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ARTICLE

Rapid increase in atmospheric iodine levels in the
North Atlantic since the mid-20th century
Carlos A. Cuevas1, Niccolò Maffezzoli2, Juan Pablo Corella1, Andrea Spolaor 3,4, Paul Vallelonga2,

Helle A. Kjær 2, Marius Simonsen2, Mai Winstrup2, Bo Vinther2, Christopher Horvat5, Rafael P. Fernandez 6,

Douglas Kinnison7, Jean-François Lamarque 7, Carlo Barbante3,4 & Alfonso Saiz-Lopez1

Atmospheric iodine causes tropospheric ozone depletion and aerosol formation, both of

which have significant climate impacts, and is an essential dietary element for humans.

However, the evolution of atmospheric iodine levels at decadal and centennial scales is

unknown. Here, we report iodine concentrations in the RECAP ice-core (coastal East

Greenland) to investigate how atmospheric iodine levels in the North Atlantic have evolved

over the past 260 years (1750–2011), this being the longest record of atmospheric iodine in

the Northern Hemisphere. The levels of iodine tripled from 1950 to 2010. Our results suggest

that this increase is driven by anthropogenic ozone pollution and enhanced sub-ice phyto-

plankton production associated with the recent thinning of Arctic sea ice. Increasing atmo-

spheric iodine has accelerated ozone loss and has considerably enhanced iodine transport

and deposition to the Northern Hemisphere continents. Future climate and anthropogenic

forcing may continue to amplify oceanic iodine emissions with potentially significant health

and environmental impacts at global scale.
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The biogeochemical cycle of iodine involves ocean emission,
atmospheric transformation, new particle formation,
uptake on aerosols, heterogeneous recycling, and deposi-

tion on land, where iodine enters terrestrial ecosystems1–3. Iodine
is also a key trace element in the endocrine system of mammals,
and is essential for the production of hormones in the thyroid
gland. In humans, iodine deficiency causes neurological damage
and developmental delays in children, and represents the most
common cause of preventable mental retardation4,5. Iodine intake

by mammals thus represents the last reservoir in the biogeo-
chemical cycle of iodine. Atmospheric iodine is transported from
its dominant oceanic source to the continents, where it is
adsorbed onto soil and vegetation. Between ocean emission, soil
deposition, and ultimate ingestion by animals and humans, iodine
participates in a complex variety of physical and chemical
atmospheric processes1. Laboratory studies have demonstrated
the oceanic emission of hypoiodous acid (HOI) and molecular
iodine (I2) following the deposition of tropospheric ozone (O3) to
the surface and the subsequent reaction with iodide (I−) ions6,7.
This ocean release of inorganic iodine is estimated to account for
75% of the total source of atmospheric iodine, with the remainder
coming from organic iodine (e.g., CH3I, CH2I2, etc.)8. Conse-
quently, an increase in global ocean iodine emissions has been
hypothesized in response to the human-driven increase in tro-
pospheric ozone levels during the industrial period9. The lack of
long-term measurements of atmospheric iodine has so far pre-
vented the study of its evolution in the atmosphere.

In this work iodine and sodium were measured in the upper
130 m of the RECAP (REnland ice Cap Project) ice-core spanning
the Industrial Period (i.e., 1750–2011), providing an opportunity
to understand changes in atmospheric iodine levels in the North
Atlantic region and their responses to natural and anthropogenic
forcings. We find that although the iodine concentrations do not
vary significantly from 1750 to 1950, the abrupt increase observed
from 1950 to 2010 is linked to enhanced tropospheric ozone
pollution and Arctic sub-ice biological activity.

Results
Iodine concentrations in the RECAP ice-core. The Renland ice
cap is located on a high elevation plateau on the eastern coast of
Greenland (71.30° N, 26.72° W, 2315m asl) and was the site of a
584-m ice-core drilled to bedrock in 2015. The Renland iodine
record displays mean concentrations and deposition fluxes of
~0.023 ng g−1 (σ= 0.009) and 10 µg m−2 year−1 (σ= 4), respec-
tively (Fig. 1). Iodine concentrations were stable from the onset of
the Industrial Period (1750 Common Era, hereafter C.E.) to 1940
C.E., followed by a drop to values of 0.01 ng g−1 during the 1940s
(Fig. 1). Since the 1950s, iodine concentrations have risen nearly
4-fold, reaching average values of 0.038 ng g−1 during the past
decade (2001–2011). Iodine fluxes have doubled from 1750 to
2010, and tripled from 1950 to 2010.

