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SUMMARY

Precision oncology uses genomic evidence to match patients with treatment but often fails to 

identify all patients who may respond. The transcriptome of these “hidden responders” may reveal 

responsive molecular states. We describe and evaluate a machine-learning approach to classify 

aberrant pathway activity in tumors, which may aid in hidden responder identification. The 

algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across 

The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in 

tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and 

identifies phenocopying variants. The model, trained on human tumors, can predict response to 

MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in 

the Ras pathway confer increased Ras activity. The transcriptome is underused in precision 

oncology and, combined with machine learning, can aid in the identification of hidden responders.

In Brief

Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation 

in cancer. Integrating mutation, copy number, and expression data, the authors show that their 

method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines.
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INTRODUCTION

Precision oncology matches cancer patients to specific therapies based on genomic evidence, 

but it has benefited only a relatively low proportion of cancer patients to date (Prasad et al., 

2016). While clinically promising, precision oncology lacks complete and accurate matching 

strategies and fails to identify many patients that could be matched using alternative 

approaches (Kumar-Sinha and Chinnaiyan, 2018). Cataloging transcriptome measurements 

across thousands of tumors enables a systems-biology perspective into the downstream 

consequences of molecular perturbation. Detecting these perturbations using transcriptomic 

states can improve precision oncology efforts toward more accurate and complete pairing of 

patients to effective treatments (Cieślik and Chinnaiyan, 2018).

In the largest uniformly processed cancer dataset to date, The Cancer Genome Atlas 

(TCGA) PanCancerAtlas has released multi-platform genomic measurements across 

thousands of tumors from 33 different cancer types (Weinstein et al., 2013). With this scale 

of data, researchers can build and evaluate statistical models that stratify tumors based on 

aberrant gene and pathway function. Previously, strategies have been explored using 

expression signatures to stratify patients (Bild et al., 2006). Some strategies have used data 

from individual cancer types. For example, gene expression signatures in colon 

adenocarcinoma (COAD) and glioblastoma (GBM) stratified tumors with aberrant KRAS 
and NF1 function, respectively (Guinney et al., 2014; Way et al., 2017). Furthermore, data 

integration approaches incorporating pathway connectivity, including PARADIGM, are used 

to characterize pathway activity and infer gain- or loss-of-function events (Vaske et al., 

2010; Ng et al., 2012; Sokolov et al., 2016). An unsupervised approach decomposing gene 

expression states in cell lines to map pathway activity has been proposed (Kim et al., 2017). 

Here, we introduce an elastic net penalized logistic regression classifier to learn signatures 

of gene or pathway alterations from gene expression assays of tumor biopsies across cancer 

types. We applied our method across cancer types to learn an independent, pan-cancer 

signature of pathway aberration. Our method can be used to identify phenocopying variants 

and requires only gene expression data for inference on new data. We apply our method to 

detect Ras pathway activation pan-cancer.

The Ras pathway is frequently altered in many different cancer types (De Luca et al., 2012). 

When the pathway is activated, often by gain-of-function KRAS, NRAS, or HRAS 
mutations or through NF1 loss-of-function events, cells increase their translational output, 

and unchecked cellular proliferation occurs (McCormick, 1989; Xu et al., 1990). Certain 

cancer types, such as pancreatic adenocarcinoma (PAAD), skin cutaneous melanoma 

(SKCM), thyroid carcinoma (THCA), lung adenocarcinoma (LUAD), and COAD are known 

to be largely driven by mutations in Ras pathway genes (Goretzki et al., 1992; Omholt et al., 

2003; Pao et al., 2005; di Magliano and Logsdon, 2013). Additionally, mutations in the Ras 

pathway have been observed to be early events driving tumorigenesis and have also been 

associated with poor survival and treatment resistance (Garcia-Rostan et al., 2003; Vauthey 

et al., 2013; Dinu et al., 2014; Hsu et al., 2016). Because the Ras pathway is ubiquitously 

misregulated, developing specific therapeutic targets is one of the National Cancer Institute’s 

key initiatives. However, Ras is also notoriously difficult to therapeutically target, and 

accurate detection of its malfunction is paramount (Stephen et al., 2014).

Way et al. Page 3

Cell Rep. Author manuscript; available in PMC 2018 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The most direct method of assessing Ras activation is by targeted sequencing of Ras. 

However, these methods would fail to detect unknown variants in other genes that 

phenocopy Ras-activating mutations. Detecting such tumors may enable more patients to be 

targeted therapeutically. In the present study, we describe our machine-learning approach 

that integrates bulk RNA sequencing (RNA-seq), copy number, and mutation data from the 

PanCanAtlas. We apply the method to Ras genes and demonstrate that our method can 

detect Ras activation pan-cancer. The classifier also identifies NF1 phenocopying events in 

TCGA and prioritizes Ras wild-type cell lines that respond to MEK inhibitors. Manually 

curated oncogenic variants in Ras pathway genes were assigned higher classification scores 

than variants with unknown significance. Our method can be applied to other cancer-

associated genes and pathways as well. For example, the DNA Damage Repair PanCanAtlas 

analysis working group (AWG) applied this approach to detecting TP53 inactivation 

(Knijnenburg et al., 2018).

