5 shRNA that best distinguishes between KRAS-mutant and KRAS-wildtype cells has an off target effect in which it reduces KRAS expression. However, the seed effects of other shDOCK5 shRNAs that selectively reduced viability of KRAS-mutant were not evaluated. (2) We used pooled siRNAs to deplete DOCK5 in KRAS-mutant
cells, and found no effect on cell viability despite ~50% reduction in DOCK5 mRNA expression. Given the transient effect of siRNA-mediated mRNA depletion, we assessed for differences in viability 4 days after siRNA transfection. The screens in Project Achilles are conducted over the course of 16 cell doublings (typically >20 days); this allows time for protein turnover and amplification of differences in proliferation rate. Although we reduced DOCK5 mRNA expression (protein level could not be assessed due to lack of DOCK5-specific antibody), residual DOCK5 protein may have compensated in the short term. Additionally, we used CellTiter-Glo, a luminescence based cell viability assay, to quantify cell number; in our experience, this reagent is not sufficiently sensitive to detect modest differences in cell number. (3) We found that CRISPR/Cas9-mediated DOCK5 knockout did not affect viability of KRAS-mutant cells.

There are major limitations to our CRISPR/Cas9 experimental approach. In a population of cells expressing the same gRNA, there are some that achieve true knockout, others that express truncation or missense proteins, and yet others that suppress Cas9 or gRNA expression and evade genome editing. This heterogeneity may result in a mixture of individual phenotypes that cannot be detected at the population level. Additionally, we passage cells for at least 7 days after gRNA infection to allow time for gene editing120. However, if DOCK5 is required for viability, cells that achieve DOCK5 knockout will drop out, and over time we would select for a subpopulation of cells that have maintained DOCK5 expression or which acquired additional genetic alternations that rendered them resistant to DOCK5 deletion. An approach to definitively assess whether DOCK5 depletion is synthetic lethal in the context of oncogenic RAS would be to use the CRISPR/Cas9 system to stably knockout DOCK5 in cells expressing exogenous DOCK5 (such as with a dox-inducible expression construct), and subsequently assess the effect of removing exogenous DOCK5.

DOCK5 is an GEF that activates the small GTPase RAC1 by promoting the dissociation of GDP from RAC1, thereby facilitating GTP binding187,188. At least 20 GEFs are implicated in directly activating RAC1. These GEFs are subdivided into the Dbl or DOCK families, which differ in the domain mediating their GEF activity189. Intriguingly, since the experiments performed here (c. 2012-2014), a second generation CRISPR/Cas9 screen in a panel of acute myelogenous leukemia cells identified the
deletion of *PREX1*, a Dbl RAC1-GEF, to be synthetic lethal with mutant *RAS*14. Mechanistically, PREX1 expression was necessary to maintain MAPK pathway activity in RAS-mutant cells. Intriguingly, Wang et al. found that *PREX1* expression is restricted mainly to myeloid cells, and that in RAS-mutant non-myeloid hematopoietic cancers, a different Dbl-RAC-GEF, TIAM1, was selectively essential14. It is possible that RAC1 activity is essential in all RAS-mutant cells, and that RAC1 is activated by different RAC1-GEFs in different cell lineages (PREX1 in myeloid cells, TIAM1 in non-myeloid hematopoietic cells, and DOCK5 in epithelial cells). Definitively determining whether DOCK5 expression is selectively essential in *KRAS*-mutant carcinomas will be critical to explore this hypothesis.

DOCK5-RAC1 pathway modulates sensitivity to MAPKi in RAS-mutant cells

Identifying genes whose suppression enhances drug sensitivity can enable rational design of combined therapy. We analyzed 6 genome-scale CRISPR/Cas9 screens to identify modifiers of sensitivity to MAPKi in RAS-mutant cells. We found that in 4 of the screens, gRNAs targeting DOCK5 were depleted, suggesting that DOCK5 deletion enhances sensitivity to small molecule MEK or BRAF inhibitors. The major known function of DOCK5 is to activate RAC1174,175. Notably, gRNAs targeting RAC1 were depleted in all 6 screens, suggesting that suppression of RAC1 signaling increases sensitivity to MAPKi.

Interestingly, one of the screens (PATU8902 cells treated with the MEK inhibitor trametinib) showed strong enrichment of gRNAs targeting DOCK5. However, subsequent examination of the enriched gDOCK5 gRNAs showed that they target the autoinhibitory SH3 domain of DOCK5, where mutations might result in constitutively active DOCK5. We hypothesize that these gRNAs induced gain-of-function DOCK5 mutations, and that this increase in DOCK5 activity conferred resistance to MEKi. Sequencing the DOCK5 locus from the genomic DNA of the end population of cells from this screen would allow us to profile the gRNA-induced mutations.

We confirmed that in *KRAS*-mutant PATU8902 cells, DOCK5 deletion increases sensitivity to MEKi. An initial experiment suggested that deletion of DOCK5 reduces PI3K signaling as measured by p-AKT. The RAC1 and PI3K pathways are known to have significant crosstalk. For example, PI3K is thought to be directly activated by
RAC1. In turn, PIP3 (the lipid product of active PI3K), recruits and activates RAC1-GEFs, further upregulating RAC1 activity190,191. This feed-forward circuitry between RAC1 and PI3K is necessary for the generation of a leading edge in migrating cells190, and may contribute to proliferation and survival of RAS-mutant cancer cells. In addition, prior studies suggest that RAC1 is able to indirectly activate the MAPK pathway through PAK172,192. The next steps in determining if and how the DOCK5-RAC1 pathway modulates sensitivity to MAPKi in RAS-mutant cells include: (1) suppress and overexpress DOCK5 and RAC1 in a panel of cell lines and evaluate the effect on cell viability, and (2) evaluate the effect of DOCK5 overexpression and suppression on levels of active (GTP-bound) RAC1 as well as MAPK and PI3K pathway activity.

Oncogenic RAS activates several effector pathways, and concurrent inhibition of multiple pathways may be important. In pre-clinical studies, combined MAPK and PI3K inhibition effectively induced regression of KRAS-mutant tumors193. However, while this dual-targeting strategy has the potential of being more effective than inhibition of either pathway alone, there may not be a wide enough therapeutic window to effectively suppress both pathways in human cancers106. In a recent trial that combined MK-2206 (AKT inhibitor) with selumetinib (MEK inhibitor), no patient achieved over 70% inhibition of both targets at the maximum tolerated drug dose107. Dock5-knockout mice demonstrate minor phenotypes, including high bone mass194, cataracts195, and reduced myoblast fusion196, suggesting that DOCK5 inhibition may have low toxicity. It will be interesting to evaluate whether C21194, a chemical inhibitor of DOCK, or small molecule inhibitors of the RAC1 pathway197 synergize with small molecule MAPK inhibitors to treat RAS-mutant cancers.
Conclusion

In summary, we analyzed shRNA and CRISPR-Cas9 screening data across a large panel of cancer cell lines to nominate genes that are selectively essential in cells with mutant KRAS, highlighted experimental methods to unambiguously validate candidate genes, and identified DOCK5 as a modifier of sensitivity to MAPKi in RAS- or BRAF-mutant cancers.