We now turn to the origin of the observed iodine trend. The
Renland ice cap is primarily influenced by the Nordic seas and
North Atlantic open waters. There is a weak statistical relation-
ship between iodine and sodium levels, significant at the 90%
level, from 1950 to 1989 but not from 1990 to 2011 (Table 1;
Supplementary Figure 1). Iodine and sodium are both emitted
from the ocean surface, but sodium also has a potential winter
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Fig. 1 Time series of geochemical elements in the Renland ice-core during
the Industrial Period. a Iodine [I] concentration and standard deviation,
b positive (red) and negative (blue) variation of iodine depositional fluxes
J[I] with respect to the 1750–2010 average and c sodium [Na]
concentrations and standard deviation from Renland ice core (black and red
lines represent the 5-samp. running averages for iodine and sodium,
respectively); d Arctic sea ice extent reconstruction (thin line from Kinnard
et al.54 and thick line from Rienecker et al.55). The shaded area represents
the period 1950–2011 shown in Fig. 2

Table 1 Correlation coefficients between iodine concentration and other parameters

[I] [Na] J(I) SST Esea ice O3 Bprod (1979–1989) Thsea ice (1979–1989)

1950–1989
[I]
ρ 1 0.296 0.392* −0.35* −0.343* 0.362* 0.384 −0.278
Sig. 0.075 0.017 0.034 0.038 0.028 0.243 0.408

1990–2011
[I]
ρ 1 0.207 0.003 0.468* −0.311 0.136 0.647** −0.677**

Sig. 0.369 0.991 0.032 0.182 0.567 0.002 0.001

ρ Pearson's correlation coefficient, Sig. significance (*significance < 0.05, **significance < 0.01 highlighted in bold font)
1950–1989 and 1990–2011 correlation coefficients between iodine concentrations [I] in the Renland ice-core and annually averaged: Renland ice-core sodium concentration [Na], modeled iodine
emission fluxes emitted from the North Atlantic Ocean J(I), sea surface temperature (SST) in the North Atlantic region55, sea ice extent (Esea ice) in the Arctic region55, modeled ozone in the North
Atlantic region, biological production22 (Bprod), and sea ice thickness (Thsea ice) in the Arctic region22, 23
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emission mechanism via saltation over the sea ice surface10. The
weak iodine–sodium correlation since 1950 C.E. suggests that the
recent iodine variability since 1950 C.E. cannot be attributed to
natural processes, such as the atmospheric transport of sea salts.
In addition, the iodine–sodium ratio in the Renland ice-core is
two orders of magnitude higher than that in seawater11

(Supplementary Figure 1).
Oceanic emissions of HOI and I2, the main source of global

atmospheric iodine, depend on surface ozone concentrations6,7,9.
We note that the sharp increase in iodine concentrations since
1950 has occurred in a period when tropospheric ozone levels
have increased globally. The longest quantitative ozone record in
Europe indicates that ozone doubled between 1950 and 2000 and
has been stable since 200012,13. Results from the chemistry-
climate model CAM-Chem (Community Atmospheric Model
with chemistry14,15; see Methods) show a 33% increase in ocean
iodine emissions over the North Atlantic since 1950 in response
to a 30% ozone increase during this period (Fig. 2). Over the same
period, a baseline simulation without the ozone-induced emission
of iodine from the oceans yields a constant iodine emission flux
that is 10 times lower than the above results (Fig. 2). During the
1950–1989 period, the iodine concentrations in the ice-core
increase significantly with increasing ocean iodine emissions and
tropospheric ozone in the North Atlantic (ρ= 0.392, s= 0.017
and ρ= 0.362, s= 0.028, respectively (ρ= Pearson's correlation
coefficient, s= significance)). The estimated decreases in ozone
precursor emissions over North America and Europe during the
1940s16 suggest a similar link during the concurrent observed ice-
core iodine decrease. Overall, this suggests that ozone-driven

ocean emissions of iodine may have controlled the variability of
atmospheric iodine levels during the 1950–1989 period. Note that
the increase in atmospheric iodine levels followed by deposition
to ice covered areas would in turn make the local heterogeneous
processing and recycling of iodine in ice/snow more efficient, as
recently measured in the Arctic17,18. Interestingly, during the
period from 1990 to 2011, iodine concentrations increase despite
stable atmospheric ozone concentrations (no significant correla-
tion: ρ= 0.136, s= 0.567, see Table 1), indicating a different
forcing mechanism for iodine emission during the past two
decades.