RESULTS

Machine-Learning Models to Predict Pathway Activity

We developed a machine-learning approach to detect aberrant pathway activity in tumors. 

The method integrated RNA-seq, copy number, and mutation data. The models were trained 

using tumors from TCGA PanCanAtlas, with a complete set of these measurements, which 

included 9,075 tumors across 33 different cancer types. The method is based on a logistic 

regression classifier framework regularized with an elastic net penalty. We used RNA-seq as 

a measurement describing the expression state of a tumor and trained the classifier to detect 

downstream gene expression patterns consistent with aberrant pathway activity (Figure 1A). 

The algorithm learned a combination of gene importance scores, or weights (w), that 

together learn to best separate aberrant from wild-type expression patterns. As input during 

training, tumors with any non-silent somatic variants in target genes were included in the 

positive set (Figure 1B). We also included copy number gains for oncogenes and deep copy 

number loss for tumor suppressor genes (Figure 1B). For complete details about the model 

and training approach, refer to the STAR Methods. In principle, this approach could be 

applied to predict other gene or pathway events. Here, we applied the method to classifying 

Ras activity.

Detecting Ras Activation Pan-cancer

We trained a classifier to detect aberrant Ras activity in tumors, using knowledge of KRAS, 

HRAS, and NRAS mutations and copy number gains (see Figure 1). These 3 core Ras genes 

differed greatly in variant prevalence across cancer types. In the PanCanAtlas, KRAS 
mutations were widespread in PAAD (72%), COAD (45%), rectum adenocarcinoma 

(READ, 42%), and LUAD (31%), while NRAS mutations were common in SKCM (31%) 

(Figure S1A). We performed a differential expression analysis of PanCanAtlas tumors, 

controlled for cancer type, comparing wild-type against aberrant Ras tumors (Figure S1B; 

Data S1).

In the classifier, to enforce a more balanced class representation and to reduce performance 

metric inflation (Davis and Goadrich, 2006), we used samples from 16 of 33 cancer types 
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for training (Figure 2A). We also used the top 8,000 most variably expressed genes by 

median absolute deviation (MAD) (see STAR Methods for details). We then randomly held 

out 10% of the samples (n = 476) to create a test set. The test set was selected to have the 

same proportion of cancer types and Ras statuses as the training set. The training set 

consisted of the remaining 90% (n = 4,283), which included 3,374 Ras wild-type tumors and 

909 tumors with non-silent somatic Ras variants. Within the training set, we performed 5-

fold cross-validation (CV). We report training (“training”), cross-validation (“CV”), and 

held-out test set (“testing”) performance using these cancer types. We also evaluated the 

final classifier on cancer types that were initially filtered from training.

Overall, the classifier showed high performance, with an area under the receiver operating 

characteristic (AUROC) curve above 84% and an area under the precision recall (AUPR) 

curve above 63% in the cross-validation and testing sets (Figure 2B). For the samples 

initially filtered from training, we also observed reasonable performance, with an AUROC 

curve of 75.2% and an AUPR curve of 24.7%. Therefore, the classifier detected Ras 

activation signal in tissues it was not exposed to during training. Applying the final classifier 

to all 9,075 samples, we observed an 86.7% AUROC curve and a 61.2% AUPR curve. We 

provide Ras prediction scores for each PanCancerAtlas sample in Data S2.

The Ras classifier consisted of automatically learned gene weights, or importance scores. 

Training with an elastic net penalty resulted in a sparse classifier, with only 185 genes 

contributing to classification. Genes and covariates with weights above zero can be 

interpreted as being upregulated in tumors with activated Ras, while negative-weight genes 

are characteristic of tumors with wild-type Ras (Figure 2C). The full classifier gene weights 

are provided in Data S3. However, caution must be exercised in interpreting these 

coefficients, as our elastic net regularization approach induces sparsity, which means that the 

solution represents a subset of genes associated with—and, therefore, useful for identifying

—Ras activation. A differential expression analysis of Ras aberrant to wild-type tumors 

would reveal these downstream genes (Data S1).

Nevertheless, many of the classifier-implicated genes are known modulators of the Ras/

MAPK (mitogen-activated protein kinase) pathway. For instance, high expression of 

ERRFI1 contributed to predicting tumors with activated Ras. ERRFI1 is a tumor suppressor 

of various receptors in the Ras pathway (Masoumi-Moghaddam et al., 2014). The top 

positive gene, PBX3, is a transcription factor previously implicated in certain astrocytomas 

(Ho et al., 2013b). The second top positive gene, SPRY2, inhibits FGFR signaling and 

interacts with ERBB1. The negatively associated genes are indicative of expression profiles 

of wild-type Ras tumors. For example, CDK13 was the most predictive gene and is involved 

in regulating transcription, which potentially indicates an alternative mechanism driving 

transcriptional disruption in wild-type Ras tumors. We also compared pan-cancer 

classification with classifiers trained independently within each cancer type. Both the 

cancer-type-specific and pan-cancer classifiers had variable performance across cancer 

types, with the pan-cancer model outperforming the models optimized within cancer types 

approximately half of the time (Figure 2D).
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Ras Classifier Benchmarking Analyses