A major factor that has limited progress in RNAi screens for co-dependencies of oncogenic KRAS is the abundant off-target effects of RNAi technology. We highlight approaches to address this at the analysis stage (using algorithms to account for miRNA-like off-target seed effects, filtering by gene expression, and integrating RNAi and CRISPR/Cas9 screening data) and at the validation stage (using seed-control shRNAs, orthogonal modes of genetic perturbation, and ORF rescue).

Aside from genotype-specific synthetic lethal interactions, drug-conditional synthetic lethal interactions hold much promise for the identification of rational combination therapy regimens. Our analysis of genome-scale CRISPR-Cas9 screens for genetic modulators of sensitivity to MAPKi indicates that suppression of the DOCK5-RAC1 pathway may enhance sensitivity to MAPKi in RAS-mutant cancers. Notably, recent CRISPR-Cas9 screens in hematopoietic cells identified the RAC1 pathway to be selectively essential in RAS-mutant hematopoietic cancers. Further evaluation of the effect of perturbing DOCK5-RAC1 pathway activity in combination with MAPKi may unveil a tractable therapeutic target.

Synthetic lethality is a simple genetic concept that continues to have a major impact on cancer research. Direct screening of human cancer cell lines have identified synthetic lethal interactions with oncogenic KRAS that have enhanced our understanding of oncogenic KRAS signaling and informed novel therapeutic strategies. The small number of cell lines screened and the experimental artifacts associated with RNAi off-target effects have limited the power of prior studies. It is likely that the use of expanded RNAi libraries with improved analysis techniques to estimate off-target effects as well as orthogonal CRISPR/Cas9 knockout libraries in an expanded collection of cell lines will enable the discovery of novel synthetic lethal interactions that are relevant across broad contexts.
Materials and methods

Analysis of Project Achilles v2.4 (shRNA)
The generation of the Project Achilles v2.4 dataset has been previously described\(^\text{12}\), and was analyzed at the shRNA level and gene level. Gene level data was generated using ATARiS (Analytic Technique for Assessment of RNAi by Similarity)\(^\text{139}\). Data was analyzed by two-class comparison using PARIS\(^\text{12}\), an algorithm that uses a mutual information based metric to rank sample data (shRNA/gene dependency) based on the degree of correlation to a classification scheme (KRAS mutation status). Analyses were performed in which carcinoma cell lines were classified by 1) KRAS mutation status; 2) KRAS mutation status and KRAS dependency as determined by KRAS ATARiS score (cell lines with KRAS ATARiS score < -0.875 were considered to be KRAS dependent); 3) KRAS mutation status and KRAS dependency as determined by the shKRAS-3 shRNA that was previously shown to effectively deplete KRAS\(^3\)(cell lines with shKRAS-3 ZMAD score < -0.77 were considered to be KRAS dependent). shRNAs or genes with an FDR < 0.25 were considered to be statistically significant. shRNA on-target effects were determined using DEMETER\(^\text{11}\), an recently developed algorithm that models the effects produced by individual shRNAs as a linear combination of gene-related effects and seed-related effects. We used DEMETER on the Project Achilles v2.4 dataset to quantify the on- and off-target effects of individual shRNAs. High priority candidate genes were those which had at least 2 shRNAs with an estimated on-target effect of >50%.

Analysis of Project Achilles v3.6.2 (CRISPR/Cas9)
The Project Achilles v3 (CRISPR/Cas9) dataset was recently published\(^\text{15}\). Here, we analyzed a preliminary dataset (Project Achilles v3.6.2). Briefly, Cas9-expressing cells were infected with the genome scale Avana pooled CRISPR library\(^\text{141}\), in which each gene is targeted by 4 different gRNA constructs. After puromycin selection, cells are passaged for 14 days. At this time, genomic DNA is harvested, and the change in gRNA representation compared to the original gRNA plasmid pool is determined. Gene-level data was generated using ATARiS\(^\text{139}\), and data was analyzed by two-class comparison.
using PARIS. Carcinoma cell lines were classified by KRAS mutation status, and genes with an FDR < 0.25 were considered to be statistically significant.

Analysis of CCLE RNA-sequencing expression data

Cell line RNA-sequencing data was obtained from the Cancer Cell Line Encyclopedia and analyzed using GENE-E, a matrix visualization and analysis platform developed by Joshua Gould (http://www.broadinstitute.org/cancer/software/GENE-E/). The 889 carcinoma cell lines were classified by KRAS mutation status (130 KRAS-mutant and 759 KRAS-WT), and differentially regulated genes were identified using the “Signal to Noise” metric; genes with a FDR < 0.05 were considered statistically significant.

CRISPR/Cas9 + MAPKi drug modifier screen data

The CRISPR/Cas9 drug modifier screens were recently published. Briefly, for each screen, two infection replicates were performed with 30-40% infection efficiency and an average of 500 cells per gRNA after selection. 24 hours after infection, cells were selected in 2 µg/mL puromycin for 6 days and expanded in puromycin-free media for 4 days (PATU8988T) or 7 days (PATU8902, CALU1, HCC364, and NCIH1299). After puromycin selection, for CALU1, HCC364, and H1299, 60 x 10⁶ cells were harvested for the Day 0 time point, and 60 x 10⁶ cells were treated with drug. HCC364 cells were treated with 25 nM trametinib or 6.25 µM vemurafenib; H1299 cells were treated with 1.5 µM trametinib; and CALU1 cells were treated with 50 nM trametinib. For PATU8902, 75 x 10⁶ cells were seeded in T225 flasks in media without drug on Day -1. Cells were allowed to adhere for 24 hours, and 100 nM trametinib was added to the cells on Day 0. For PATU8988T, 40 x 10⁶ cells were seeded in T225 flasks with 10 nM trametinib on Day 0. Cells were passaged in drug or fresh media containing trametinib was added every 3-4 days. Drug-treated cells were harvested 14 days (all cell lines) and 21 days (CALU1, HCC364, H1299, and PATU8902) after initiation of trametinib treatment.

Genomic DNA was extracted using the Qiagen Blood and Cell Culture DNA Maxi Kit according to the manufacturer’s protocol. PCR of gDNA and pDNA (gRNA plasmid pool used to generate virus) was performed as previously described. Sequencing and analysis of genome scale CRISPR-Cas9 knockout screens was performed as
previously described141. The log\textsubscript{2}(fold-change) in gRNA representation between cells treated with trametinib for 14 or 21 days and baseline sample (Day -3 sample for PATU8988T, Day -1 sample for PATU8902, and Day 0 sample for CALU1, HCC364, and NCIH1299) was calculated.

Cell lines and reagents

Cells were maintained in DMEM (BXPC3, HPAC, HPAFII, PATU8902, PATU8988T, RKO, YAPC; Corning) or RPMI-1640 (NCIH1437, PANC0327; Corning) supplemented with 2 mM glutamine, 50 U/mL penicillin, 50 U/mL of streptomycin (Gibco), and 10% fetal bovine serum (Sigma), and incubated at 37°C in 5% CO\textsubscript{2}.