Discussion
Present-day iodine sources in coastal polar regions are believed to
mainly be related with biological production under sea ice18 and
with abiotic ice surface photochemistry17,19,20. The polar ampli-
fication of climate change has contributed to a rapid reduction of
the Arctic sea ice extent in recent decades (Fig. 1). Arctic sea ice is
also increasingly thinning and becoming dominated by thinner
and younger sea ice, leading to conditions similar to those found
in coastal Antarctica, where the comparatively thinner sea ice
allows a more efficient diffusion and release of biologically pro-
duced iodine21. These recent changes have modified Arctic Ocean
ecology by increasing the frequency and extent of sub-ice phy-
toplankton blooms over the past two decades22. We found that
iodine concentrations since 1990 are most strongly correlated
with the thinning of Arctic sea ice (ρ=−0.677; s=0.001) and
Arctic sub-ice biological productivity (ρ= 0.647; s=0.002) (Fig. 2;
Table 1). Therefore, atmospheric iodine levels in this region may
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Fig. 2 Iodine concentration evolution and forcing mechanisms for the period 1950–2011. a Iodine concentration (blue area); ozone annually averaged over
the North Atlantic region (latitude: 20° N–70° N, longitude= 75° W–0°) (dark line) and evolution of the pan-Arctic likelihood of sub-ice blooms in late
spring and early summer (May–June–July) over time22 (red line); b mean Arctic sea ice thickness, red line from Horvat et al.22 and red dots from Kwok
et al.23; c) modeled ocean emission fluxes of iodine with (solid line) and without (dotted line) the implementation of the ozone-induced iodine emission
mechanism
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have been significantly influenced by the enhanced sub-ice bio-
logical production of iodine since the 1990s. Considering this
dynamic, we find no significant correlation between iodine con-
centrations and sea ice thickness before 1990 (ρ=−0.278;
s=0.408). Thicker Arctic sea ice for the period 1958–197623

(Fig. 2) most likely reduced the ice permeability, hindering the
sub-ice biologically related iodine emissions18,24. In contrast,
since 1990, iodine correlates well with the mean late spring–early
summer Arctic sea ice thickness (ρ=−0.677; s=0.001). The
abrupt decrease in the Arctic sea ice thickness below 1.5 m since
1990 (Fig. 2) would ease the propagation of sunlight that ulti-
mately controls the iodine production via algal oxidative stress.
This would result in higher iodine excretion rates from Arctic
sub-ice algal populations, and a reduced blocking layer due to the
more porous fresh ice cap. The high reported values of sea ice
thickness before 1960 (Fig. 1) could also account for the decrease
in the observed iodine levels during the 1940s and 1950s decades.
The attribution to sub-ice Arctic algae blooms is supported by an
“off-line” calculation of the resulting iodine flux as a function of
seasonal ice fraction, biological activity underneath the sea ice
and solar zenith angle. This estimation shows that the contribu-
tion of the iodine flux from sub-ice algae to the total iodine
emission has increased from 5% in 1960 to 29% in 2010 (Sup-
plementary Note 1). Therefore, the interplay between enhanced
biological production and sea ice thinning may explain the higher
iodine levels found in the Renland ice-core over the past two
decades. Other processes affecting the release and transport of
reactive atmospheric iodine in the Arctic, such as the abiotic
photochemical recycling occurring on the sea ice surface, are very
likely to remain constant in time, or even decrease due to the
reduction of sea ice extent since it reduces the active area from
which this emission may occur.

A final point to consider is the environmental and health
implications of the observed rapid rise in iodine since the mid-
twentieth century. Higher iodine levels have led to a 25% larger
modeled tropospheric ozone destruction rate in the North
Atlantic region since 1950 (Supplementary Figure 2). The mod-
eled surface ozone concentration over the North Atlantic is ~10%
higher in the 1950–2010 simulation without the natural O3-
iodine feedback mechanism. Our modeled iodine deposition rates
in Renland are in good agreement with the observations in the
ice-core (Supplementary Figure 3). Our modeling results show
that transport of marine iodine and its deposition to the North
American and European continents have increased by 38% and
25% respectively, during the past 50 years. The enhancement of
iodine deposition over continents and the subsequent adsorption
onto soil and vegetation25 is important since it is estimated that 2
billion people worldwide still have insufficient iodine intake5,26,27.

The sustained growth in iodine concentrations in Renland is
likely due to human influences on tropospheric ozone and recent
global warming in the Arctic. This observation points to a sig-
nificant increase in the entry of iodine into the ecosystems, which
carries important environmental consequences. Enhanced atmo-
spheric iodine levels will likely promote the formation of new
ultrafine aerosol particles28–32. The acceleration of tropospheric
ozone loss due to higher iodine levels leads to a reduction in the
oxidative capacity of the atmosphere and a reduction in the ozone
radiative forcing. Indeed, at present, the halogen-mediated
depletion of tropospheric ozone, a potent greenhouse gas, is
estimated to account for 30% of ozone radiative forcing33–35. The
increase in both the formation of ultrafine particles and ozone
destruction leads to a cooling effect on the climate. Atmospheric
deposition is also a major source of iodine in soils and plants as it
enters the food chain through this mechanism25. Therefore, an
increasing amount of iodine deposited over the continents since
the mid-twentieth century may have led to an increase in human

iodine uptake in some regions. Finally, we note that if iodine
concentrations continue to increase, they could have significant
impacts on future tropospheric ozone, aerosol formation and
human iodine intake.