We performed several analyses to evaluate the robustness of the Ras classifier. A null model 

trained on a randomly shuffled gene expression matrix performed with about 50% AUROC 

and 20% AUPR in holdout test and cross-validation sets, which indicates strong 

performance of the model over this baseline (Figures S2A and S2B). We also assessed 

performance of the classifier for detecting Ras mutations and Ras copy number gains 

separately. Performance was similar, with the mutations-only model performing better than 

the combined model and the copy-number-only model performing worst (Figure S2C). Our 

model was robust to dropping KRAS, NRAS, and HRAS and 11 other Rasopathy genes 

from the gene expression matrix (Figure S2D). Lastly, performance was not impacted by 

covariate information (Figure S2E).

We also explored gene coefficient relationships across models. The high-weight-positive 

genes in the copy-only model included C12orf11 (ASUN), MRPS35, ERGIC2, and CMAS, 

all of which are located on chromosome 12p near KRAS, which may indicate artifacts of 

common copy-gain events and be a result of low sample size in the positive-copy-only set 

(Figure S2F). Gene coefficients were similar across models when dropping different Ras 

pathway genes (Figure S2G). Lastly, we compared our machine-learning approach to a 

differential expression analysis of Ras mutant versus wild-type tumors controlled by cancer 

type. The differential expression scores aligned closely with the learned Ras classifier 

coefficients but identified many more genes than the sparse classifier (Figure S2H) (Data 

S1). In summary, the Ras classifier differed depending on data-type inclusion but was robust 

to input genes in the expression matrix, did not rely on covariate data, and included similar 

but fewer genes than a differential expression analysis.

Detecting Ras Activation in Cell Lines

We sought to determine whether predictions from the Ras classifier trained with TCGA 

tumors generalized to cell lines. We applied the classifier to two cell-line datasets. First, we 

applied the classifier to 10 small-airway epithelial cell RNA-seq profiles (GEO: GSE94937) 

(Kim et al., 2017). The set consisted of 4 wild-type profiles and 6 KRAS G12V-expressing 

mutant profiles. Our classifier correctly classified 9 out of 10 profiles and ranked all mutant 

profiles higher than all wild-type profiles (p = 1.16e–2) (Figure 3A). Though the 

PanCanAtlas data do not include gene-edited tumors that would allow us to directly evaluate 

Ras oncogenicity, the cell lines from this independent test set are induced to stably express a 

bona fide oncogenic KRAS variant.

Next, we applied our Ras classifier to RNA-seq profiles from 737 different cell lines from 

the Cancer Cell Line Encyclopedia (CCLE) with matched expression and mutation data 

(Barretina et al., 2012) (Figure 3B). The Ras classifier assigned significantly higher scores to 

Ras mutated (KRAS, HRAS, or NRAS) from Ras wild-type cell lines (p = 6.35e–36). Of the 

393 cell lines predicted to be wild-type, 357 were labeled wild-type (negative predictive 

value = 90.8%). However, only 153 of 344 cell lines that were predicted to be Ras mutated 

were labeled Ras mutant (precision = 44.5%). In total, 510 of 737 (69.2%) cell lines were 

predicted correctly. In this case, the low precision could indicate either that the classifier 
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failed to generalize or that the classifier successfully identified phenocopying events, which 

were negatives from the point of view of evaluations but also what we aimed to capture.

We sought to differentiate between these two possibilities by using independent information 

that was not provided to the classifier. First, we examined mutation status for BRAF, a well-

characterized oncogene downstream of Ras genes (Davies et al., 2002). BRAF mutations 

that phenocopy Ras would be counted as negatives and, if they were highly ranked, would 

reduce the observed precision. Indeed, the classifier assigned significantly higher scores to 

BRAF mutant cell lines, compared to BRAF wild-type cell lines (p = 1.16e–11) (Figure 3B). 

Of all 191 false-positives, 56 had BRAF mutations (29.3%). The remaining false-positives 

indicated either tumors incorrectly assigned or tumors that harbored other phenocopying 

variants. Next, we tested CCLE pharmacological response data to determine whether Ras 

classifier scores were predictive of sensitivity to MEK inhibitors. We observed a strong 

correlation of the Ras classifier scores with sensitivity to two MEK inhibitors, selumetinib 

(AZD6244) and PD-0325901 (Figures 3C and 3D). The correlation was primarily driven by 

cell lines that were wild-type for Ras genes, implicating several drug-sensitive cell lines that 

may have otherwise been missed by direct sequencing of Ras genes. Taken together, the 

evaluation of additional mutations and the drug response data for Ras wild-type cell lines 

strongly suggested that the low precision in this case was related to the identification of 

phenocopying events.