Virus production

293T cells were seeded in 6 cm dishes. 24 hours later, cells were transfected with 100 ng VSVG, 900 ng delta8.9, and 1 \(\mu \)g ORF, shRNA or gRNA plasmid using OptiMEM and Mirus TransIT. Culture supernatants containing lentivirus was harvested 48 – 72 hours after transfection. Virus was pooled and stored at -80°C.

Generation of isogenic cell lines

To generate cell lines stably expressing Cas9, cells were infected with the Cas9 expression vector pXPR_BRD111 and selected with 10 \(\mu \)g/mL blasticidin for 4-7 days. Cas9-expressing cells were maintained in 2-5 \(\mu \)g/mL blasticidin. To generate isogenic cell lines using the CRISPR/Cas9 system, 200,000 Cas9-expressing cells per well were seeded in 6-well plates in 2 mL media with 8 \(\mu \)g/mL polybrene. 100-200 \(\mu \)L virus (gControl, gGFP, gCOG2, or gDOCK5) was added per well and plates were spun for 30 minutes at 2250 rpm at 30°C. 24 hours later, cells were selected with 2 \(\mu \)g/mL puromycin for 2-3 days. Cells were passaged for a minimum of 7 days after infection before use in subsequent experiments. To generate cells that constitutively express a particular shRNA, parental cells were infected as described and selected with 2ug/mL puromycin for 2-3 days; shRNA-expressing cells were used in subsequent experiments 4 days after infection. Lysates were collected 4 days after shRNA expression to assess gene suppression. To generate cells expressing exogenous COG2 or LacZ, 300,000
cells per well were seeded in 6-well plates in 2 mL media with 8 µg/mL polybrene. 1mL virus (COG2-V5 or LacZ-V5) was added per well and plates were spun for 30 minutes at 2250 rpm at 30°C. 24 hours later, cells were selected with 10 µg/mL blasticidin for 4 days. COG2 and LacZ expression was confirmed by immunoblot >7 days after infection.

Crystal violet proliferation assay
Cells were infected with the indicated shRNAs and selected in puromycin for 4 days. Subsequently, cells were seeded in 24-well plates at a density of 10,000-20,000 cells per well. Media was changed every 3 days. 6 hours after seeding (Day 0) and 5-8 days after seeding, cells were fixed with 10% formalin and stained with 0.5% crystal violet in 10% ethanol for 20 minutes. After acquiring images, crystal violet uptake was extracted with 10% acetic acid and quantified by measuring absorbance at 565 nm using a SpectraMax M5 microplate reader (Molecular Devices).

Cell counting assay
Cells were seeded in 10 cm (1 – 2 x 10^6 cells) or 15 cm (1 – 3 x 10^6 cells) plates and treated with drug or DMSO as indicated. Cells were propagated or media was refreshed every 3 – 4 days. Cells were counted at each passage, and number of cell doublings was calculated.

siRNA viability assay
Negative control (D-001810) and DOCK5-targeting (L-018931) SMARTpool siRNA reagent was obtained from Dharmacon. Transfection was performed according to manufacturer’s protocol by combining siRNA (final concentration of 50nM siRNA), Dharmafect, and with 4000 cells (293T, HCT116, or PATU8902) per well in white, opaque-bottom 96-well plates (Costar, for viability assay) or 6-well plates (for qRTPCR and immunoblot analysis). Cells were harvested 2 and days after transfection for qRTPCR and immunoblot analysis, respectively. 2, 4, and 6 days after transfection, cell viability was assessed using CellTiter-Glo (Promega) according to manufacturer’s protocol.
GFP competition assay

50,000 PATU8902-Cas9 cells were seeded in 48 well plates in 25uL media with 4 µg/mL polybreen. 25uL virus (pRosetta-GFP, gGFP, or gDOCK5) was added per well and plates were spun for 2 hours at 2,000 rpm at 30°C. after 6 hours, cells were split into a 10cm dish. 24 hours after infection, cells were selected with 2µg/mL puromycin for 8 days, passaging when necessary. 10 days after infection, GFP-expressing cells were mixed with gRNA-expressing cells in a 1:1 ratio. This cell mixture was analyzed by FACS to determine the baseline proportion of GFP-positive cells. Cells were seeded in 15cm plates (3E6 cells for DMSO-treated plates, 8E6 cells for trametinib-treated plates) in duplicate. Cells were treated with 50nM trametinib or DMSO. DMSO cells were passaged every 3 days. The media of trametinib-treated cells was refreshed after 3 days and passaged after 6 days. Percent GFP-positive cells was assessed via FACS on day 6 and day 12 after seeding.

Quantitative PCR

RNA was isolated using an RNaseasy kit (Qiagen). cDNA was synthesized using Superscript III First-Strand Synthesis Supermix for qRT-PCR (Invitrogen), and analyzed by quantitative PCR (q-PCR) using Power Sybr Green PCR Master Mix (Invitrogen) on a QuantStudio 6 Flex PCR system (Applied Biosystems) according to the manufacturer’s recommendations. Target gene expression was normalized to GAPDH expression, and shown relative to control samples. Primer sequences used for q-PCR:

qRT PCR primer sequences

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>COG2</td>
<td>AAACCTCTGCACTAGAAGCAAG</td>
<td>GCTATACGCGGTCTTACTTTTGTCA</td>
</tr>
<tr>
<td>DOCK5</td>
<td>CCCTCGTACATCTCCAGGAT</td>
<td>ACCAAGAGGCAGAGTACGG</td>
</tr>
<tr>
<td>GAPDH</td>
<td>CCTGTTCGACAGTCAGCGCG</td>
<td>CGACCAATCCGGTTGACTCC</td>
</tr>
<tr>
<td>KRAS</td>
<td>CAGTACAGTGCAATGAGGGAC</td>
<td>CCTGAGCCTGTTTGTGTCTAC</td>
</tr>
</tbody>
</table>

Immunoblots and antibodies

COG2, KRAS, ERK, AKT, β-Actin, and GAPDH immunoblots were performed by separating 10 – 40 µg cell lysate per sample on a 4%-12% Bis-Tris gel (Invitrogen
NuPage) and transferring to nitrocellulose membrane using the iBlot system (Life Technologies). Primary antibodies were obtained from Abcam (COG2 ab167416), Cell Signaling (GAPDH #2118, total ERK #9102, phospho-ERK #4370, total AKT #9272, phosphor-AKT #4060), Proteintech (KRAS 12063-1-AP), Santa Cruz Biotechnology (β-Actin sc-47778), and Sigma Aldrich (KRAS WH0003845M1). Immunoblots were visualized by infrared imaging (LI-COR). Protein quantification was performed according to manufacturer’s recommendation (LI-COR), and expression was normalized to a control gene (GAPDH or β-Actin).