Methods
The Renland ice-core. The RECAP ice-core was drilled at 71.30° N, 26.72° W
(2315 m asl), on the Renland ice cap in Scoresbysund Fjord (Eastern Greenland) in
2015 using the Danish Hans Tausen intermediate drill system. An ice-core 10 cm
in diameter was drilled to bedrock, 584 m below the snow surface. The depth range
of the Renland ice-core reported here spans the Industrial Period from a 5.5-m ice-
core depth (2011 C.E.) to a 130-m ice-core depth (1750 C.E.). The RECAP ice-core
chronology is based on annual layer counting using the StratiCounter algorithm36,
which accounts for the annual signal in a large array of chemical species37—
including black carbon, calcium, conductivity, ammonium, sodium, dust, water
isotope (d18O, dD, deuterium excess), as well as electrical conductivity records
(DEP, ECM); in total 17 data series. The timescale was constrained by five pro-
minent volcanic eruption markers within the considered time interval (Hekla 1947
C.E. at a depth of 50.5 m, Katmai 1912 C.E. at a depth of 68 m, Tambora 1816 C.E.
at a depth of 106 m, and Laki 1783 C.E. at a depth of 117 m). Given the volcanic
constraints, the uncertainty in the age scale is estimated to be ±2 years through the
period discussed here. The density profile was obtained by fitting a three-stage
exponential densification model (χ2-fit prob= 7.7%) to density measurements (N
= 180, σρ=15 kg m−3) obtained every 55 cm. The annual accumulation rates were
calculated from the annual layer thickness, the density profile and a linear thinning
function, which was inferred from a Dansgaard and Johnsen38-type ice flow model
constrained to well-dated horizons. The average accumulation in the period from
1750 C.E.–present is 447 kg m−2 year−1 (1σ= 65 kg m−2 year−1), which is con-
sistent with the Holocene value of 50 cm ice equivalent (i.e. 459 kg m−2 year−1)
reported in a previous work39. The ice-core samples were collected in
October–December 2015 using a continuous flow analysis (CFA) system at the
University of Copenhagen40. One discrete sample was collected for each 55-cm rod
of melted ice. Meltwater was collected in pre-cleaned polyethylene tubes, subse-
quently refrozen and stored shielded from light until analysis. Samples were sent to
the IDPA-CNR, University Ca’ Foscari of Venice for sodium and iodine
determination.

Iodine quantification. Measurements were carried out at the Environmental
Analytical Chemistry laboratory of the IDPA-CNR, University Ca’Foscari of
Venice. Samples were measured by collision reaction cell-inductively coupled
plasma mass spectroscopy (Agilent 7500cx, Agilent, California, USA) using a Scott
spray chamber fitted with a Microflow PFA nebulizer (ESI, Omaha, NE, USA). The
operational methodology was carried out as described in a previous work41. Iodine
(127I) and sodium (23Na) isotopes were determined, respectively, at a low and
medium mass resolution with plasma stability evaluated by the continuous mon-
itoring of 129Xe. The sample line was thoroughly cleaned using 2% nitric acid and
ultrapure water (UPW, 18.2 MΩ•cm) between each analysis. Instrumental blanks
(UPW samples and UPW ice samples from the CFA campaign) were measured
throughout the analytical phases. Detection limits of sodium and iodine were
respectively 0.8 ppb and 5 ppt—calculated as three times the root mean square of
the blank samples. Instrumental-associated errors for iodine and sodium con-
centration measurements are 10%. Air-to-snow iodine annual fluxes (JI) were
calculated by the following: JI= CIA, where CI is the iodine concentration in the ice
and A is the annual accumulation rate.