Lastly, the classifier scored 34 cell lines harboring Ras mutations as Ras wild-type. We 

observed that 22 of these 34 false-negatives harbored variants annotated in the COSMIC 

database (64%) (Forbes et al., 2017). Conversely, 144 of 152 true-positives harbored 

COSMIC variants (95%), which is significantly higher than the proportion in false-

negatives, χ2 = 26.1, degree of freedom 1, p = 3.2e–7. Therefore, our classifier detected 

signal at variant level resolution. We provide mean classifier scores for all nucleotide (Data 

S4) and amino-acid (Data S5) Ras variants observed in the CCLE.

Other Ras Pathway Variants Phenocopy Ras Activation

The Ras classifier was able to detect NF1-loss events particularly well in CNS tumors 

(GBM, low-grade glioma [LGG], and pheochromocytoma and paraganglioma [PCPG]). 

Performance was comparable to that of NF1 classifiers built using cancer-type-specific and 

pan-cancer models (Figure 4A). These tumors were not included in training the Ras 

classifier. Detection of NF1-inactivating events was also improved in COAD, OV, and 

uterine corpus endometrial carcinoma (UCEC), as compared to NF1-specific classifiers 

(Figure 4A). The Ras classifier’s performance predicting NF1 loss of function was 

comparable to that of distinct pan-cancer models trained specifically to detect NF1 loss-of-

function events (Figure S3).

We applied the Ras classifier to curated variants in 38 core Ras pathway genes, which 

consisted of 34 oncogenes and 4 tumor-suppressor genes (Chakravarty et al., 2017; Sanchez-

Vega et al., 2018). We provide Ras classifier scores for all Ras pathway mutations detected 

in PanCanAtlas tumors (Data S4 and Data S5). We observed an enrichment of high scores in 

tumors with oncogenic variants in KRAS, NRAS, and HRAS (Figure 4B). Scores for 

oncogenic BRAF variants were also enriched (Figure S4A). However, we noted that BRAF 
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V600E mutations in THCA were overwhelmingly predicted to be Ras wild-type (Figure 

S4B). We trained a classifier for which we removed both of the BRAF-dominated cancer 

types (THCA and SKCM) (Figure S4C). In this model, we observed that THCA BRAF 
V600E mutations were predicted to have Ras activation, which aligns with previous 

understanding of BRAF function and our cell-line analysis (Figure S4D).

Lastly, in wild-type samples for KRAS, NRAS, and HRAS (Figure 4C, blue bars), we 

observed that Ras classifier scores increased after subsequent mutations in other pathway 

genes. In samples with a KRAS, NRAS, or HRAS mutation (Figure 4C, red bars), classifier 

scores did not increase after additional mutations to other genes in the pathway. However, 

more copy number events in other Ras pathway genes led to lower Ras classifier scores in 

Ras mutated samples (Figure 4D). These results potentially suggest that multiple hits in Ras 

pathway genes outside of Ras genes themselves may confer an increased Ras activation 

phenotype.

DISCUSSION

We described a machine-learning method to detect malfunctioning genes and pathways in 

cancer and applied our method to detecting Ras activation. The method has variable 

performance across cancer types but is generally sensitive and specific overall, is 

generalizable to cell-line data, largely aligns with curated variant oncogenicity, and identifies 

phenocopying events leading to activated Ras. The approach can be applied generally to 

other genes and pathways.

The cell-line evaluation included accurately detecting isogenic lines transfected to express 

activating KRAS mutations and identifying CCLE cell lines with known Ras and BRAF 
mutations. We also demonstrated that CCLE Ras classifier scores were correlated with the 

drug activity of two MEK inhibitors (selumetinib and PD-0325901). In clinical trials, 

selumetinib did not increase overall survival in KRAS mutant advanced non-small-cell lung 

cancer (NSCLC) patients (Jänne et al., 2013, 2016). PD-0325901 also failed to meet efficacy 

endpoints in KRAS mutant NSCLC patients (Haura et al., 2010). Selumetinib and 

PD-0325901 have also been tested across many different cancer types, including ovarian, 

thyroid, skin, hepatocellular, breast, and colon cancers (Boasberg et al., 2011; Farley et al., 

2013; Ho et al., 2013a; Jänne et al., 2016; O’Neil et al., 2011). Selumetinib has shown 

promising results in treating children with NF1 mutant plexiform neurofibromas (Dombi et 

al., 2016), while PD-0325901 has shown efficacy in treating NF1 mutant neurofibromas in 

mouse- and human-derived malignant peripheral nerve sheath xenografts (Jessen et al., 

2013). Furthermore, the classifier automatically learns similar gene coefficients of an 18-

gene panel previously curated using a targeted differential expression analysis to predict 

selumetinib sensitivity (Dry et al., 2010). Overall, our results suggest a useful biomarker 

application to potentially reveal hidden responders that may have otherwise been missed by 

sequencing.