Vectors
LacZ and COG2 in the pLX304 backbone and Cas9 in the pLX311 backbone (pXPR_BRD111) were obtained from the Genetic Perturbation Platform at the Broad Institute. shRNAs in the pLKO.1 backbone and gRNAs in the pXPR_BRD003 backbone were cloned as recommended by the Genetic Perturbation Platform at the Broad Institute. shRNA gRNA sequences are listed below.

<table>
<thead>
<tr>
<th>Vector Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>shControl</td>
<td>ACACTCGAGCAGCTTTTTTGAAAT</td>
</tr>
<tr>
<td>pLKO1_shKRAS-1</td>
<td>CCTATGGTCCTAGTAGGAAAT</td>
</tr>
<tr>
<td>pLKO1_shKRAS-2</td>
<td>GAGGGCTTTCTTTGTATTT</td>
</tr>
<tr>
<td>pLKO1_shKRAS-3</td>
<td>CCTCGTTTCACAGAGAGAAA</td>
</tr>
<tr>
<td>pLKO1_shKRAS-4</td>
<td>CAGTTGAGACCTTCATAGGGAAT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-1</td>
<td>CGAACTCATCAACAAGGATTA</td>
</tr>
<tr>
<td>pLKO1_shCOG2-2</td>
<td>CCATACATAGCAGAGGTGATT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-3</td>
<td>CCTGCTATCACAGCTTTCAAT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-4</td>
<td>CGGAAACAAAGCCTGTGTTT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-5</td>
<td>GCACCTAAATGTACTATGAAAA</td>
</tr>
<tr>
<td>pLKO1_shCOG2-6</td>
<td>GCCTGTTCCTCTACGCTTTGAT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-7</td>
<td>GACTGGAGCTCTACTTAAAGAAT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-8</td>
<td>ATTGAGGCCCTTTATACAGTTAT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-9</td>
<td>AGACGTCTGACGCCTGGGTT</td>
</tr>
<tr>
<td>pLKO1_shCOG2-10</td>
<td>TGGATCAGCTGTGCTTAAAGAAT</td>
</tr>
<tr>
<td>pLKO1_shDOCK5-1</td>
<td>GGGACTGTTACAGCTTAAAGAAT</td>
</tr>
<tr>
<td>pLKO1_shDOCK5-2</td>
<td>GCTGCACCTGCCTTCAGTTCAGA</td>
</tr>
<tr>
<td>pLKO1_shDOCK5-3</td>
<td>GCCACTGCTTCAGTGCCTTTG</td>
</tr>
<tr>
<td>pLKO1_C911-shKRAS-1</td>
<td>CCTATGGTAGGAGTGGAAAT</td>
</tr>
<tr>
<td>pLKO1_C911-shKRAS-2</td>
<td>GAGGGCTTAGATGTGTTAT</td>
</tr>
<tr>
<td>Vector Name</td>
<td>Sequence</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>gControl</td>
<td>ACACTCGAGCACTTTTTGAAT</td>
</tr>
<tr>
<td>gGFP A02</td>
<td>GGCGAGGGCGATGCCACCTA</td>
</tr>
<tr>
<td>gGFP B09</td>
<td>GGTGCCCCATCTGGTGCTGAGC</td>
</tr>
<tr>
<td>gKRAS-1</td>
<td>AACATCAGCAAAGACAAGAC</td>
</tr>
<tr>
<td>gKRAS-2</td>
<td>CAATGAGGGACCAGTACATG</td>
</tr>
<tr>
<td>gKRAS-3</td>
<td>TTTGCTGATGTTCAATAA</td>
</tr>
<tr>
<td>gDOCK5-1</td>
<td>ACTTACCCCTCGTACATCTCC</td>
</tr>
<tr>
<td>gDOCK5-2</td>
<td>CCTCCAAAATAAAATCTAAAA</td>
</tr>
<tr>
<td>gDOCK5-3</td>
<td>CGGTGACACAGTTCACATCC</td>
</tr>
<tr>
<td>gDOCK5-4</td>
<td>GCTCTGACAGGTTGGTACAG</td>
</tr>
<tr>
<td>gDOCK5-5</td>
<td>AACATATATCCATTGTGAAAG</td>
</tr>
<tr>
<td>gDOCK5-6</td>
<td>CCACAGTTGCTCTTTCAA</td>
</tr>
</tbody>
</table>
Tables

Table 1. Frequency of RAS mutations in human cancers.

<table>
<thead>
<tr>
<th>Cancer</th>
<th>KRAS %</th>
<th>NRAS %</th>
<th>HRAS %</th>
<th>RAS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic ductal adenocarcinoma</td>
<td>97.7</td>
<td>0</td>
<td>0</td>
<td>97.7</td>
</tr>
<tr>
<td>Colorectal adenocarcinoma</td>
<td>44.7</td>
<td>7.5</td>
<td>0</td>
<td>52.2</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>22.8</td>
<td>19.9</td>
<td>0</td>
<td>42.6</td>
</tr>
<tr>
<td>Lung adenocarcinoma</td>
<td>30.9</td>
<td>0.9</td>
<td>0.3</td>
<td>32.2</td>
</tr>
<tr>
<td>Skin cutaneous melanoma</td>
<td>0.8</td>
<td>27.6</td>
<td>1</td>
<td>29.1</td>
</tr>
<tr>
<td>Uterine corpus endometrioid carcinoma</td>
<td>21.4</td>
<td>3.6</td>
<td>0.4</td>
<td>24.6</td>
</tr>
<tr>
<td>Uterine carcinosarcoma</td>
<td>12.3</td>
<td>1.8</td>
<td>0</td>
<td>14.3</td>
</tr>
<tr>
<td>Thyroid carcinoma</td>
<td>1</td>
<td>8.5</td>
<td>3.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Acute myeloid leukemia</td>
<td>3.1</td>
<td>6.7</td>
<td>1.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Bladder urothelial carcinoma</td>
<td>3.1</td>
<td>1.4</td>
<td>5.9</td>
<td>10.6</td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td>11.4</td>
<td>0.9</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Cervical adenocarcinoma</td>
<td>8.3</td>
<td>0</td>
<td>0</td>
<td>8.3</td>
</tr>
<tr>
<td>Head and neck squamous cell carcinoma</td>
<td>0.5</td>
<td>0.3</td>
<td>4.7</td>
<td>5.5</td>
</tr>
<tr>
<td>Diffuse large B cell lymphoma</td>
<td>5.2</td>
<td>0</td>
<td>0</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Adapted from Cox et al. (2014)\(^{33}\), where data were compiled from a variety of sources, including but not limited to The Cancer Genome Atlas, the International Cancer Genome Consortium, and cBioPortal\(^{201,202}\).

Table 2. RAS synthetic lethal genes.