CAM-Chem model setup and validation. The model employed in this work is the
global 3-D chemistry-climate model CAM-Chem (version 4)42, which is included
in the CESM framework (Community Earth System Model). The model setup is
based on the CCMI-REFC1 experiment described in a previous work43, but
incorporates an updated halogen chemistry scheme for halogens (chlorine, bro-
mine, and iodine)14,15,33,44,45. This model configuration includes an explicit state-
of-the-art scheme of iodine emissions (both organic and inorganic) and photo-
chemistry (both gas and particle phase), which explicitly account for chemical
transformation during transport from the ocean source to deposition in the Ren-
land region. The iodine chemical scheme includes in addition to a complete gas
phase chemical mechanism considering independent photolysis rate coefficients,
bi-molecular and termolecular reactions15, and a parameterized representation of
heterogeneous reactions occurring both on sea-salt aerosols and tropospheric ice
crystal14, as well as independent representation of dry and wet deposition
(including below-cloud wash-out and ice-uptake) for each inorganic iodine spe-
cies14,15. These processes change the chemical partitioning of each of the 14
individual inorganic halogen species by calling the chemical solver coupled with the
transport module at each time step.

Halogen sources include the photochemical breakdown of five very short-lived
bromocarbons (VSLBr= CHBr3, CH2Br2, CH2BrCl, CHBrCl2, CHBr2Cl) and four
iodocarbons (VSLI= CH3I, CH2ICl, CH2IBr, CH2I2), which are naturally emitted
from the ocean to the atmosphere following its production by phytoplankton and
photochemical processes occurring at ocean surface46. Additionally, abiotic oceanic
sources of HOI and I2 have been included in the lowest layer of the model9, based
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on recent laboratory studies of the oxidation of aqueous iodide by atmospheric
ozone deposited on the ocean surface6,7. Therefore, the model includes both
organic and inorganic global iodine emission sources.

In this work, CAM-Chem was configured with a horizontal resolution of 1.9°
latitude by 2.5° longitude and 26 levels, from the surface to ∼40 km (with eight
levels above 100 hPa), as in previous studies15,44,45. At the model surface boundary,
the zonally averaged distributions of long-lived halocarbons (LLCl= CH3Cl,
CH3CCl3, CCl4, CFC-11, CFC-12, CFC-113, HCFC-22, CFC-114, CFC-115,
HCFC-141b, HCFC-142b and LLBr= CH3Br, H-1301, H-1211, H-1202, and H-
2402) based on the A1 halogen scenario from WMO47 are considered, while the
surface concentrations of CO2, CH4, H2, and N2O are specified following a
previous work48. The model was run in free-running mode42 considering
prescribed sea surface temperatures (Supplementary Figure 4) and sea ice
distributions from 1950 to 2010. Therefore, the model dynamics and transport
represent the daily synoptic conditions of the observations, and allows the direct
online coupling between the ocean, ice, and atmospheric modules during the 60
years of simulation. To have a reasonable representation of the overall stratospheric
circulation, the integrated momentum that would have been deposited above the
model top is specified by an upper boundary condition. To evaluate the impact of
the increased iodine emissions, all data in the area referred to as the North Atlantic
have been averaged between 20° N and 70° N latitude and 75° W–0° longitude.
Despite the expected spatial heterogeneities in the oceanic iodine flux due to local
changes in SST and wind speed, the increasing trend since the mid-twentieth
century is a common feature across the entire ocean.

The model has been extensively compared with available measurements,
especially long-term trends of ozone at the surface and in the mid-troposphere43,49.
While the model shows very good skill for the recent past, there is a tendency for
the model simulation to overestimate ozone prior to the 1970s. This would, in turn,
reduce the rate of ozone increase over that period, and would therefore
underestimate the iodine response to an ozone change. The effectiveness and
importance of each reaction and process included in the chemical mechanism has
been evaluated in the global atmosphere both during the day and night50,51, while
all the sources and tropospheric mixing ratios of organic and inorganic iodine
species have been validated8,46.

The modeled iodine values display a more continuous and less increasing trend
than the observed values in the ice-core. The same can be said for the modeled
ozone, in comparison to observations from previous works12,13. The differences are
most likely because there is difficulty in accurately modeling ozone emissions in the
past, when measurements were scarce. Furthermore, the model does not
implement online the biological activity underneath the sea ice in the Arctic region,
and the sea surface production of CH2I2, CHClI2, and CHI3 from the reaction of
HOI and I2 with marine dissolved organic matter52,53, although their contribution
to the global atmospheric iodine budget is likely to be smaller than that from HOI
+ I2. Therefore, the model is only representative of the ozone-induced inorganic
iodine emissions (HOI and I2) from the North Atlantic Ocean. Hence, these values
must be considered as lower limits, because the modeled trend is lower than that
registered in the ice-core. This first difference has been already reported in a
previous work13, suggesting that in order to reproduce the long-term ozone trends,
chemistry-climate models should be improved by introducing additional processes
that might have climatic impacts.

Data availability. The ice-core and model data that support the findings of this
study are available upon request.
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