Our approach to detecting Ras activation is supervised and, as with any supervised approach, 

is penalized by inaccurate labels. We encountered this limitation when detecting BRAF 
mutations in THCA. BRAF mutations are known to activate ERK and should not be 
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classified as wild-type Ras (Oikonomou et al., 2014). Our results suggest that, in situations 

with predicted confounding mutations, it may be best to withhold a cancer type entirely 

during training. Withholding such data, as opposed to re-building a new classifier post hoc 

that uses BRAF V600E mutations as positive examples, may help to prevent a process of 

classifier creep, in which the classifier is continually expanded to improve metrics. 

Additionally, it is unclear how to best adjust for hypermutated phenotypes, as these tumors 

are more likely to have Ras mutations by chance. Unsupervised or semi-supervised methods 

to automatically retrieve gene expression signatures may overcome labeling issues and may 

sidestep some of the difficulties in modeling hypermutated tumors by first separating 

sources of variation.

While mutual exclusivity analyses across pathways drives hypotheses and reveals etiological 

insights (Babur et al., 2015; Mina et al., 2017), our findings suggest that, when multiple 

mutations occur in Ras pathway genes, tumors exhibit a transcriptional profile associated 

with increased Ras activity. This is the opposite observation for copy number events, as 

more events outside of KRAS, NRAS, and HRAS appear to confer lower scores, which may 

indicate either some sort of dosage response counteracting the effects of hyperactivation or 

alternative events that dampen accurate Ras classification. Furthermore, tumors harboring 

specific Ras pathway isoforms curated by the PanCanAtlas Pathways AWG are generally 

predicted to have higher scores than unconfirmed variants. We provide scores for all 

observed somatic Ras variants for TCGA tumors and CCLE cell lines at base-pair and 

amino-acid resolution (Data S4 and Data S5) and present this resource for potential follow-

up study.

In conclusion, we presented a machine learning method to predict Ras activity in individual 

bulk tumors using transcriptomes. Our approach may sidestep requirements to profile 

multiple genomic measurements to detect Ras activation and identify more patients with 

activated Ras. Our approach can be used as an additional method to improve precision 

oncology (Cieślik and Chinnaiyan, 2018). Subclonal mutations may also prevent accurate 

Ras classification by gene sequencing. Training classifiers with single-cell RNA-seq data 

may enable the detection of rare events and can help to characterize intratumor 

heterogeneity. As data increase in scale and algorithms are better constructed to model 

disease heterogeneity, the ability to research downstream responses of pathway 

misregulation and identify multi-model therapies targeting various vulnerabilities of 

individual tumors will improve.

STAR ★ METHODS

Detailed methods are provided in the online version of this paper and include the following:

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples
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REAGENT or RESOURCE SOURCE IDENTIFIER

KRAS mutant cell line 
profiles

NCBI Gene Expression 
Omnibus; Kim et al., 
2017

GEO: GSE94937

Cancer Cell Line 
Encyclopedia Gene 
Expression

Barretina et al., 2012 CCLE

Cancer Cell Line 
Encyclopedia Mutations

Barretina et al., 2012 CCLE

Cancer Cell Line 
Encyclopedia Variants

Barretina et al., 2012 https://data.broadinstitute.org/ccle/CCLE_DepMap_18Q1_maf_20180207.txt

Deposited Data

The Cancer Genome Atlas Genome Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

Software and Algorithms

Python v3.5.2 Python Core Team https://www.python.org/

Sci-Kit Learn v0.18.1 Pedregosa et al., 2011 http://scikit-learn.org/

Pandas v0.20.3 McKinney 2010 http://pandas.pydata.org

Seaborn v0.7.1 Waskom et al., 2016 
(https://doi.org/10.5281/
zenodo.54844)

https://seaborn.pydata.org/

R v3.4.3 R Core Team https://www.R-project.org

dplyr v0.7.1 Wickham et al., 2017 http://dplyr.tidyverse.org/

ggplot2 v2.2.1 Wickham 2009 http://ggplot2.tidyverse.org/

Custom Classifier Software This paper https://github.com/greenelab/pancancer

Other

Curated Ras Pathway Genes Sanchez-Vega et al., 
2018

N/A

Curated Ras Pathway 
Variants

Chakravarty et al., 2017 http://oncokb.org/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Casey S. Greene (csgreene@upenn.edu). The Cancer Genome 

Atlas will provide instructions on how to access publicly available data.

METHOD DETAILS

Training machine learning classifiers to detect aberrant gene events—We 

integrated Illumina RNaseq, multi-center mutation calls (MC3), and GISTIC2.0 copy 

number threshold calls from The Cancer Genome Atlas (TCGA) PanCanAtlas project to 

classify aberrant pathway function (Mermel et al., 2011). We downloaded TCGA data-sets 

from the Genome Data Commons (GDC). In total, there were 9,075 tumors that were 

measured on all three platforms that passed quality control filtering. We subset the gene 

expression matrix to the 8,000 most variably expressed genes by median absolute deviation 

(MAD), as genes that do not vary are unlikely to be useful for classification and to reduce 

training time. We dropped the target genes of interest (e.g., KRAS, NRAS, HRAS or NF1) 

when training the models to prevent the model from potentially relying too heavily on 
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dosage-specific effects of these genes instead of the downstream response to their activation. 