<table>
<thead>
<tr>
<th>Synthetic lethal genes or pathways</th>
<th>Library (assay and format)</th>
<th>Cells in primary screen</th>
<th>Drug inhibition</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAN, TPX2, SCD1</td>
<td>~3,700 druggable genes, siRNA, arrayed cell death</td>
<td>NCIH1299 (NRAS(^{G12K}) NSCLC)</td>
<td>Not tested</td>
<td>Morgan Lappe et al. 2007(^{203})</td>
</tr>
<tr>
<td>BIRC5 (survivin), CDK1, RBCK1</td>
<td>~4,000 genes, siRNA, arrayed cell death</td>
<td>Isogenic DLD1 (CRC, KRAS(^{G13D}))</td>
<td>Not tested</td>
<td>Sarthy et al. 2007(^{204})</td>
</tr>
<tr>
<td>PLK1, APC/C, proteosome</td>
<td>Genome scale, shRNA, pooled proliferation screen with microarray readout</td>
<td>Isogenic DLD1 (CRC, KRAS(^{G13D}))</td>
<td>BI-2536</td>
<td>Luo et al. 2009(^{4})</td>
</tr>
<tr>
<td>STK33, AKT3, CPNE1, CAMPK1, MLKL, FLT3LG, and DGKZ</td>
<td>~1,000 druggable genes, shRNA, arrayed proliferation</td>
<td>Pan-cancer cell line panel (4 KRAS-mutant, 4 KRAS-wildtype) and 2 immortalized cell lines</td>
<td>STK33 kinase inhibitor, failed to suppress proliferation in KRAS-mutant cells(^{205-207})</td>
<td>Scholl et al. 2009(^{8})</td>
</tr>
<tr>
<td>TBK1, PSKH2, PTH2, CPNE1, MAP3K8</td>
<td>~1,000 druggable genes, shRNA, arrayed proliferation</td>
<td>Pan-cancer cell line panel (7 KRAS-mutant, 10 KRAS-wildtype) and 2 immortalized cell</td>
<td>CYT387 (TBK1 and JAK inhibitor), assessed in(^{9})</td>
<td>Barbie et al. 2009(^{3})</td>
</tr>
<tr>
<td>Protein</td>
<td>Function/Description</td>
<td>Cell Lines/Methods</td>
<td>Note</td>
<td>Reference</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>WT1, RAC1, PHB2</td>
<td>162 KRAS related genes, shRNA, in vitro and in vivo pooled proliferation screens with bead array readout</td>
<td>LKR10 and LKR13 (Kras;Trp53 mutant mouse lung tumor derived cell lines)</td>
<td>Not tested</td>
<td>Vicent et al. 2010(^3)</td>
</tr>
<tr>
<td>SNAI2 (SNAIL2)</td>
<td>~2,500 druggable genes, shRNA, pooled proliferation with microarray readout</td>
<td>Isogenic HCT116 (CRC, KRAS(^{G^{13D}}))</td>
<td>Not tested</td>
<td>Wang et al. 2010(^6)</td>
</tr>
<tr>
<td>GATA2, CDC6, proteasome</td>
<td>~8,000 druggable genes, siRNA, arrayed apoptosis and cell proliferation</td>
<td>Isogenic HCT116 (KRAS(^{G^{13D}}) and pan-cancer cell line panel (14 KRAS-mutant, 12 KRAS-wildtype)</td>
<td>Bortezomib with fasudil (GATA2)</td>
<td>Kumar et al. 2012(^{14}), Steckel et al. 2012(^{14,7})</td>
</tr>
<tr>
<td>MAP3K7 (TAK1)</td>
<td>17 kinases highly expressed in KRAS-dependent CRC, shRNA, arrayed proliferation</td>
<td>KRAS-dependent SW620 and KRAS-independent SW837 (CRC, KRAS-mutant)</td>
<td>5Z-7-oxozeaenol</td>
<td>Singh et al. 2012(^{20})</td>
</tr>
<tr>
<td>Ctnnb1 (β-catenin), Mllt6</td>
<td>Genome scale, shRNA, arrayed apoptosis with NGS readout</td>
<td>Mouse keratinocytes (Hras(^{G^{12V}}))</td>
<td>Not tested</td>
<td>Beronja et al. 2013(^{20})</td>
</tr>
<tr>
<td>COP1 coatamer</td>
<td>Genome scale, siRNA, arrayed proliferation</td>
<td>17 KRAS- and LKB1-mutant lung cancer cell lines, matched tumor (KRAS-mutant) and normal NSCLC cell line pair</td>
<td>Saliphenylhalamide A</td>
<td>Kim et al. 2013(^{21})</td>
</tr>
<tr>
<td>ARHGEF2 (GEFH1)</td>
<td>Genome scale, shRNA, pooled proliferation with NGS readout</td>
<td>Pan-cancer panel (72 cell lines).</td>
<td>Not tested</td>
<td>Marcotte et al. 2012(^{16}), Cullis et al. 2014(^{21})</td>
</tr>
<tr>
<td>BCL2L1 (BCLXL)</td>
<td>~1,200 druggable genes in presence of MEK inhibitor (selumetinib), shRNA, pooled proliferation with NGS readout, synergistic death with MEK inhibitor</td>
<td>HCT116 and SW620 (CRC, KRAS-mutant)</td>
<td>Selumetinib and navitoclax</td>
<td>Corcoran et al. 2013(^{22})</td>
</tr>
<tr>
<td>CDK1</td>
<td>784 genes, siRNA (Dharmacon SMARTPool), arrayed proliferation</td>
<td>Isogenic LIM1215 (CRC, KRAS-WT)</td>
<td>RO-3306 (CDK1 inhibitor), AZD5438 (CDK1/2 and 9 inhibitor)</td>
<td>Costa-Cabra; et al. 2016(^{21})</td>
</tr>
<tr>
<td>RCE, ICMT, RAF1, SHOC2, PREX1</td>
<td>Genome scale, gRNA, pooled proliferation with NGS readout</td>
<td>12 human AML cell lines (6 RAS-mutant, 6 RAS-WT), BaF3 cells (mouse, NRAS-WT)</td>
<td>FRAX-597 (PAK inhibitor)</td>
<td>Wang et al. 2017(^4)</td>
</tr>
</tbody>
</table>

Abbreviations: NSCLC (non-small cell lung cancer), CRC (colorectal cancer), NGS (next-generation sequencing). Table from Wang 2016\(^{21}\).
Table 3. KRAS-mutant co-dependencies.

<table>
<thead>
<tr>
<th>Gene</th>
<th>FDR</th>
<th>DM</th>
<th>Marcotte et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>< 0.0001</td>
<td>-1.0379</td>
<td>Yes</td>
</tr>
<tr>
<td>COG2</td>
<td>< 0.0001</td>
<td>-0.7876</td>
<td>Yes</td>
</tr>
<tr>
<td>MEST</td>
<td>0.02222</td>
<td>-0.5692</td>
<td>No</td>
</tr>
<tr>
<td>TXNDC8</td>
<td>0.06667</td>
<td>-0.4931</td>
<td>No</td>
</tr>
<tr>
<td>RHOV</td>
<td>0.09333</td>
<td>-0.4898</td>
<td>No</td>
</tr>
<tr>
<td>ABP1</td>
<td>0.1333</td>
<td>-0.4983</td>
<td>No</td>
</tr>
<tr>
<td>RGS2</td>
<td>0.1333</td>
<td>-0.6031</td>
<td>No</td>
</tr>
<tr>
<td>ZBTB48</td>
<td>0.1926</td>
<td>-0.487</td>
<td>No</td>
</tr>
<tr>
<td>FERMT1</td>
<td>0.1926</td>
<td>-0.5555</td>
<td>Yes</td>
</tr>
</tbody>
</table>

FDR- ranked list of genes essential for proliferation/survival of KRAS-mutant cells. Column guide: FDR (false discovery rate q-value); DM (difference in mean gene dependency score between KRAS-mutant and KRAS-WT cell lines, where a negative score reflects preferentially negative effect on proliferation/viability for KRAS-mutant cell lines); Marcotte et al. (identification as a significant candidate in analysis of the independent Marcotte et al. 2012 dataset of 72 cancer cell lines).

Table 4. KRAS classification schemes.

<table>
<thead>
<tr>
<th>Classification criterion</th>
<th>KRAS WT (KRAS-independent)</th>
<th>KRAS mutant (KRAS-dependent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS mutation status and KRAS dependency (shRNA-)</td>
<td>48</td>
<td>23</td>
</tr>
<tr>
<td>KRAS mutation status and KRAS dependency (ATARiS-)</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>KRAS mutation status</td>
<td>96</td>
<td>37</td>
</tr>
</tbody>
</table>

Carcinoma cell lines screened in Project Achilles v2.4 were classified by KRAS mutation status and KRAS dependency status (assessed by shKRAS 509 or KRAS ATARiS score). Numbers refer to the number of cell lines in each classification.
Table 5. Candidate co-dependencies in KRAS-mutant cells

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutation</th>
<th>Mut + shKRAS</th>
<th>Mut + ATARiS</th>
<th>On-target</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COG2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MEST</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TXNDC8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RHOV</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ABP1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RGS2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ZBTB48</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FERMT1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALDH9A1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DOCK5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GPR182</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CELF6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TMX3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KIRREL3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HBG1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOTCH2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NCOR2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RGL1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FLT3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IFI16</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>API5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GTF3A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SCN5A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CD58</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ATP2B4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DHPS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BCL2L1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TASP1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>APOE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PNO1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CDK6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>JUNB</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HIATL1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MED30</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAF1 (CRAF)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CDA</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPS15A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CTNNB1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SCAP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SCAP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EPRS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PRKAG3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ZPLD1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HDAC3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CXCL6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VPS28</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Mut</td>
<td>shKRAS 509</td>
<td>Mut + shKRAS</td>
<td>Mut + ATARiS</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MTOR</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MAPK1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MAP2K1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLK1</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MAP3K7 (TAK1)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WT1</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CDK2</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BCL2</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MYC</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RPS6</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MCL1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Genes that are selectively essential in KRAS-mutant cell lines as determined by two class comparisons in which cell lines were classified by KRAS mutation status (“Mutation”), by KRAS mutation status and KRAS dependency as measured by the shKRAS 509 shRNA (“Mut + shKRAS”), or by KRAS mutation status and KRAS dependency as measured by KRAS ATARiS score (“Mut + ATARiS”). Significant genes (FDR < 0.25) are marked by an ‘X.’ “On-target” indicates that the gene had at least 2 shRNAs that were estimated to have an on-target effect of > 50% by DEMETER. Genes that have been previously identified as co-dependencies in KRAS-mutant cells are shaded in gray.
Figures

Figure 1. The RAS pathway. RTKs are activated by extracellular ligand binding, which induces dimerization and trans-phosphorylation of intracellular tyrosine residues. The adaptor protein GRB2 binds to the phospho-tyrosine site on RTKs and to cytosolic GEFs. RAS proteins are activated by GEFs and inactivated by GAPs. RAS missense mutations, which primarily arise in residues G12, G13, and Q61, impair intrinsic and/or GAP-stimulated GTPase activity. Key RAS effectors include the MAPK, PI3K, and RAL-GEF pathways. Abbreviations: RTK (receptor tyrosine kinase), GEF (guanine nucleotide exchange factor), GAP (GTPase activating protein), PIP3 (phosphatidylinositol 3,4,5-bisphosphate), PIP2 (phosphatidylinositol 4,5-bisphosphate). Figure from Wang (2016)\(^{213}\).
Figure 2. Strategies to target mutant RAS. Major pharmacologic approaches to inhibit oncogenic RAS include inhibiting upstream RAS activators, such as RTKs; directly targeting RAS at its GTP-binding pocket or interfering with the RAS–SOS or RAS–RAF interaction; preventing RAS membrane localization of by inhibiting RAS prenylation with FTIs (farnesyltransferase inhibitors) or GGTIs (geranyl geranyltransferase inhibitors), or by inhibiting PDEδ (phosphodiesterase δ); inhibiting downstream RAS effectors using RAF, MEK, ERK, or PI3K pathway inhibitors; and inhibiting RAS synthetic lethal interactors. Figure from Wang (2016)²¹³.
Figure 3. Synthetic lethality in cancer. (A) The loss or inhibition of gene A or gene B alone or the overexpression of gene A have no effect on viability. However, mutation (B) or pharmacologic inhibition of the protein product of gene B in cells that harbor a mutation (B, C) or overexpression (D) of gene A results in synthetic lethality. Star indicates mutation, red cross indicates pharmacologic inhibition, and thick arrow indicates overexpression. Figure adapted from O’Neil et al. (2017)115.
Figure 4. Experimental approaches to synthetic lethality screens in cancer cell lines. (A) Human synthetic lethality screens most commonly use either pairs of matched isogenic cell lines derived from the same parental cell line which differ only in the gene of interest (Ai) or a panel of genetically diverse cell lines that are split into two groups depending on the mutation status of the gene of interest (Aii). (B) In arrayed format screens, cells are seeded in 96-, 384-, or 1536-well plates. Each well is transfected with an individual siRNA or infected with an individual shRNA or gRNA. After a period of time, the number of cell in each well is quantified, and genes that are specifically essential in KRAS-mutant cells can be identified. (C) In pooled format screens, cells are infected with a pooled lentivirus shRNA or gRNA library, and a baseline sample of gDNA is obtained. Cells populations are grown and next-generation sequencing technologies are used to identify sequences that are underrepresented specifically in the cell lines that harbor the mutant gene of interest. Genes targeted by multiple shRNAs or gRNAs in this subset are candidate synthetic lethal (SL) interactions for the mutant gene of interest. Figure adapted from O’Neil et al. (2017).
Figure 5. **Drug-conditional synthetic lethal interactions.** Synthetic lethal interactions may be dependent on specific conditions such as the presence of a chemical inhibitor. (A) In normal cells or cancer cells with a mutation in gene 1, the loss of gene 2 or pharmacologic inhibition gene 2 has no effect on viability. However, when gene 3 is inhibited pharmacologically, mutation or pharmacologic inhibition of gene 2 does not affect viability in normal cells (B), but is synthetic lethal to cells with mutant gene 1 (C). Star indicates mutation, red cross indicates pharmacologic inhibition of protein product or genetic knockout.
Infect cells with pooled shRNA plasmid library packaged in virus