We also removed the samples with the highest mutation burden to remove potential false 

positives. We defined these samples based on five standard deviations above the log10 total 

non-silent somatic mutation count per sample. Because we were interested in a balanced 

training set based on aberrant gene events, we further filtered samples to include only 

cancer-types with greater than 15 target gene events and a proportion of negatives to 

positives no less than 5%.

Using this data, we trained a supervised elastic net penalized logistic regression classifier 

with stochastic gradient descent (Zou and Hastie, 2005). Our model is trained on RNaseq 

gene expression (X) to predict gene status (Y) (see Figure 1). To control for tumors with a 

hypermutator phenotype and potential tissue-specific expression patterns, we included 

cancer-type dummy variables and per sample log10 mutation count in the model as 

covariates. We defined gold standard gene status using loss of function mutation and deep 

copy number losses for tumor suppressor genes and gain of function mutations and large 

copy number gains for oncogenes. For simplicity and to reduce the requirement for extensive 

manual curation, we considered any non-silent mutation including insertion-deletions in the 

gene body or mutations in splice site regions of target genes. For the specific focus of the 

paper, we integrated gain of function mutation and copy number gains for the oncogenes 

(KRAS, NRAS, and HRAS), and loss of function and deep copy number losses for the 

tumor suppressors (NF1). For example, if a tumor had a deleterious mutation or copy 

number amplification in one of these genes, we considered the Ras status equal to one.

The objective of the classifier is to determine the probability a given sample (i) has a Ras 

event given the sample’s RNaseq measurements (Xi). In order to achieve the objective, the 

classifier learns a vector of coefficients or gene-specific weights (w) that optimize the 

following penalized logistic function.

P(yi = 1 ∣ Xi) = f (Xiw) = 1

1 + e
−wXi

negative loglikelihood = L = − ∑
i = 1

n
yilogP(yi = 1 ∣ Xi) + (1 − yi)logP(yi = 0 ∣ Xi)

w = argmin L + α∑ ∣ w ∣l

Where α and l are regularization and elastic net mixing hyperparameters that are only active 

during training, respectively. Using a training set consisting of 90% of the full dataset, 

equally balanced for different proportions of included cancer-types and Ras status, we 

performed cross validation over the hyperparameter grid: l = {0.15, 0.155, 0.16, 0.2, 0.25, 

0.3, 0.4} and α = {0.1, 0.13, 0.15, 0.18, 0.2, 0.25, 0.3}. We used balanced 5-fold cross 

validation based on the highest cross-validation area under the receiver operating 

characteristic (AUROC).
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We trained the Ras classifier using optimal hyperparameters (l = 0.15 and α = 0.1) and 

assessed performance on training, testing (held out 10% of data) and across 5-fold cross-

validation intervals. In 5-fold cross-validation, the data are partitioned into five even sets 

(balanced by Ras status and cancer-type). Four of the folds, called training intervals, are 

used to construct the model. The model is then evaluated on the fifth fold, which is called 

the evaluation fold. The reported training performance comes from the folds used for 

training, while the cross-validation performance uses the evaluation fold. Therefore, 

performance on cross-validation intervals are the predictions reported on the training set 

samples when they were included in the internal cross-validation evaluation fold. The full 

model is reported in Data S3 and all resulting classification scores in Data S2 is the model 

learned from the training set alone.

Evaluating machine learning classifiers—We evaluated the pan-cancer classifiers in 

various ways. For every evaluation, we reported the AUROC and area under the precision-

recall (AUPR) curve. We also compared gene specific classifiers built using pan-cancer data 

to classifiers trained independently using only data from individual cancer-types. In these 

cases, each cancer-type specific model was optimized individually. We compared how the 

pan-cancer model performed on individual cancer-types compared to individual cancer-type 

optimizations. Additionally, we cataloged the performance of the Ras classifier to predict 

NF1 inactivation in various cancer-types. NF1 is a tumor suppressor of Ras and we 

postulated that it would have similar downstream consequences that could be captured by 

the Ras classifier. Therefore, we performed the same procedure of filtering datasets and 

training pan and within cancer-type classifiers for NF1. We compared these NF1 evaluations 

against the Ras classification. Lastly, we evaluated the Ras classifier on predicting aberrant 

mutations of other genes and variants in the Ras pathway and in two different cell line 

datasets.

Classifier Benchmarking Analyses—We determined the robustness of the classifier by 

evaluating performance under various input features and prediction tasks. We evaluated 

potential inflation of performance metrics by training a null model on a randomly shuffled 

input gene expression matrix. We did not shuffle the covariate information or the y matrix. 

Performance on the random shuffling of genes, while maintaining the same ratio of Ras 

mutations, provides insight into how the model would be expected to perform in a scenario 

lacking Ras activation signal. We also performed the same shuffling and classifier testing 

procedure as internal negative controls in every pan-cancer model and report ROC/PR 

curves and AUROC/AUPRs in each figure.

To assess value added in combining mutation and copy number data in the prediction task 

(altering the y matrix), we trained pan-cancer classifiers with the same procedure described 

above to predict Ras mutations and Ras copy number gains separately. The combined model 

presented here is the same model trained in Figure 2. To test the effect of dropping KRAS, 

HRAS, and NRAS from the model (altering the X matrix), we trained models with the 

previously described procedure with the input gene expression matrix without dropping Ras 

genes. We also tested a classifier after dropping 14 genes from the Expanded RASopathy 

Panel (Genetic Testing Registry). The genes included BRAF, CBL, HRAS, KRAS, 
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MAP2K1, MAP2K2, NF1, NRAS, PTPN11, RAF1, SHOC2, SOS1, SPRED1, and RIT1. 

For the two previous comparisons, we compared the learned gene expression coefficients to 

the classifier trained in Figure 2. For the dropping genes analysis, we added back all dropped 

genes as zero weights. We also compared the performance of gene expression-only and 

covariate-only models (altering the X matrix) to the combined model presented in Figure 2. 

The y matrix remained the same, but each model was trained on only a subset of the 

combined X matrix. The differentially expressed genes visualized in Figure S2H were 

obtained from the differential expression analysis described below.

Differential Expression Analysis—We performed a differential expression analysis 

using the limma Bioconductor package (Ritchie et al., 2015). We adjusted the model by 

cancer-type by including cancer-type indicator variables in the limma design matrix. We 

considered all 9,074 samples and 20,500 genes in this analysis. We zero-one normalized the 

input matrix by gene prior to fitting with limma.

Cell Line Validation—We applied the Ras classifier to two independent cell line datasets. 

The first dataset was generated by Kim et al. (2017) and was deposited in the Gene 

Expression Omnibus (Edgar et al., 2002) with the identifier GEO: GSE94937. We used the 

preprocessed form of the data from (Kim et al., 2017). We also used data from 737 cell lines 

from the CCLE that had matching RNaseq and mutation data (Barretina et al., 2012). Of 

these 737, 708 also had variant level annotations. In order to apply the classifier to both cell-

line data-sets, we z-score normalized gene expression values and subset the data to classifier 

genes, independently. 177 out of 185 (96%) of the features were in common to classifier 

genes in both datasets, so we proceeded to make predictions with this subset. In order to 

apply the predictions, we used the following transformation:

s = f (Xiw) = 1
1 + e−wX

Where s is the classifier prediction, w is the gene weights, and X is the corresponding subset 

cell line gene expression matrix.

We used the CCLE pharmacologic profiling data, which measured the activity of 24 drugs 

across 504 CCLE cell lines (CCLE_NP24.2009_profiling_2012.02.20.csv). Data were 

accessed from https://portals.broadinstitute.org/ccle/data (Barretina et al., 2012).

Ras Pathway and Oncogenicity Curation—We used the PanCanAtlas Pathways 

Working Group definition of 38 core Ras pathway genes (Sanchez-Vega et al., 2018). We 

obtained oncogenicity assignments for mutations in these genes using OncoKB (Chakravarty 

et al., 2017) and additional manual curation by the PanCanAtlas Pathways AWG. The 

manual curation included referencing MutSig (Lawrence et al., 2013), hotspot analyses 

(Chang et al., 2016), and GISTIC Peaks (Mermel et al., 2011).
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QUANTIFICATION AND STATISTICAL ANALYSES

We performed all machine learning model training, testing, and evaluations using sci-kit 

learn (version 0.18.1) with python 3.5.2 (Pedregosa et al., 2011). We processed data using a 

combination of pandas (version 0.20.3) and dplyr (version 0.7.1) and visualized results using 

a combination of seaborn (version 0.7.1), ggplot2 (version 2.2.1), and PathwayMapper 

(Bahceci et al., 2017). R packages were run on R version 3.4.0. Please refer to the Key 

Resources Table and the available GitHub repository (https://github.com/greenelab/

pancancer) for full software version details. We evaluated all classifiers using AUROC and 

AUPR. The AUROC is a metric describing the overall trade-off between true positive and 

false positive rates, while the AUPR measures precision against recall for a given classifier. 

An AUROC of 0.5 constitutes random guessing. We describe specific filtering steps for each 

analysis in various places in the Method Details section of the STAR Methods. We describe 

overall sample and gene filtering in the Training subsection. We discuss additional gene 

filtering for evaluating all alternative genes in the Evaluation subsection. We set random 

seeds in all computational analyses in order to preserve reproducibility. We performed 

independent t tests with unequal variances when comparing classifier scores for curated 

variants versus variants of unknown significance per Ras pathway gene. We performed the 

same test comparing CCLE cell line Ras classifier scores for Ras wild-type versus Ras 

(KRAS, HRAS, or NRAS) mutant samples and for Ras wild-type, BRAF wild-type versus 

Ras wild-type, BRAF mutant. Using the up to 388 cell lines with both gene expression and 

pharmacology data measured, we fit linear regression models comparing drug activity versus 

Ras classifier scores for all 24 drugs to Ras wild-type and Ras mutant cell lines individually. 