16 cell doublings

Harvest gDNA, PCR amplify barcode regions, NGS

Baseline reference

Endpoint

Compare to baseline to calculate fold-change of shRNA abundance at endpoint

Convert shRNA-level data into gene-level dependency scores (ATARiS)

Genetic Dependencies

Classify cell lines by KRAS mutation status and perform two-class comparison to generate ranked list of genes essential for the survival and/or proliferation of KRASmut cells

Co-Dependencies of Oncogenic KRAS

Figure 6. Project Achilles overview and analysis. Genome scale negative selection screens to identify synthetic lethal interactions with oncogenic KRAS. In Project Achilles, cells are infected with a pooled genome-scale shRNA library, selected, and propagated for 16 doublings. shRNA abundance at the endpoint relative to the baseline reference is assessed by massively parallel sequencing. Depleted shRNAs target genes whose suppression impairs cell proliferation/survival. For Project Achilles, shRNA-level data can be analyzed directly or converted to gene-level dependency scores using the ATARiS method139. Cell lines are classified by KRAS mutation status or KRAS dependency, and a two-class comparison is performed using PARIS (Probability Analysis by Ranked Information Score), a mutual information-based algorithm12, to identify genes that are selectively essential for the survival of KRAS-mutant cells. Significance (FDR q-value) is determined by permuting class labels.
Figure 7. KRAS mutation status does not always predict KRAS dependency. The KRAS dependency of the cell lines screened in Project Achilles v2.4 was quantified by their KRAS ATARiS score\(^{139}\), a value that reflects the aggregate effects of the 10 KRAS shRNAs in the screening library. Negative ATARiS scores indicate greater gene dependency.

Figure 8. KRAS classifications for two-class comparisons. KRAS mutation status and KRAS dependency do not correlate perfectly. Hence, cell lines were classified by using 3 separate metrics: (1) KRAS mutation status and sensitivity to KRAS-depletion as measured by the KRAS ATARiS score\(^{139}\), a value that reflects the aggregate effects of 10 KRAS shRNAs screened in Project Achilles; (2) KRAS mutation and sensitivity to KRAS-depletion by shKRAS 509, a KRAS-targeting shRNA that effectively depletes KRAS expression at a protein level\(^3\); or (3) only KRAS mutation status. Each bar represents an individual cell line screened in Project Achilles v2.4.
Figure 9. **COG2 shRNAs reduce COG2 expression.** RKO (KRAS-WT, colon) cells were infected with the indicated shRNAs and selected. COG2 expression was assessed by qRT-PCR (A) and immunoblot (B) 6 days post infection. 4 technical replicates representative of 2 independent experiments, data represented as mean ± SEM.

Figure 10. **COG2 shRNAs decrease proliferation viability in both KRAS-WT and KRAS-mutant cells.** Crystal violet cell proliferation assay to determine the effect of COG2 depletion on cell proliferation/viability. 4 technical replicates, data represented as mean ± SEM.
Figure 11. Exogenous COG2 expression does not rescue shRNA-mediated COG2 depletion. (A) Immunoblot analysis of COG2 expression in cell lines expressing COG2-specific shRNAs and/or exogenous COG2-V5 cDNA. (B) Cell proliferation assay to whether exogenous COG2-V5 overexpression could rescue viability upon shCOG2-mediated suppression of endogenous COG2 expression in HPAC (KRAS^{G12D}) cells. 4 technical replicates representative of 2 independent experiments, data represented as mean ± SEM.
Figure 12. Additional COG2-targeting shRNAs do not selectively decrease proliferation/viability in KRAS-mutant cells. (A) Immunoblot analysis of COG2 expression. Bold: COG2-targeting shRNAs that were not included in the Project Achilles shRNA screen. *COG2-targeting shRNAs that distinguished between KRAS-WT and KRAS-mutant cell lines in the Project Achilles screens. (B) Cell proliferation assay to determine effect of COG2 depletion on cell proliferation/viability. Checkered bars: COG2-targeting shRNAs that were not included in the Project Achilles shRNA screen. Light blue bars: COG2-targeting shRNAs that distinguished between KRAS-WT and KRAS-mutant cell lines in the Project Achilles screens. 4 technical replicates, data represented as mean ± SEM.
Figure 13. COG2 is not a specific co-dependency of KRAS-mutant cell lines. (A) Design of C911 seed-control shRNAs, in which the three nucleotides at position 9 to 11 of the shRNA target sequence (black) are converted to their reverse complement (yellow)167. (B) Cell proliferation assay to determine seed effects of shRNAs targeting COG2 and KRAS using C911 seed control shRNAs. 4 technical replicates, data represented as mean ± SEM. (C) Immunoblot analysis of KRAS and COG2 depletion.
Figure 14. CRISPR/Cas9-mediated COG2 knockout does not affect viability in KRAS-mutant cells. (A) Immunoblot analysis of COG2 and KRAS expression in NCIH1437-Cas9 and YAPC-Cas9 cells expressing the indicated gRNAs. Cells were infected with gRNA constructs and selected. Lysates were harvested 7 days post infection. (B) Crystal violet proliferation assay to determine effect of COG2 and KRAS knockout on cell viability. 4 technical replicates representative of 2 independent experiments, data represented as mean ± SEM.
Figure 15. Approaches to prioritize candidate co-dependencies of oncogenic KRAS identified by analyzing Project Achilles shRNA data. (A) Prioritize genes whose expression is upregulated in KRAS-mutant cell lines. (B) Select genes that are also found to be selectively essential in KRAS-mutant cells in Project Achilles CRISPR-Cas9 data. (C) Filter for genes for which at least two shRNAs have >50% on-target effect as assessed by DEMETER.

(A) Project Achilles (shRNA) Overexpressed in KRASmut
- ABP1
- BCL2L1
- CXCL6
- DOCK5
- FERMT1
- NCOR2

(B) Project Achilles (shRNA)
- ATP2B4
- DOCK5
- KRAS
- RAF1 (CRAF)

(C) On-target shRNAs (DEMETER)
- APOE
- BCL2L1
- CDK2
- EPRS
- GTF3A
- HIATL1
- KRAS
- MED30
- MTOR
- MYC
- PIK3CA
- RPS15A
- SCAP
- VPS28
Figure 16. DOCK5 expression is upregulated in KRAS-mutant cell lines. In RNA-sequencing data of cell lines in the Cancer Cell Line Encyclopedia164, DOCK5 is significantly more highly expressed in the 130 KRAS-mutant compared to 769 KRAS-WT carcinoma cell lines (t-test, p < 0.001).