Using a Bonferroni adjusted p value (0.05/(24 * 2) = 0.001), we implicated two high 

correlated drugs (AZD6244 (Selumetinib) and PD-0325901). Selumetinib was tested on 387 

cell lines while PD-0325901 was tested on 388 cell lines. We also used a chi square test for 

proportions of Ras mutations annotated as COSMIC variants in true positives compared to 

false negatives with a null hypothesis that both sets of samples have the same proportion of 

COSMIC variants.

DATA AND SOFTWARE AVAILABILITY

All analytical results can be reproduced using the code available at https://github.com/

greenelab/pancancer. There, we provide instructions to replicate the computing environment, 

download versioned data, and all scripts to reproduce the entire analysis pipeline. The 

pipeline is modular and amendable to generate classifiers and predictions for any 

combination of genes, pathways, and TCGA PanCanAtlas cancer-types. The source code has 

been deposited to Zenodo at https://doi.org/10.5281/zenodo.1186801.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Machine learning models of gene expression can aid in precision oncology

• The model can identify Ras activation in TCGA PanCanAtlas tumors and cell 

lines

• The model identifies events that phenocopy Ras activation, such as NF1 loss

• The approach characterizes Ras pathway variants and is extensible to other 

pathways
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Figure 1. Framing the Algorithm and Integration Tasks
(A) RNA-seq data (X) is multiplied by a vector of gene weights (w) where the optimization 

task is to find the optimal w to correctly classify the pathway status matrix (y). We train the 

model with the train partition and evaluate performance on a held-out test set.

(B) The status matrix, y, is constructed by integrating mutations and copy number alterations 

(CNA). We consider activating or loss-of-function mutations and high copy number gain and 

deep copy number loss for oncogenes and tumor-suppressor genes, respectively. Black 

squares indicate aberrant events. For the Ras classifier, we used non-silent somatic mutations 

and high copy gains in the oncogenes KRAS, NRAS, and HRAS.
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Figure 2. Evaluating Machine-Learning Classification of Ras Activation
(A) Cancer-type-specific percentages of Ras aberration by copy number gain and deleterious 

mutation in KRAS, HRAS, or NRAS. The colored squares indicate whether the cancer type 

was included in model training.

(B) Predicting Ras pathway activation metrics. The gray lines represent classifier predictions 

on a randomly shuffled gene expression matrix. Left: receiver operating characteristic 

(ROC) curve and area under the ROC (AUROC) curve given for training, testing, and cross-

validation (CV) sets. The dotted navy line represents a hypothetical random classifier. Right: 

precision recall (PR) curve and corresponding area under the PR (AUPR) curve for each 

evaluation set.

(C) Sparse classifier coefficients indicate which genes impact classifier performance. 

log10_mut represents tumor-specific non-silent mutation rate. (D) Cancer-type-specific 

performance for the pan-cancer model compared to separate models trained on each cancer 

type independently.

See also Figures S2 and S3.
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Figure 3. Cell-Line Predictions of Ras Activity
(A) Ras classifier trained on PanCanAtlas tumors applied to a dataset of small airway 

epithelial cells (GEO: GSE94937). The mutant cells included a stably expressed KRAS 
G12V mutation.

(B) Ras classifier trained on PanCanAtlas tumors applied to 737 cell lines from The Cancer 

Cell Line Encyclopedia (CCLE). Cell lines with KRAS, HRAS, or NRAS mutations are 

indicated in the right boxes, and wild-type tumors are indicated in the left boxes. Scores for 

cell lines with BRAF mutations (green) and wild-type BRAF (gold) are also shown.

(C and D) Drug activity area for (C) selumetinib (AZD6244) and (D) PD-0325901 

compared against Ras classifier scores for 388 CCLE cell lines with both gene expression 

and pharmacologic profiling data. Cell lines with mutant (orange) or wild-type (blue) 

KRAS, HRAS, and NRAS are indicated. The best fit lines, SE estimates, correlation 

coefficients, and p values are shown separately for cell lines with mutant or wild-type Ras.
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Figure 4. Ras Activation across Ras Variants and Alternative Ras Pathway Members
(A) Cross-validation area under the receiver operating characteristic curve for predicting 

NF1 inactivation. Within and pan-cancer models are classifiers trained to detect NF1 
inactivation. The Ras model is the classifier trained in Figure 2. The pan-cancer NF1 

classifier is shown in Figure S3.

(B) Ras classifier scores for samples with oncogenic or unconfirmed variants in KRAS, 

HRAS, and NRAS. Variant oncogenicity designations are based on curation (see STAR 

Methods).

(C and D) Ras classifier scores stratified by Ras activity (KRAS, NRAS, HRAS) status and 

number of (C) aberrant mutations or (D) copy number alterations in other Ras pathway 

members. The two rows of numbers above each graph indicate number of samples in each 

group (top) and percentage of samples assigned to active Ras (bottom).

See also Figure S3.
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