Figure 17. shRNAs targeting DOCK5 also reduce KRAS expression. (A) Effect of DOCK5 suppression on cell viability. Cells were infected with the indicated shRNAs, selected, and seeded in 96-well plates in quadruplicate 4 days post infection. Cell viability was measured by CellTiter-Glo 9 days post infection (5 days post seeding) and normalized to the number of cells seeded. Two representative cell lines are depicted. 4 technical replicates, data represented as mean ± SEM. (B) Effect of the indicated shRNAs on DOCK5 and KRAS expression (qRT-PCR) in NCIH1437 (KRAS-WT) cells. 4 technical replicates, data represented as mean ± SEM.
Figure 18. DOCK5 shRNAs decrease KRAS expression via off-target effects. qRT-PCR evaluation of DOCK5 (A) and KRAS (B) expression in HCT116 (KRAS-mutant, colon) cells expressing the indicated shRNAs. C911 indicates seed-control shRNAs, in which the three nucleotides at position 9 to 11 of the shRNA target sequence are converted to their reverse complement, which abrogates ‘on-target’ depletion of target mRNA while preserving ‘off-target’ seed effects. 4 technical replicates, data represented as mean ± SEM. (C) Immunoblot analysis of KRAS expression in HCT116 cells expressing the indicated shRNAs. (D) Effect of DOCK5 suppression on cell viability. Cells were infected with the indicated shRNAs, selected, and seeded in 96-well plates in quadruplicate 4 days post infection. Cell viability was measured by CellTiter-Glo 10 days post infection (6 days post seeding) and normalized to the number of cells seeded. 3 technical replicates, data represented as mean ± SEM.
Figure 19. siRNA-mediated DOCK5 depletion does not affect KRAS expression or viability. HCT116 (KRAS-mutant, colon) cells were transfected with Dharmacon SMARTpool control (siNonTargeting) or DOCK5-targeting siRNAs. After 48 hours, expression of DOCK5 (A) and KRAS (B) was determined by qRT-PCR. KRAS expression was also assessed by immunoblot (C). (D) Cell viability was measured by CellTiter-Glo 6 days post transfection. 3 technical replicates, data represented as mean ± SEM.
Figure 20. CRISPR-mediated DOCK5 knockout does not affect KRAS expression or cell viability. PATU8902-Cas9 cells were infected with the indicated gRNAs and selected. 8 days post gRNA infection, expression of DOCK5 (A) and KRAS (B) were assessed using q-RTPCR. 4 technical replicates representative of 2 independent experiments, data represented as mean ± SEM. (C) Effect of DOCK5 knockout on KRAS expression and MAPK pathway activity was evaluated by immunoblot. (D) Effect of DOCK5 knockout on cell viability was assessed using a crystal violet assay. Cells were seeded in 6 well plates 8 days post gRNA infection. Cells were fixed and stained with crystal violet 8 days post seeding (DPS). 4 technical replicates representative of 2 independent experiments, data represented as mean ± SEM. (E) Cell counting assay to determine the effect of DOCK5 knockout on cell proliferation. Cells were seeded in 10cm plates 20 days post gRNA infection. Cells were counted and passaged every 3-4 days. 2 technical replicates representative of 2 independent experiments, data represented as mean ± SEM.
Figure 21. **DOCK5 modulates sensitivity to MAPK pathway inhibition.** (A) Outline of strategy for pooled genome-scale CRISPR-Cas9 screens in RAS- or BRAF-mutant cancer cell lines treated with MAPK pathway inhibitors. (Bi) Distribution of log₂ fold-change in gRNA representation on day 14 versus day 0 of PATU8902 cells treated with 100nM trametinib. Average of two biological replicates. Gray lines indicate the average log₂ fold-change (solid) or 4 SD above average log₂ fold-change (dashed) of all screened gRNAs. gRNAs targeting DOCK5 (red), RAC1(orange), and KRAS (green).
are indicated. log$_2$ fold-change of top 15 most enriched gRNAs are indicated in (Bii). (Ci) Schematic of DOCK5 structure. At baseline, the N-terminal SH3 domain of DOCK5 interacts with its C-terminal DHR2 domain, autoinhibiting GEF activity. Interaction between SH3 domain and ELMO1 abrogates autoinhibition. DHR1 domain mediates interactions with lipids (PIP3). DHR2 interacts with RAC1 and promotes the exchange of GDP for GTP. (Cii) DOCK5-targeting gRNAs that became strongly enriched in PATU8902 cells treated with the MEK inhibitor trametinib target the DOCK5 N-terminal SH3 domain (red). DOCK5-targeting gRNAs that did not become enriched in the PATU8902 screen (purple) or in other screens of RAS-mutant cells treated with MAPK pathway inhibitors (gray) target regions downstream of the SH3 domain.
Figure 22. DOCK5 knockout sensitizes cells to MAPK pathway inhibition. (A) gRNAs targeting DOCK5, RAC1, and KRAS are depleted in the majority genome-scale CRISPR-Cas9 screens. Average log_{2}(fold change) of the 3 most depleted gRNAs targeting DOCK5 (blue), RAC1 (red), or KRAS (green) on Day 14 of the indicated genome-scale CRISPR-Cas9 screen. Gray bars indicate the average log_{2}(fold change) of all gRNAs in the screen. TRAM = trametinib (MEK inhibitor). VEM = vemurafenib (BRAF inhibitor). 2 biological replicates, data represented as mean ± SEM. (B) Competition assay demonstrates that DOCK5-knockout cells have reduced viability/proliferation compared to parental DOCK5-WT cells. PATU8902 (KRAS-mutant, pancreas) cells expressing GFP were mixed with unlabeled PATU8902-Cas9 cells expressing the indicated gRNA in a 1:1 ratio. Change in percentage GFP-expressing cells was assessed after 6 days. 2 technical replicates representative of 2 independent experiments, data represented as mean ± SEM.
Figure 23. **DOCK5 deletion reduces p-AKT.** Immunoblot analysis of expression of the indicated proteins in PATU8902 cells (KRAS-mutant, pancreas) treated with DMSO (control) or 50nm Trametinib (MEK inhibitor) for 24 hours.

Figure 24. **Signal convergence downstream of RAS and DOCK5.** Proposed model in which oncogenic RAS and DOCK5-RAC1 converge to activate the PI3K pathway, which promotes cell proliferation and viability. Reduced DOCK5 activity may increase sensitivity to MAPK inhibition in RAS-mutant cells by reducing PI3K pathway activity.
References

58. Eberhard, D. A. et al. Mutations in the Epidermal Growth Factor Receptor and in KRAS Are Predictive and Prognostic Indicators in Patients With Non–Small-Cell Lung Cancer Treated With Chemotherapy Alone and in Combination With Erlotinib. jco.ascopubs.org

73. Sacco, E. et al. Binding properties and biological characterization of new sugar-

82. Lerner, E. C. *et al.* Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesytransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. *Oncogene* **15**, 1283–1288 (1997).

doi:10.1093/annonc/mdv072
128. Zhou, Y. *et al.* High-throughput screening of a CRISPR/Cas9 library for

159. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. *Oncogene* 483, 100–103 (2012).

